src/HOL/Tools/transfer.ML
changeset 57866 f4ba736040fa
parent 57865 2ae16e3d8b6d
child 57867 b5b6ad5dc2ae
     1.1 --- a/src/HOL/Tools/transfer.ML	Thu Apr 10 17:48:17 2014 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,840 +0,0 @@
     1.4 -(*  Title:      HOL/Tools/transfer.ML
     1.5 -    Author:     Brian Huffman, TU Muenchen
     1.6 -    Author:     Ondrej Kuncar, TU Muenchen
     1.7 -
     1.8 -Generic theorem transfer method.
     1.9 -*)
    1.10 -
    1.11 -signature TRANSFER =
    1.12 -sig
    1.13 -  val bottom_rewr_conv: thm list -> conv
    1.14 -  val top_rewr_conv: thm list -> conv
    1.15 -
    1.16 -  val prep_conv: conv
    1.17 -  val get_transfer_raw: Proof.context -> thm list
    1.18 -  val get_relator_eq_item_net: Proof.context -> thm Item_Net.T
    1.19 -  val get_relator_eq: Proof.context -> thm list
    1.20 -  val get_sym_relator_eq: Proof.context -> thm list
    1.21 -  val get_relator_eq_raw: Proof.context -> thm list
    1.22 -  val get_relator_domain: Proof.context -> thm list
    1.23 -  val get_compound_lhs: Proof.context -> (term * thm) Item_Net.T
    1.24 -  val get_compound_rhs: Proof.context -> (term * thm) Item_Net.T
    1.25 -  val transfer_add: attribute
    1.26 -  val transfer_del: attribute
    1.27 -  val transfer_raw_add: thm -> Context.generic -> Context.generic
    1.28 -  val transfer_raw_del: thm -> Context.generic -> Context.generic
    1.29 -  val transferred_attribute: thm list -> attribute
    1.30 -  val untransferred_attribute: thm list -> attribute
    1.31 -  val prep_transfer_domain_thm: Proof.context -> thm -> thm
    1.32 -  val transfer_domain_add: attribute
    1.33 -  val transfer_domain_del: attribute
    1.34 -  val transfer_rule_of_term: Proof.context -> bool -> term -> thm
    1.35 -  val transfer_rule_of_lhs: Proof.context -> term -> thm
    1.36 -  val eq_tac: Proof.context -> int -> tactic
    1.37 -  val transfer_step_tac: Proof.context -> int -> tactic
    1.38 -  val transfer_tac: bool -> Proof.context -> int -> tactic
    1.39 -  val transfer_prover_tac: Proof.context -> int -> tactic
    1.40 -  val gen_frees_tac: (string * typ) list -> Proof.context -> int -> tactic
    1.41 -  val setup: theory -> theory
    1.42 -end
    1.43 -
    1.44 -structure Transfer : TRANSFER =
    1.45 -struct
    1.46 -
    1.47 -(** Theory Data **)
    1.48 -
    1.49 -val compound_xhs_empty_net = Item_Net.init (Thm.eq_thm_prop o pairself snd) (single o fst);
    1.50 -val rewr_rules = Item_Net.init Thm.eq_thm_prop (single o fst o HOLogic.dest_eq 
    1.51 -  o HOLogic.dest_Trueprop o Thm.concl_of);
    1.52 -
    1.53 -structure Data = Generic_Data
    1.54 -(
    1.55 -  type T =
    1.56 -    { transfer_raw : thm Item_Net.T,
    1.57 -      known_frees : (string * typ) list,
    1.58 -      compound_lhs : (term * thm) Item_Net.T,
    1.59 -      compound_rhs : (term * thm) Item_Net.T,
    1.60 -      relator_eq : thm Item_Net.T,
    1.61 -      relator_eq_raw : thm Item_Net.T,
    1.62 -      relator_domain : thm Item_Net.T }
    1.63 -  val empty =
    1.64 -    { transfer_raw = Thm.intro_rules,
    1.65 -      known_frees = [],
    1.66 -      compound_lhs = compound_xhs_empty_net,
    1.67 -      compound_rhs = compound_xhs_empty_net,
    1.68 -      relator_eq = rewr_rules,
    1.69 -      relator_eq_raw = Thm.full_rules,
    1.70 -      relator_domain = Thm.full_rules }
    1.71 -  val extend = I
    1.72 -  fun merge
    1.73 -    ( { transfer_raw = t1, known_frees = k1,
    1.74 -        compound_lhs = l1,
    1.75 -        compound_rhs = c1, relator_eq = r1,
    1.76 -        relator_eq_raw = rw1, relator_domain = rd1 },
    1.77 -      { transfer_raw = t2, known_frees = k2,
    1.78 -        compound_lhs = l2,
    1.79 -        compound_rhs = c2, relator_eq = r2,
    1.80 -        relator_eq_raw = rw2, relator_domain = rd2 } ) =
    1.81 -    { transfer_raw = Item_Net.merge (t1, t2),
    1.82 -      known_frees = Library.merge (op =) (k1, k2),
    1.83 -      compound_lhs = Item_Net.merge (l1, l2),
    1.84 -      compound_rhs = Item_Net.merge (c1, c2),
    1.85 -      relator_eq = Item_Net.merge (r1, r2),
    1.86 -      relator_eq_raw = Item_Net.merge (rw1, rw2),
    1.87 -      relator_domain = Item_Net.merge (rd1, rd2) }
    1.88 -)
    1.89 -
    1.90 -fun get_transfer_raw ctxt = ctxt
    1.91 -  |> (Item_Net.content o #transfer_raw o Data.get o Context.Proof)
    1.92 -
    1.93 -fun get_known_frees ctxt = ctxt
    1.94 -  |> (#known_frees o Data.get o Context.Proof)
    1.95 -
    1.96 -fun get_compound_lhs ctxt = ctxt
    1.97 -  |> (#compound_lhs o Data.get o Context.Proof)
    1.98 -
    1.99 -fun get_compound_rhs ctxt = ctxt
   1.100 -  |> (#compound_rhs o Data.get o Context.Proof)
   1.101 -
   1.102 -fun get_relator_eq_item_net ctxt = (#relator_eq o Data.get o Context.Proof) ctxt
   1.103 -
   1.104 -fun get_relator_eq ctxt = ctxt
   1.105 -  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
   1.106 -  |> map safe_mk_meta_eq
   1.107 -
   1.108 -fun get_sym_relator_eq ctxt = ctxt
   1.109 -  |> (Item_Net.content o #relator_eq o Data.get o Context.Proof)
   1.110 -  |> map (Thm.symmetric o safe_mk_meta_eq)
   1.111 -
   1.112 -fun get_relator_eq_raw ctxt = ctxt
   1.113 -  |> (Item_Net.content o #relator_eq_raw o Data.get o Context.Proof)
   1.114 -
   1.115 -fun get_relator_domain ctxt = ctxt
   1.116 -  |> (Item_Net.content o #relator_domain o Data.get o Context.Proof)
   1.117 -
   1.118 -fun map_data f1 f2 f3 f4 f5 f6 f7
   1.119 -  { transfer_raw, known_frees, compound_lhs, compound_rhs,
   1.120 -    relator_eq, relator_eq_raw, relator_domain } =
   1.121 -  { transfer_raw = f1 transfer_raw,
   1.122 -    known_frees = f2 known_frees,
   1.123 -    compound_lhs = f3 compound_lhs,
   1.124 -    compound_rhs = f4 compound_rhs,
   1.125 -    relator_eq = f5 relator_eq,
   1.126 -    relator_eq_raw = f6 relator_eq_raw,
   1.127 -    relator_domain = f7 relator_domain }
   1.128 -
   1.129 -fun map_transfer_raw   f = map_data f I I I I I I
   1.130 -fun map_known_frees    f = map_data I f I I I I I
   1.131 -fun map_compound_lhs   f = map_data I I f I I I I
   1.132 -fun map_compound_rhs   f = map_data I I I f I I I
   1.133 -fun map_relator_eq     f = map_data I I I I f I I
   1.134 -fun map_relator_eq_raw f = map_data I I I I I f I
   1.135 -fun map_relator_domain f = map_data I I I I I I f
   1.136 -
   1.137 -fun add_transfer_thm thm = Data.map
   1.138 -  (map_transfer_raw (Item_Net.update thm) o
   1.139 -   map_compound_lhs
   1.140 -     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   1.141 -        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
   1.142 -          Item_Net.update (lhs, thm)
   1.143 -      | _ => I) o
   1.144 -   map_compound_rhs
   1.145 -     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   1.146 -        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
   1.147 -          Item_Net.update (rhs, thm)
   1.148 -      | _ => I) o
   1.149 -   map_known_frees (Term.add_frees (Thm.concl_of thm)))
   1.150 -
   1.151 -fun del_transfer_thm thm = Data.map 
   1.152 -  (map_transfer_raw (Item_Net.remove thm) o
   1.153 -   map_compound_lhs
   1.154 -     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   1.155 -        Const (@{const_name Rel}, _) $ _ $ (lhs as (_ $ _)) $ _ =>
   1.156 -          Item_Net.remove (lhs, thm)
   1.157 -      | _ => I) o
   1.158 -   map_compound_rhs
   1.159 -     (case HOLogic.dest_Trueprop (Thm.concl_of thm) of
   1.160 -        Const (@{const_name Rel}, _) $ _ $ _ $ (rhs as (_ $ _)) =>
   1.161 -          Item_Net.remove (rhs, thm)
   1.162 -      | _ => I))
   1.163 -
   1.164 -fun transfer_raw_add thm ctxt = add_transfer_thm thm ctxt
   1.165 -fun transfer_raw_del thm ctxt = del_transfer_thm thm ctxt
   1.166 -
   1.167 -(** Conversions **)
   1.168 -
   1.169 -fun bottom_rewr_conv rewrs = Conv.bottom_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
   1.170 -fun top_rewr_conv rewrs = Conv.top_conv (K (Conv.try_conv (Conv.rewrs_conv rewrs))) @{context}
   1.171 -
   1.172 -fun transfer_rel_conv conv = 
   1.173 -  Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.fun2_conv (Conv.arg_conv conv)))
   1.174 -
   1.175 -val Rel_rule = Thm.symmetric @{thm Rel_def}
   1.176 -
   1.177 -fun dest_funcT cT =
   1.178 -  (case Thm.dest_ctyp cT of [T, U] => (T, U)
   1.179 -    | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], []))
   1.180 -
   1.181 -fun Rel_conv ct =
   1.182 -  let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct)
   1.183 -      val (cU, _) = dest_funcT cT'
   1.184 -  in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end
   1.185 -
   1.186 -(* Conversion to preprocess a transfer rule *)
   1.187 -fun safe_Rel_conv ct =
   1.188 -  Conv.try_conv (HOLogic.Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv))) ct
   1.189 -
   1.190 -fun prep_conv ct = (
   1.191 -      Conv.implies_conv safe_Rel_conv prep_conv
   1.192 -      else_conv
   1.193 -      safe_Rel_conv
   1.194 -      else_conv
   1.195 -      Conv.all_conv) ct
   1.196 -
   1.197 -(** Replacing explicit equalities with is_equality premises **)
   1.198 -
   1.199 -fun mk_is_equality t =
   1.200 -  Const (@{const_name is_equality}, Term.fastype_of t --> HOLogic.boolT) $ t
   1.201 -
   1.202 -val is_equality_lemma =
   1.203 -  @{lemma "(!!R. is_equality R ==> PROP (P R)) == PROP (P (op =))"
   1.204 -    by (unfold is_equality_def, rule, drule meta_spec,
   1.205 -      erule meta_mp, rule refl, simp)}
   1.206 -
   1.207 -fun gen_abstract_equalities ctxt (dest : term -> term * (term -> term)) thm =
   1.208 -  let
   1.209 -    val thy = Thm.theory_of_thm thm
   1.210 -    val prop = Thm.prop_of thm
   1.211 -    val (t, mk_prop') = dest prop
   1.212 -    (* Only consider "op =" at non-base types *)
   1.213 -    fun is_eq (Const (@{const_name HOL.eq}, Type ("fun", [T, _]))) =
   1.214 -        (case T of Type (_, []) => false | _ => true)
   1.215 -      | is_eq _ = false
   1.216 -    val add_eqs = Term.fold_aterms (fn t => if is_eq t then insert (op =) t else I)
   1.217 -    val eq_consts = rev (add_eqs t [])
   1.218 -    val eqTs = map (snd o dest_Const) eq_consts
   1.219 -    val used = Term.add_free_names prop []
   1.220 -    val names = map (K "") eqTs |> Name.variant_list used
   1.221 -    val frees = map Free (names ~~ eqTs)
   1.222 -    val prems = map (HOLogic.mk_Trueprop o mk_is_equality) frees
   1.223 -    val prop1 = mk_prop' (Term.subst_atomic (eq_consts ~~ frees) t)
   1.224 -    val prop2 = fold Logic.all frees (Logic.list_implies (prems, prop1))
   1.225 -    val cprop = Thm.cterm_of thy prop2
   1.226 -    val equal_thm = Raw_Simplifier.rewrite ctxt false [is_equality_lemma] cprop
   1.227 -    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm
   1.228 -  in
   1.229 -    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
   1.230 -  end
   1.231 -    handle TERM _ => thm
   1.232 -
   1.233 -fun abstract_equalities_transfer ctxt thm =
   1.234 -  let
   1.235 -    fun dest prop =
   1.236 -      let
   1.237 -        val prems = Logic.strip_imp_prems prop
   1.238 -        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   1.239 -        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
   1.240 -      in
   1.241 -        (rel, fn rel' =>
   1.242 -          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel' $ x $ y)))
   1.243 -      end
   1.244 -    val contracted_eq_thm = 
   1.245 -      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
   1.246 -      handle CTERM _ => thm
   1.247 -  in
   1.248 -    gen_abstract_equalities ctxt dest contracted_eq_thm
   1.249 -  end
   1.250 -
   1.251 -fun abstract_equalities_relator_eq ctxt rel_eq_thm =
   1.252 -  gen_abstract_equalities ctxt (fn x => (x, I))
   1.253 -    (rel_eq_thm RS @{thm is_equality_def [THEN iffD2]})
   1.254 -
   1.255 -fun abstract_equalities_domain ctxt thm =
   1.256 -  let
   1.257 -    fun dest prop =
   1.258 -      let
   1.259 -        val prems = Logic.strip_imp_prems prop
   1.260 -        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   1.261 -        val ((eq, dom), y) = apfst Term.dest_comb (Term.dest_comb concl)
   1.262 -      in
   1.263 -        (dom, fn dom' => Logic.list_implies (prems, HOLogic.mk_Trueprop (eq $ dom' $ y)))
   1.264 -      end
   1.265 -    fun transfer_rel_conv conv = 
   1.266 -      Conv.concl_conv ~1 (HOLogic.Trueprop_conv (Conv.arg1_conv (Conv.arg_conv conv)))
   1.267 -    val contracted_eq_thm = 
   1.268 -      Conv.fconv_rule (transfer_rel_conv (bottom_rewr_conv (get_relator_eq ctxt))) thm
   1.269 -  in
   1.270 -    gen_abstract_equalities ctxt dest contracted_eq_thm
   1.271 -  end 
   1.272 -
   1.273 -
   1.274 -(** Replacing explicit Domainp predicates with Domainp assumptions **)
   1.275 -
   1.276 -fun mk_Domainp_assm (T, R) =
   1.277 -  HOLogic.mk_eq ((Const (@{const_name Domainp}, Term.fastype_of T --> Term.fastype_of R) $ T), R)
   1.278 -
   1.279 -val Domainp_lemma =
   1.280 -  @{lemma "(!!R. Domainp T = R ==> PROP (P R)) == PROP (P (Domainp T))"
   1.281 -    by (rule, drule meta_spec,
   1.282 -      erule meta_mp, rule refl, simp)}
   1.283 -
   1.284 -fun fold_Domainp f (t as Const (@{const_name Domainp},_) $ (Var (_,_))) = f t
   1.285 -  | fold_Domainp f (t $ u) = fold_Domainp f t #> fold_Domainp f u
   1.286 -  | fold_Domainp f (Abs (_, _, t)) = fold_Domainp f t
   1.287 -  | fold_Domainp _ _ = I
   1.288 -
   1.289 -fun subst_terms tab t = 
   1.290 -  let
   1.291 -    val t' = Termtab.lookup tab t
   1.292 -  in
   1.293 -    case t' of
   1.294 -      SOME t' => t'
   1.295 -      | NONE => 
   1.296 -        (case t of
   1.297 -          u $ v => (subst_terms tab u) $ (subst_terms tab v)
   1.298 -          | Abs (a, T, t) => Abs (a, T, subst_terms tab t)
   1.299 -          | t => t)
   1.300 -  end
   1.301 -
   1.302 -fun gen_abstract_domains ctxt (dest : term -> term * (term -> term)) thm =
   1.303 -  let
   1.304 -    val thy = Thm.theory_of_thm thm
   1.305 -    val prop = Thm.prop_of thm
   1.306 -    val (t, mk_prop') = dest prop
   1.307 -    val Domainp_tms = rev (fold_Domainp (fn t => insert op= t) t [])
   1.308 -    val Domainp_Ts = map (snd o dest_funT o snd o dest_Const o fst o dest_comb) Domainp_tms
   1.309 -    val used = Term.add_free_names t []
   1.310 -    val rels = map (snd o dest_comb) Domainp_tms
   1.311 -    val rel_names = map (fst o fst o dest_Var) rels
   1.312 -    val names = map (fn name => ("D" ^ name)) rel_names |> Name.variant_list used
   1.313 -    val frees = map Free (names ~~ Domainp_Ts)
   1.314 -    val prems = map (HOLogic.mk_Trueprop o mk_Domainp_assm) (rels ~~ frees);
   1.315 -    val t' = subst_terms (fold Termtab.update (Domainp_tms ~~ frees) Termtab.empty) t
   1.316 -    val prop1 = fold Logic.all frees (Logic.list_implies (prems, mk_prop' t'))
   1.317 -    val prop2 = Logic.list_rename_params (rev names) prop1
   1.318 -    val cprop = Thm.cterm_of thy prop2
   1.319 -    val equal_thm = Raw_Simplifier.rewrite ctxt false [Domainp_lemma] cprop
   1.320 -    fun forall_elim thm = Thm.forall_elim_vars (Thm.maxidx_of thm + 1) thm;
   1.321 -  in
   1.322 -    forall_elim (thm COMP (equal_thm COMP @{thm equal_elim_rule2}))
   1.323 -  end
   1.324 -    handle TERM _ => thm
   1.325 -
   1.326 -fun abstract_domains_transfer ctxt thm =
   1.327 -  let
   1.328 -    fun dest prop =
   1.329 -      let
   1.330 -        val prems = Logic.strip_imp_prems prop
   1.331 -        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   1.332 -        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
   1.333 -      in
   1.334 -        (x, fn x' =>
   1.335 -          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x' $ y)))
   1.336 -      end
   1.337 -  in
   1.338 -    gen_abstract_domains ctxt dest thm
   1.339 -  end
   1.340 -
   1.341 -fun abstract_domains_relator_domain ctxt thm =
   1.342 -  let
   1.343 -    fun dest prop =
   1.344 -      let
   1.345 -        val prems = Logic.strip_imp_prems prop
   1.346 -        val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl prop)
   1.347 -        val ((rel, x), y) = apfst Term.dest_comb (Term.dest_comb concl)
   1.348 -      in
   1.349 -        (y, fn y' =>
   1.350 -          Logic.list_implies (prems, HOLogic.mk_Trueprop (rel $ x $ y')))
   1.351 -      end
   1.352 -  in
   1.353 -    gen_abstract_domains ctxt dest thm
   1.354 -  end
   1.355 -
   1.356 -fun detect_transfer_rules thm =
   1.357 -  let
   1.358 -    fun is_transfer_rule tm = case (HOLogic.dest_Trueprop tm) of
   1.359 -      (Const (@{const_name HOL.eq}, _)) $ ((Const (@{const_name Domainp}, _)) $ _) $ _ => false
   1.360 -      | _ $ _ $ _ => true
   1.361 -      | _ => false
   1.362 -    fun safe_transfer_rule_conv ctm =
   1.363 -      if is_transfer_rule (term_of ctm) then safe_Rel_conv ctm else Conv.all_conv ctm
   1.364 -  in
   1.365 -    Conv.fconv_rule (Conv.prems_conv ~1 safe_transfer_rule_conv) thm
   1.366 -  end
   1.367 -
   1.368 -(** Adding transfer domain rules **)
   1.369 -
   1.370 -fun prep_transfer_domain_thm ctxt thm = 
   1.371 -  (abstract_equalities_domain ctxt o detect_transfer_rules) thm 
   1.372 -
   1.373 -fun add_transfer_domain_thm thm ctxt = (add_transfer_thm o 
   1.374 -  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
   1.375 -
   1.376 -fun del_transfer_domain_thm thm ctxt = (del_transfer_thm o 
   1.377 -  prep_transfer_domain_thm (Context.proof_of ctxt)) thm ctxt
   1.378 -
   1.379 -(** Transfer proof method **)
   1.380 -
   1.381 -val post_simps =
   1.382 -  @{thms transfer_forall_eq [symmetric]
   1.383 -    transfer_implies_eq [symmetric] transfer_bforall_unfold}
   1.384 -
   1.385 -fun gen_frees_tac keepers ctxt = SUBGOAL (fn (t, i) =>
   1.386 -  let
   1.387 -    val keepers = keepers @ get_known_frees ctxt
   1.388 -    val vs = rev (Term.add_frees t [])
   1.389 -    val vs' = filter_out (member (op =) keepers) vs
   1.390 -  in
   1.391 -    Induct.arbitrary_tac ctxt 0 vs' i
   1.392 -  end)
   1.393 -
   1.394 -fun mk_relT (T, U) = T --> U --> HOLogic.boolT
   1.395 -
   1.396 -fun mk_Rel t =
   1.397 -  let val T = fastype_of t
   1.398 -  in Const (@{const_name Transfer.Rel}, T --> T) $ t end
   1.399 -
   1.400 -fun transfer_rule_of_terms (prj : typ * typ -> typ) ctxt tab t u =
   1.401 -  let
   1.402 -    val thy = Proof_Context.theory_of ctxt
   1.403 -    (* precondition: prj(T,U) must consist of only TFrees and type "fun" *)
   1.404 -    fun rel (T as Type ("fun", [T1, T2])) (U as Type ("fun", [U1, U2])) =
   1.405 -        let
   1.406 -          val r1 = rel T1 U1
   1.407 -          val r2 = rel T2 U2
   1.408 -          val rT = fastype_of r1 --> fastype_of r2 --> mk_relT (T, U)
   1.409 -        in
   1.410 -          Const (@{const_name rel_fun}, rT) $ r1 $ r2
   1.411 -        end
   1.412 -      | rel T U =
   1.413 -        let
   1.414 -          val (a, _) = dest_TFree (prj (T, U))
   1.415 -        in
   1.416 -          Free (the (AList.lookup (op =) tab a), mk_relT (T, U))
   1.417 -        end
   1.418 -    fun zip _ thms (Bound i) (Bound _) = (nth thms i, [])
   1.419 -      | zip ctxt thms (Abs (x, T, t)) (Abs (y, U, u)) =
   1.420 -        let
   1.421 -          val ([x', y'], ctxt') = Variable.variant_fixes [x, y] ctxt
   1.422 -          val prop = mk_Rel (rel T U) $ Free (x', T) $ Free (y', U)
   1.423 -          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
   1.424 -          val thm0 = Thm.assume cprop
   1.425 -          val (thm1, hyps) = zip ctxt' (thm0 :: thms) t u
   1.426 -          val ((r1, x), y) = apfst Thm.dest_comb (Thm.dest_comb (Thm.dest_arg cprop))
   1.427 -          val r2 = Thm.dest_fun2 (Thm.dest_arg (cprop_of thm1))
   1.428 -          val (a1, (b1, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r1))
   1.429 -          val (a2, (b2, _)) = apsnd dest_funcT (dest_funcT (ctyp_of_term r2))
   1.430 -          val tinsts = [SOME a1, SOME b1, SOME a2, SOME b2]
   1.431 -          val insts = [SOME (Thm.dest_arg r1), SOME (Thm.dest_arg r2)]
   1.432 -          val rule = Drule.instantiate' tinsts insts @{thm Rel_abs}
   1.433 -          val thm2 = Thm.forall_intr x (Thm.forall_intr y (Thm.implies_intr cprop thm1))
   1.434 -        in
   1.435 -          (thm2 COMP rule, hyps)
   1.436 -        end
   1.437 -      | zip ctxt thms (f $ t) (g $ u) =
   1.438 -        let
   1.439 -          val (thm1, hyps1) = zip ctxt thms f g
   1.440 -          val (thm2, hyps2) = zip ctxt thms t u
   1.441 -        in
   1.442 -          (thm2 RS (thm1 RS @{thm Rel_app}), hyps1 @ hyps2)
   1.443 -        end
   1.444 -      | zip _ _ t u =
   1.445 -        let
   1.446 -          val T = fastype_of t
   1.447 -          val U = fastype_of u
   1.448 -          val prop = mk_Rel (rel T U) $ t $ u
   1.449 -          val cprop = Thm.cterm_of thy (HOLogic.mk_Trueprop prop)
   1.450 -        in
   1.451 -          (Thm.assume cprop, [cprop])
   1.452 -        end
   1.453 -    val r = mk_Rel (rel (fastype_of t) (fastype_of u))
   1.454 -    val goal = HOLogic.mk_Trueprop (r $ t $ u)
   1.455 -    val rename = Thm.trivial (cterm_of thy goal)
   1.456 -    val (thm, hyps) = zip ctxt [] t u
   1.457 -  in
   1.458 -    Drule.implies_intr_list hyps (thm RS rename)
   1.459 -  end
   1.460 -
   1.461 -(* create a lambda term of the same shape as the given term *)
   1.462 -fun skeleton (is_atom : term -> bool) ctxt t =
   1.463 -  let
   1.464 -    fun dummy ctxt =
   1.465 -      let
   1.466 -        val (c, ctxt) = yield_singleton Variable.variant_fixes "a" ctxt
   1.467 -      in
   1.468 -        (Free (c, dummyT), ctxt)
   1.469 -      end
   1.470 -    fun go (Bound i) ctxt = (Bound i, ctxt)
   1.471 -      | go (Abs (x, _, t)) ctxt =
   1.472 -        let
   1.473 -          val (t', ctxt) = go t ctxt
   1.474 -        in
   1.475 -          (Abs (x, dummyT, t'), ctxt)
   1.476 -        end
   1.477 -      | go (tu as (t $ u)) ctxt =
   1.478 -        if is_atom tu andalso not (Term.is_open tu) then dummy ctxt else
   1.479 -        let
   1.480 -          val (t', ctxt) = go t ctxt
   1.481 -          val (u', ctxt) = go u ctxt
   1.482 -        in
   1.483 -          (t' $ u', ctxt)
   1.484 -        end
   1.485 -      | go _ ctxt = dummy ctxt
   1.486 -  in
   1.487 -    go t ctxt |> fst |> Syntax.check_term ctxt |>
   1.488 -      map_types (map_type_tfree (fn (a, _) => TFree (a, @{sort type})))
   1.489 -  end
   1.490 -
   1.491 -(** Monotonicity analysis **)
   1.492 -
   1.493 -(* TODO: Put extensible table in theory data *)
   1.494 -val monotab =
   1.495 -  Symtab.make
   1.496 -    [(@{const_name transfer_implies}, [~1, 1]),
   1.497 -     (@{const_name transfer_forall}, [1])(*,
   1.498 -     (@{const_name implies}, [~1, 1]),
   1.499 -     (@{const_name All}, [1])*)]
   1.500 -
   1.501 -(*
   1.502 -Function bool_insts determines the set of boolean-relation variables
   1.503 -that can be instantiated to implies, rev_implies, or iff.
   1.504 -
   1.505 -Invariants: bool_insts p (t, u) requires that
   1.506 -  u :: _ => _ => ... => bool, and
   1.507 -  t is a skeleton of u
   1.508 -*)
   1.509 -fun bool_insts p (t, u) =
   1.510 -  let
   1.511 -    fun strip2 (t1 $ t2, u1 $ u2, tus) =
   1.512 -        strip2 (t1, u1, (t2, u2) :: tus)
   1.513 -      | strip2 x = x
   1.514 -    fun or3 ((a, b, c), (x, y, z)) = (a orelse x, b orelse y, c orelse z)
   1.515 -    fun go Ts p (Abs (_, T, t), Abs (_, _, u)) tab = go (T :: Ts) p (t, u) tab
   1.516 -      | go Ts p (t, u) tab =
   1.517 -        let
   1.518 -          val (a, _) = dest_TFree (Term.body_type (Term.fastype_of1 (Ts, t)))
   1.519 -          val (_, tf, tus) = strip2 (t, u, [])
   1.520 -          val ps_opt = case tf of Const (c, _) => Symtab.lookup monotab c | _ => NONE
   1.521 -          val tab1 =
   1.522 -            case ps_opt of
   1.523 -              SOME ps =>
   1.524 -              let
   1.525 -                val ps' = map (fn x => p * x) (take (length tus) ps)
   1.526 -              in
   1.527 -                fold I (map2 (go Ts) ps' tus) tab
   1.528 -              end
   1.529 -            | NONE => tab
   1.530 -          val tab2 = Symtab.make [(a, (p >= 0, p <= 0, is_none ps_opt))]
   1.531 -        in
   1.532 -          Symtab.join (K or3) (tab1, tab2)
   1.533 -        end
   1.534 -    val tab = go [] p (t, u) Symtab.empty
   1.535 -    fun f (a, (true, false, false)) = SOME (a, @{const implies})
   1.536 -      | f (a, (false, true, false)) = SOME (a, @{const rev_implies})
   1.537 -      | f (a, (true, true, _))      = SOME (a, HOLogic.eq_const HOLogic.boolT)
   1.538 -      | f _                         = NONE
   1.539 -  in
   1.540 -    map_filter f (Symtab.dest tab)
   1.541 -  end
   1.542 -
   1.543 -fun retrieve_terms t net = map fst (Item_Net.retrieve net t)
   1.544 -  
   1.545 -fun matches_list ctxt term = 
   1.546 -  is_some o find_first (fn pat => Pattern.matches (Proof_Context.theory_of ctxt) (pat, term))
   1.547 -
   1.548 -fun transfer_rule_of_term ctxt equiv t : thm =
   1.549 -  let
   1.550 -    val compound_rhs = get_compound_rhs ctxt
   1.551 -    fun is_rhs t = compound_rhs |> retrieve_terms t |> matches_list ctxt t
   1.552 -    val s = skeleton is_rhs ctxt t
   1.553 -    val frees = map fst (Term.add_frees s [])
   1.554 -    val tfrees = map fst (Term.add_tfrees s [])
   1.555 -    fun prep a = "R" ^ Library.unprefix "'" a
   1.556 -    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
   1.557 -    val tab = tfrees ~~ rnames
   1.558 -    fun prep a = the (AList.lookup (op =) tab a)
   1.559 -    val thm = transfer_rule_of_terms fst ctxt' tab s t
   1.560 -    val binsts = bool_insts (if equiv then 0 else 1) (s, t)
   1.561 -    val cbool = @{ctyp bool}
   1.562 -    val relT = @{typ "bool => bool => bool"}
   1.563 -    val idx = Thm.maxidx_of thm + 1
   1.564 -    val thy = Proof_Context.theory_of ctxt
   1.565 -    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
   1.566 -    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
   1.567 -  in
   1.568 -    thm
   1.569 -      |> Thm.generalize (tfrees, rnames @ frees) idx
   1.570 -      |> Thm.instantiate (map tinst binsts, map inst binsts)
   1.571 -  end
   1.572 -
   1.573 -fun transfer_rule_of_lhs ctxt t : thm =
   1.574 -  let
   1.575 -    val compound_lhs = get_compound_lhs ctxt
   1.576 -    fun is_lhs t = compound_lhs |> retrieve_terms t |> matches_list ctxt t
   1.577 -    val s = skeleton is_lhs ctxt t
   1.578 -    val frees = map fst (Term.add_frees s [])
   1.579 -    val tfrees = map fst (Term.add_tfrees s [])
   1.580 -    fun prep a = "R" ^ Library.unprefix "'" a
   1.581 -    val (rnames, ctxt') = Variable.variant_fixes (map prep tfrees) ctxt
   1.582 -    val tab = tfrees ~~ rnames
   1.583 -    fun prep a = the (AList.lookup (op =) tab a)
   1.584 -    val thm = transfer_rule_of_terms snd ctxt' tab t s
   1.585 -    val binsts = bool_insts 1 (s, t)
   1.586 -    val cbool = @{ctyp bool}
   1.587 -    val relT = @{typ "bool => bool => bool"}
   1.588 -    val idx = Thm.maxidx_of thm + 1
   1.589 -    val thy = Proof_Context.theory_of ctxt
   1.590 -    fun tinst (a, _) = (ctyp_of thy (TVar ((a, idx), @{sort type})), cbool)
   1.591 -    fun inst (a, t) = (cterm_of thy (Var (Name.clean_index (prep a, idx), relT)), cterm_of thy t)
   1.592 -  in
   1.593 -    thm
   1.594 -      |> Thm.generalize (tfrees, rnames @ frees) idx
   1.595 -      |> Thm.instantiate (map tinst binsts, map inst binsts)
   1.596 -  end
   1.597 -
   1.598 -fun eq_rules_tac eq_rules = TRY o REPEAT_ALL_NEW (resolve_tac eq_rules) 
   1.599 -  THEN_ALL_NEW rtac @{thm is_equality_eq}
   1.600 -
   1.601 -fun eq_tac ctxt = eq_rules_tac (get_relator_eq_raw ctxt)
   1.602 -
   1.603 -fun transfer_step_tac ctxt = (REPEAT_ALL_NEW (resolve_tac (get_transfer_raw ctxt)) 
   1.604 -  THEN_ALL_NEW (DETERM o eq_rules_tac (get_relator_eq_raw ctxt)))
   1.605 -
   1.606 -fun transfer_tac equiv ctxt i =
   1.607 -  let
   1.608 -    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
   1.609 -    val start_rule =
   1.610 -      if equiv then @{thm transfer_start} else @{thm transfer_start'}
   1.611 -    val rules = get_transfer_raw ctxt
   1.612 -    val eq_rules = get_relator_eq_raw ctxt
   1.613 -    (* allow unsolved subgoals only for standard transfer method, not for transfer' *)
   1.614 -    val end_tac = if equiv then K all_tac else K no_tac
   1.615 -    val err_msg = "Transfer failed to convert goal to an object-logic formula"
   1.616 -    fun main_tac (t, i) =
   1.617 -      rtac start_rule i THEN
   1.618 -      (rtac (transfer_rule_of_term ctxt equiv (HOLogic.dest_Trueprop t))
   1.619 -        THEN_ALL_NEW
   1.620 -          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))
   1.621 -            ORELSE' end_tac)) (i + 1)
   1.622 -        handle TERM (_, ts) => raise TERM (err_msg, ts)
   1.623 -  in
   1.624 -    EVERY
   1.625 -      [rewrite_goal_tac ctxt pre_simps i THEN
   1.626 -       SUBGOAL main_tac i,
   1.627 -       (* FIXME: rewrite_goal_tac does unwanted eta-contraction *)
   1.628 -       rewrite_goal_tac ctxt post_simps i,
   1.629 -       Goal.norm_hhf_tac ctxt i]
   1.630 -  end
   1.631 -
   1.632 -fun transfer_prover_tac ctxt = SUBGOAL (fn (t, i) =>
   1.633 -  let
   1.634 -    val rhs = (snd o Term.dest_comb o HOLogic.dest_Trueprop) t
   1.635 -    val rule1 = transfer_rule_of_term ctxt false rhs
   1.636 -    val rules = get_transfer_raw ctxt
   1.637 -    val eq_rules = get_relator_eq_raw ctxt
   1.638 -    val expand_eq_in_rel = transfer_rel_conv (top_rewr_conv [@{thm rel_fun_eq[symmetric,THEN eq_reflection]}])
   1.639 -  in
   1.640 -    EVERY
   1.641 -      [CONVERSION prep_conv i,
   1.642 -       rtac @{thm transfer_prover_start} i,
   1.643 -       ((rtac rule1 ORELSE' (CONVERSION expand_eq_in_rel THEN' rtac rule1))
   1.644 -        THEN_ALL_NEW
   1.645 -         (REPEAT_ALL_NEW (resolve_tac rules) THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules))) (i+1),
   1.646 -       rtac @{thm refl} i]
   1.647 -  end)
   1.648 -
   1.649 -(** Transfer attribute **)
   1.650 -
   1.651 -fun transferred ctxt extra_rules thm =
   1.652 -  let
   1.653 -    val start_rule = @{thm transfer_start}
   1.654 -    val start_rule' = @{thm transfer_start'}
   1.655 -    val rules = extra_rules @ get_transfer_raw ctxt
   1.656 -    val eq_rules = get_relator_eq_raw ctxt
   1.657 -    val err_msg = "Transfer failed to convert goal to an object-logic formula"
   1.658 -    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
   1.659 -    val thm1 = Drule.forall_intr_vars thm
   1.660 -    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
   1.661 -                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
   1.662 -    val thm2 = thm1
   1.663 -      |> Thm.certify_instantiate (instT, [])
   1.664 -      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
   1.665 -    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
   1.666 -    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
   1.667 -    val rule = transfer_rule_of_lhs ctxt' t
   1.668 -    val tac =
   1.669 -      resolve_tac [thm2 RS start_rule', thm2 RS start_rule] 1 THEN
   1.670 -      (rtac rule
   1.671 -        THEN_ALL_NEW
   1.672 -          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
   1.673 -            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
   1.674 -        handle TERM (_, ts) => raise TERM (err_msg, ts)
   1.675 -    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
   1.676 -    val tnames = map (fst o dest_TFree o snd) instT
   1.677 -  in
   1.678 -    thm3
   1.679 -      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
   1.680 -      |> Simplifier.norm_hhf ctxt'
   1.681 -      |> Drule.generalize (tnames, [])
   1.682 -      |> Drule.zero_var_indexes
   1.683 -  end
   1.684 -(*
   1.685 -    handle THM _ => thm
   1.686 -*)
   1.687 -
   1.688 -fun untransferred ctxt extra_rules thm =
   1.689 -  let
   1.690 -    val start_rule = @{thm untransfer_start}
   1.691 -    val rules = extra_rules @ get_transfer_raw ctxt
   1.692 -    val eq_rules = get_relator_eq_raw ctxt
   1.693 -    val err_msg = "Transfer failed to convert goal to an object-logic formula"
   1.694 -    val pre_simps = @{thms transfer_forall_eq transfer_implies_eq}
   1.695 -    val thm1 = Drule.forall_intr_vars thm
   1.696 -    val instT = rev (Term.add_tvars (Thm.full_prop_of thm1) [])
   1.697 -                |> map (fn v as ((a, _), S) => (v, TFree (a, S)))
   1.698 -    val thm2 = thm1
   1.699 -      |> Thm.certify_instantiate (instT, [])
   1.700 -      |> Raw_Simplifier.rewrite_rule ctxt pre_simps
   1.701 -    val ctxt' = Variable.declare_names (Thm.full_prop_of thm2) ctxt
   1.702 -    val t = HOLogic.dest_Trueprop (Thm.concl_of thm2)
   1.703 -    val rule = transfer_rule_of_term ctxt' true t
   1.704 -    val tac =
   1.705 -      rtac (thm2 RS start_rule) 1 THEN
   1.706 -      (rtac rule
   1.707 -        THEN_ALL_NEW
   1.708 -          (SOLVED' (REPEAT_ALL_NEW (resolve_tac rules)
   1.709 -            THEN_ALL_NEW (DETERM o eq_rules_tac eq_rules)))) 1
   1.710 -        handle TERM (_, ts) => raise TERM (err_msg, ts)
   1.711 -    val thm3 = Goal.prove_internal ctxt' [] @{cpat "Trueprop ?P"} (K tac)
   1.712 -    val tnames = map (fst o dest_TFree o snd) instT
   1.713 -  in
   1.714 -    thm3
   1.715 -      |> Raw_Simplifier.rewrite_rule ctxt' post_simps
   1.716 -      |> Simplifier.norm_hhf ctxt'
   1.717 -      |> Drule.generalize (tnames, [])
   1.718 -      |> Drule.zero_var_indexes
   1.719 -  end
   1.720 -
   1.721 -(** Methods and attributes **)
   1.722 -
   1.723 -val free = Args.context -- Args.term >> (fn (_, Free v) => v | (ctxt, t) =>
   1.724 -  error ("Bad free variable: " ^ Syntax.string_of_term ctxt t))
   1.725 -
   1.726 -val fixing = Scan.optional (Scan.lift (Args.$$$ "fixing" -- Args.colon)
   1.727 -  |-- Scan.repeat free) []
   1.728 -
   1.729 -fun transfer_method equiv : (Proof.context -> Proof.method) context_parser =
   1.730 -  fixing >> (fn vs => fn ctxt =>
   1.731 -    SIMPLE_METHOD' (gen_frees_tac vs ctxt THEN' transfer_tac equiv ctxt))
   1.732 -
   1.733 -val transfer_prover_method : (Proof.context -> Proof.method) context_parser =
   1.734 -  Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_prover_tac ctxt))
   1.735 -
   1.736 -(* Attribute for transfer rules *)
   1.737 -
   1.738 -fun prep_rule ctxt = 
   1.739 -  abstract_domains_transfer ctxt o abstract_equalities_transfer ctxt o Conv.fconv_rule prep_conv
   1.740 -
   1.741 -val transfer_add =
   1.742 -  Thm.declaration_attribute (fn thm => fn ctxt => 
   1.743 -    (add_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
   1.744 -
   1.745 -val transfer_del =
   1.746 -  Thm.declaration_attribute (fn thm => fn ctxt => 
   1.747 -    (del_transfer_thm o prep_rule (Context.proof_of ctxt)) thm ctxt)
   1.748 -
   1.749 -val transfer_attribute =
   1.750 -  Attrib.add_del transfer_add transfer_del
   1.751 -
   1.752 -(* Attributes for transfer domain rules *)
   1.753 -
   1.754 -val transfer_domain_add = Thm.declaration_attribute add_transfer_domain_thm
   1.755 -
   1.756 -val transfer_domain_del = Thm.declaration_attribute del_transfer_domain_thm
   1.757 -
   1.758 -val transfer_domain_attribute =
   1.759 -  Attrib.add_del transfer_domain_add transfer_domain_del
   1.760 -
   1.761 -(* Attributes for transferred rules *)
   1.762 -
   1.763 -fun transferred_attribute thms = Thm.rule_attribute
   1.764 -  (fn context => transferred (Context.proof_of context) thms)
   1.765 -
   1.766 -fun untransferred_attribute thms = Thm.rule_attribute
   1.767 -  (fn context => untransferred (Context.proof_of context) thms)
   1.768 -
   1.769 -val transferred_attribute_parser =
   1.770 -  Attrib.thms >> transferred_attribute
   1.771 -
   1.772 -val untransferred_attribute_parser =
   1.773 -  Attrib.thms >> untransferred_attribute
   1.774 -
   1.775 -(* Theory setup *)
   1.776 -
   1.777 -val relator_eq_setup =
   1.778 -  let
   1.779 -    val name = @{binding relator_eq}
   1.780 -    fun add_thm thm context = context
   1.781 -      |> Data.map (map_relator_eq (Item_Net.update thm))
   1.782 -      |> Data.map (map_relator_eq_raw
   1.783 -          (Item_Net.update (abstract_equalities_relator_eq (Context.proof_of context) thm)))
   1.784 -    fun del_thm thm context = context
   1.785 -      |> Data.map (map_relator_eq (Item_Net.remove thm))
   1.786 -      |> Data.map (map_relator_eq_raw
   1.787 -          (Item_Net.remove (abstract_equalities_relator_eq (Context.proof_of context) thm)))
   1.788 -    val add = Thm.declaration_attribute add_thm
   1.789 -    val del = Thm.declaration_attribute del_thm
   1.790 -    val text = "declaration of relator equality rule (used by transfer method)"
   1.791 -    val content = Item_Net.content o #relator_eq o Data.get
   1.792 -  in
   1.793 -    Attrib.setup name (Attrib.add_del add del) text
   1.794 -    #> Global_Theory.add_thms_dynamic (name, content)
   1.795 -  end
   1.796 -
   1.797 -val relator_domain_setup =
   1.798 -  let
   1.799 -    val name = @{binding relator_domain}
   1.800 -    fun add_thm thm context = 
   1.801 -      let
   1.802 -        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
   1.803 -      in
   1.804 -        context |> Data.map (map_relator_domain (Item_Net.update thm)) |> add_transfer_domain_thm thm
   1.805 -      end
   1.806 -    fun del_thm thm context = 
   1.807 -      let
   1.808 -        val thm = abstract_domains_relator_domain (Context.proof_of context) thm
   1.809 -      in
   1.810 -        context |> Data.map (map_relator_domain (Item_Net.remove thm)) |> del_transfer_domain_thm thm
   1.811 -      end
   1.812 -    val add = Thm.declaration_attribute add_thm
   1.813 -    val del = Thm.declaration_attribute del_thm
   1.814 -    val text = "declaration of relator domain rule (used by transfer method)"
   1.815 -    val content = Item_Net.content o #relator_domain o Data.get
   1.816 -  in
   1.817 -    Attrib.setup name (Attrib.add_del add del) text
   1.818 -    #> Global_Theory.add_thms_dynamic (name, content)
   1.819 -  end
   1.820 -
   1.821 -val setup =
   1.822 -  relator_eq_setup
   1.823 -  #> relator_domain_setup
   1.824 -  #> Attrib.setup @{binding transfer_rule} transfer_attribute
   1.825 -     "transfer rule for transfer method"
   1.826 -  #> Global_Theory.add_thms_dynamic
   1.827 -     (@{binding transfer_raw}, Item_Net.content o #transfer_raw o Data.get)
   1.828 -  #> Attrib.setup @{binding transfer_domain_rule} transfer_domain_attribute
   1.829 -     "transfer domain rule for transfer method"
   1.830 -  #> Attrib.setup @{binding transferred} transferred_attribute_parser
   1.831 -     "raw theorem transferred to abstract theorem using transfer rules"
   1.832 -  #> Attrib.setup @{binding untransferred} untransferred_attribute_parser
   1.833 -     "abstract theorem transferred to raw theorem using transfer rules"
   1.834 -  #> Global_Theory.add_thms_dynamic
   1.835 -     (@{binding relator_eq_raw}, Item_Net.content o #relator_eq_raw o Data.get)
   1.836 -  #> Method.setup @{binding transfer} (transfer_method true)
   1.837 -     "generic theorem transfer method"
   1.838 -  #> Method.setup @{binding transfer'} (transfer_method false)
   1.839 -     "generic theorem transfer method"
   1.840 -  #> Method.setup @{binding transfer_prover} transfer_prover_method
   1.841 -     "for proving transfer rules"
   1.842 -
   1.843 -end