src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
changeset 29252 ea97aa6aeba2
parent 29251 8f84a608883d
parent 29205 7dc7a75033ea
child 29253 3c6cd80a4854
child 29254 ef3e2c3399d7
child 29332 edc1e2a56398
     1.1 --- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy	Tue Dec 30 08:18:54 2008 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,280 +0,0 @@
     1.4 -(*  Title:      HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
     1.5 -    Author:     Gertrud Bauer, TU Munich
     1.6 -*)
     1.7 -
     1.8 -header {* Extending non-maximal functions *}
     1.9 -
    1.10 -theory HahnBanachExtLemmas
    1.11 -imports FunctionNorm
    1.12 -begin
    1.13 -
    1.14 -text {*
    1.15 -  In this section the following context is presumed.  Let @{text E} be
    1.16 -  a real vector space with a seminorm @{text q} on @{text E}. @{text
    1.17 -  F} is a subspace of @{text E} and @{text f} a linear function on
    1.18 -  @{text F}. We consider a subspace @{text H} of @{text E} that is a
    1.19 -  superspace of @{text F} and a linear form @{text h} on @{text
    1.20 -  H}. @{text H} is a not equal to @{text E} and @{text "x\<^sub>0"} is
    1.21 -  an element in @{text "E - H"}.  @{text H} is extended to the direct
    1.22 -  sum @{text "H' = H + lin x\<^sub>0"}, so for any @{text "x \<in> H'"}
    1.23 -  the decomposition of @{text "x = y + a \<cdot> x"} with @{text "y \<in> H"} is
    1.24 -  unique. @{text h'} is defined on @{text H'} by @{text "h' x = h y +
    1.25 -  a \<cdot> \<xi>"} for a certain @{text \<xi>}.
    1.26 -
    1.27 -  Subsequently we show some properties of this extension @{text h'} of
    1.28 -  @{text h}.
    1.29 -
    1.30 -  \medskip This lemma will be used to show the existence of a linear
    1.31 -  extension of @{text f} (see page \pageref{ex-xi-use}). It is a
    1.32 -  consequence of the completeness of @{text \<real>}. To show
    1.33 -  \begin{center}
    1.34 -  \begin{tabular}{l}
    1.35 -  @{text "\<exists>\<xi>. \<forall>y \<in> F. a y \<le> \<xi> \<and> \<xi> \<le> b y"}
    1.36 -  \end{tabular}
    1.37 -  \end{center}
    1.38 -  \noindent it suffices to show that
    1.39 -  \begin{center}
    1.40 -  \begin{tabular}{l}
    1.41 -  @{text "\<forall>u \<in> F. \<forall>v \<in> F. a u \<le> b v"}
    1.42 -  \end{tabular}
    1.43 -  \end{center}
    1.44 -*}
    1.45 -
    1.46 -lemma ex_xi:
    1.47 -  assumes "vectorspace F"
    1.48 -  assumes r: "\<And>u v. u \<in> F \<Longrightarrow> v \<in> F \<Longrightarrow> a u \<le> b v"
    1.49 -  shows "\<exists>xi::real. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y"
    1.50 -proof -
    1.51 -  interpret vectorspace F by fact
    1.52 -  txt {* From the completeness of the reals follows:
    1.53 -    The set @{text "S = {a u. u \<in> F}"} has a supremum, if it is
    1.54 -    non-empty and has an upper bound. *}
    1.55 -
    1.56 -  let ?S = "{a u | u. u \<in> F}"
    1.57 -  have "\<exists>xi. lub ?S xi"
    1.58 -  proof (rule real_complete)
    1.59 -    have "a 0 \<in> ?S" by blast
    1.60 -    then show "\<exists>X. X \<in> ?S" ..
    1.61 -    have "\<forall>y \<in> ?S. y \<le> b 0"
    1.62 -    proof
    1.63 -      fix y assume y: "y \<in> ?S"
    1.64 -      then obtain u where u: "u \<in> F" and y: "y = a u" by blast
    1.65 -      from u and zero have "a u \<le> b 0" by (rule r)
    1.66 -      with y show "y \<le> b 0" by (simp only:)
    1.67 -    qed
    1.68 -    then show "\<exists>u. \<forall>y \<in> ?S. y \<le> u" ..
    1.69 -  qed
    1.70 -  then obtain xi where xi: "lub ?S xi" ..
    1.71 -  {
    1.72 -    fix y assume "y \<in> F"
    1.73 -    then have "a y \<in> ?S" by blast
    1.74 -    with xi have "a y \<le> xi" by (rule lub.upper)
    1.75 -  } moreover {
    1.76 -    fix y assume y: "y \<in> F"
    1.77 -    from xi have "xi \<le> b y"
    1.78 -    proof (rule lub.least)
    1.79 -      fix au assume "au \<in> ?S"
    1.80 -      then obtain u where u: "u \<in> F" and au: "au = a u" by blast
    1.81 -      from u y have "a u \<le> b y" by (rule r)
    1.82 -      with au show "au \<le> b y" by (simp only:)
    1.83 -    qed
    1.84 -  } ultimately show "\<exists>xi. \<forall>y \<in> F. a y \<le> xi \<and> xi \<le> b y" by blast
    1.85 -qed
    1.86 -
    1.87 -text {*
    1.88 -  \medskip The function @{text h'} is defined as a @{text "h' x = h y
    1.89 -  + a \<cdot> \<xi>"} where @{text "x = y + a \<cdot> \<xi>"} is a linear extension of
    1.90 -  @{text h} to @{text H'}.
    1.91 -*}
    1.92 -
    1.93 -lemma h'_lf:
    1.94 -  assumes h'_def: "h' \<equiv> \<lambda>x. let (y, a) =
    1.95 -      SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi"
    1.96 -    and H'_def: "H' \<equiv> H + lin x0"
    1.97 -    and HE: "H \<unlhd> E"
    1.98 -  assumes "linearform H h"
    1.99 -  assumes x0: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"
   1.100 -  assumes E: "vectorspace E"
   1.101 -  shows "linearform H' h'"
   1.102 -proof -
   1.103 -  interpret linearform H h by fact
   1.104 -  interpret vectorspace E by fact
   1.105 -  show ?thesis
   1.106 -  proof
   1.107 -    note E = `vectorspace E`
   1.108 -    have H': "vectorspace H'"
   1.109 -    proof (unfold H'_def)
   1.110 -      from `x0 \<in> E`
   1.111 -      have "lin x0 \<unlhd> E" ..
   1.112 -      with HE show "vectorspace (H + lin x0)" using E ..
   1.113 -    qed
   1.114 -    {
   1.115 -      fix x1 x2 assume x1: "x1 \<in> H'" and x2: "x2 \<in> H'"
   1.116 -      show "h' (x1 + x2) = h' x1 + h' x2"
   1.117 -      proof -
   1.118 -	from H' x1 x2 have "x1 + x2 \<in> H'"
   1.119 -          by (rule vectorspace.add_closed)
   1.120 -	with x1 x2 obtain y y1 y2 a a1 a2 where
   1.121 -          x1x2: "x1 + x2 = y + a \<cdot> x0" and y: "y \<in> H"
   1.122 -          and x1_rep: "x1 = y1 + a1 \<cdot> x0" and y1: "y1 \<in> H"
   1.123 -          and x2_rep: "x2 = y2 + a2 \<cdot> x0" and y2: "y2 \<in> H"
   1.124 -          unfolding H'_def sum_def lin_def by blast
   1.125 -	
   1.126 -	have ya: "y1 + y2 = y \<and> a1 + a2 = a" using E HE _ y x0
   1.127 -	proof (rule decomp_H') txt_raw {* \label{decomp-H-use} *}
   1.128 -          from HE y1 y2 show "y1 + y2 \<in> H"
   1.129 -            by (rule subspace.add_closed)
   1.130 -          from x0 and HE y y1 y2
   1.131 -          have "x0 \<in> E"  "y \<in> E"  "y1 \<in> E"  "y2 \<in> E" by auto
   1.132 -          with x1_rep x2_rep have "(y1 + y2) + (a1 + a2) \<cdot> x0 = x1 + x2"
   1.133 -            by (simp add: add_ac add_mult_distrib2)
   1.134 -          also note x1x2
   1.135 -          finally show "(y1 + y2) + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0" .
   1.136 -	qed
   1.137 -	
   1.138 -	from h'_def x1x2 E HE y x0
   1.139 -	have "h' (x1 + x2) = h y + a * xi"
   1.140 -          by (rule h'_definite)
   1.141 -	also have "\<dots> = h (y1 + y2) + (a1 + a2) * xi"
   1.142 -          by (simp only: ya)
   1.143 -	also from y1 y2 have "h (y1 + y2) = h y1 + h y2"
   1.144 -          by simp
   1.145 -	also have "\<dots> + (a1 + a2) * xi = (h y1 + a1 * xi) + (h y2 + a2 * xi)"
   1.146 -          by (simp add: left_distrib)
   1.147 -	also from h'_def x1_rep E HE y1 x0
   1.148 -	have "h y1 + a1 * xi = h' x1"
   1.149 -          by (rule h'_definite [symmetric])
   1.150 -	also from h'_def x2_rep E HE y2 x0
   1.151 -	have "h y2 + a2 * xi = h' x2"
   1.152 -          by (rule h'_definite [symmetric])
   1.153 -	finally show ?thesis .
   1.154 -      qed
   1.155 -    next
   1.156 -      fix x1 c assume x1: "x1 \<in> H'"
   1.157 -      show "h' (c \<cdot> x1) = c * (h' x1)"
   1.158 -      proof -
   1.159 -	from H' x1 have ax1: "c \<cdot> x1 \<in> H'"
   1.160 -          by (rule vectorspace.mult_closed)
   1.161 -	with x1 obtain y a y1 a1 where
   1.162 -            cx1_rep: "c \<cdot> x1 = y + a \<cdot> x0" and y: "y \<in> H"
   1.163 -          and x1_rep: "x1 = y1 + a1 \<cdot> x0" and y1: "y1 \<in> H"
   1.164 -          unfolding H'_def sum_def lin_def by blast
   1.165 -	
   1.166 -	have ya: "c \<cdot> y1 = y \<and> c * a1 = a" using E HE _ y x0
   1.167 -	proof (rule decomp_H')
   1.168 -          from HE y1 show "c \<cdot> y1 \<in> H"
   1.169 -            by (rule subspace.mult_closed)
   1.170 -          from x0 and HE y y1
   1.171 -          have "x0 \<in> E"  "y \<in> E"  "y1 \<in> E" by auto
   1.172 -          with x1_rep have "c \<cdot> y1 + (c * a1) \<cdot> x0 = c \<cdot> x1"
   1.173 -            by (simp add: mult_assoc add_mult_distrib1)
   1.174 -          also note cx1_rep
   1.175 -          finally show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0" .
   1.176 -	qed
   1.177 -	
   1.178 -	from h'_def cx1_rep E HE y x0 have "h' (c \<cdot> x1) = h y + a * xi"
   1.179 -          by (rule h'_definite)
   1.180 -	also have "\<dots> = h (c \<cdot> y1) + (c * a1) * xi"
   1.181 -          by (simp only: ya)
   1.182 -	also from y1 have "h (c \<cdot> y1) = c * h y1"
   1.183 -          by simp
   1.184 -	also have "\<dots> + (c * a1) * xi = c * (h y1 + a1 * xi)"
   1.185 -          by (simp only: right_distrib)
   1.186 -	also from h'_def x1_rep E HE y1 x0 have "h y1 + a1 * xi = h' x1"
   1.187 -          by (rule h'_definite [symmetric])
   1.188 -	finally show ?thesis .
   1.189 -      qed
   1.190 -    }
   1.191 -  qed
   1.192 -qed
   1.193 -
   1.194 -text {* \medskip The linear extension @{text h'} of @{text h}
   1.195 -  is bounded by the seminorm @{text p}. *}
   1.196 -
   1.197 -lemma h'_norm_pres:
   1.198 -  assumes h'_def: "h' \<equiv> \<lambda>x. let (y, a) =
   1.199 -      SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H in h y + a * xi"
   1.200 -    and H'_def: "H' \<equiv> H + lin x0"
   1.201 -    and x0: "x0 \<notin> H"  "x0 \<in> E"  "x0 \<noteq> 0"
   1.202 -  assumes E: "vectorspace E" and HE: "subspace H E"
   1.203 -    and "seminorm E p" and "linearform H h"
   1.204 -  assumes a: "\<forall>y \<in> H. h y \<le> p y"
   1.205 -    and a': "\<forall>y \<in> H. - p (y + x0) - h y \<le> xi \<and> xi \<le> p (y + x0) - h y"
   1.206 -  shows "\<forall>x \<in> H'. h' x \<le> p x"
   1.207 -proof -
   1.208 -  interpret vectorspace E by fact
   1.209 -  interpret subspace H E by fact
   1.210 -  interpret seminorm E p by fact
   1.211 -  interpret linearform H h by fact
   1.212 -  show ?thesis
   1.213 -  proof
   1.214 -    fix x assume x': "x \<in> H'"
   1.215 -    show "h' x \<le> p x"
   1.216 -    proof -
   1.217 -      from a' have a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya \<le> xi"
   1.218 -	and a2: "\<forall>ya \<in> H. xi \<le> p (ya + x0) - h ya" by auto
   1.219 -      from x' obtain y a where
   1.220 -          x_rep: "x = y + a \<cdot> x0" and y: "y \<in> H"
   1.221 -	unfolding H'_def sum_def lin_def by blast
   1.222 -      from y have y': "y \<in> E" ..
   1.223 -      from y have ay: "inverse a \<cdot> y \<in> H" by simp
   1.224 -      
   1.225 -      from h'_def x_rep E HE y x0 have "h' x = h y + a * xi"
   1.226 -	by (rule h'_definite)
   1.227 -      also have "\<dots> \<le> p (y + a \<cdot> x0)"
   1.228 -      proof (rule linorder_cases)
   1.229 -	assume z: "a = 0"
   1.230 -	then have "h y + a * xi = h y" by simp
   1.231 -	also from a y have "\<dots> \<le> p y" ..
   1.232 -	also from x0 y' z have "p y = p (y + a \<cdot> x0)" by simp
   1.233 -	finally show ?thesis .
   1.234 -      next
   1.235 -	txt {* In the case @{text "a < 0"}, we use @{text "a\<^sub>1"}
   1.236 -          with @{text ya} taken as @{text "y / a"}: *}
   1.237 -	assume lz: "a < 0" then have nz: "a \<noteq> 0" by simp
   1.238 -	from a1 ay
   1.239 -	have "- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y) \<le> xi" ..
   1.240 -	with lz have "a * xi \<le>
   1.241 -          a * (- p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
   1.242 -          by (simp add: mult_left_mono_neg order_less_imp_le)
   1.243 -	
   1.244 -	also have "\<dots> =
   1.245 -          - a * (p (inverse a \<cdot> y + x0)) - a * (h (inverse a \<cdot> y))"
   1.246 -	  by (simp add: right_diff_distrib)
   1.247 -	also from lz x0 y' have "- a * (p (inverse a \<cdot> y + x0)) =
   1.248 -          p (a \<cdot> (inverse a \<cdot> y + x0))"
   1.249 -          by (simp add: abs_homogenous)
   1.250 -	also from nz x0 y' have "\<dots> = p (y + a \<cdot> x0)"
   1.251 -          by (simp add: add_mult_distrib1 mult_assoc [symmetric])
   1.252 -	also from nz y have "a * (h (inverse a \<cdot> y)) =  h y"
   1.253 -          by simp
   1.254 -	finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
   1.255 -	then show ?thesis by simp
   1.256 -      next
   1.257 -	txt {* In the case @{text "a > 0"}, we use @{text "a\<^sub>2"}
   1.258 -          with @{text ya} taken as @{text "y / a"}: *}
   1.259 -	assume gz: "0 < a" then have nz: "a \<noteq> 0" by simp
   1.260 -	from a2 ay
   1.261 -	have "xi \<le> p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y)" ..
   1.262 -	with gz have "a * xi \<le>
   1.263 -          a * (p (inverse a \<cdot> y + x0) - h (inverse a \<cdot> y))"
   1.264 -          by simp
   1.265 -	also have "\<dots> = a * p (inverse a \<cdot> y + x0) - a * h (inverse a \<cdot> y)"
   1.266 -	  by (simp add: right_diff_distrib)
   1.267 -	also from gz x0 y'
   1.268 -	have "a * p (inverse a \<cdot> y + x0) = p (a \<cdot> (inverse a \<cdot> y + x0))"
   1.269 -          by (simp add: abs_homogenous)
   1.270 -	also from nz x0 y' have "\<dots> = p (y + a \<cdot> x0)"
   1.271 -          by (simp add: add_mult_distrib1 mult_assoc [symmetric])
   1.272 -	also from nz y have "a * h (inverse a \<cdot> y) = h y"
   1.273 -          by simp
   1.274 -	finally have "a * xi \<le> p (y + a \<cdot> x0) - h y" .
   1.275 -	then show ?thesis by simp
   1.276 -      qed
   1.277 -      also from x_rep have "\<dots> = p x" by (simp only:)
   1.278 -      finally show ?thesis .
   1.279 -    qed
   1.280 -  qed
   1.281 -qed
   1.282 -
   1.283 -end