src/HOL/HahnBanach/FunctionNorm.thy
changeset 29252 ea97aa6aeba2
parent 29234 60f7fb56f8cd
parent 29197 6d4cb27ed19c
child 29291 d3cc5398bad5
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/HahnBanach/FunctionNorm.thy	Tue Dec 30 11:10:01 2008 +0100
     1.3 @@ -0,0 +1,278 @@
     1.4 +(*  Title:      HOL/Real/HahnBanach/FunctionNorm.thy
     1.5 +    Author:     Gertrud Bauer, TU Munich
     1.6 +*)
     1.7 +
     1.8 +header {* The norm of a function *}
     1.9 +
    1.10 +theory FunctionNorm
    1.11 +imports NormedSpace FunctionOrder
    1.12 +begin
    1.13 +
    1.14 +subsection {* Continuous linear forms*}
    1.15 +
    1.16 +text {*
    1.17 +  A linear form @{text f} on a normed vector space @{text "(V, \<parallel>\<cdot>\<parallel>)"}
    1.18 +  is \emph{continuous}, iff it is bounded, i.e.
    1.19 +  \begin{center}
    1.20 +  @{text "\<exists>c \<in> R. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
    1.21 +  \end{center}
    1.22 +  In our application no other functions than linear forms are
    1.23 +  considered, so we can define continuous linear forms as bounded
    1.24 +  linear forms:
    1.25 +*}
    1.26 +
    1.27 +locale continuous = var_V + norm_syntax + linearform +
    1.28 +  assumes bounded: "\<exists>c. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
    1.29 +
    1.30 +declare continuous.intro [intro?] continuous_axioms.intro [intro?]
    1.31 +
    1.32 +lemma continuousI [intro]:
    1.33 +  fixes norm :: "_ \<Rightarrow> real"  ("\<parallel>_\<parallel>")
    1.34 +  assumes "linearform V f"
    1.35 +  assumes r: "\<And>x. x \<in> V \<Longrightarrow> \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
    1.36 +  shows "continuous V norm f"
    1.37 +proof
    1.38 +  show "linearform V f" by fact
    1.39 +  from r have "\<exists>c. \<forall>x\<in>V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" by blast
    1.40 +  then show "continuous_axioms V norm f" ..
    1.41 +qed
    1.42 +
    1.43 +
    1.44 +subsection {* The norm of a linear form *}
    1.45 +
    1.46 +text {*
    1.47 +  The least real number @{text c} for which holds
    1.48 +  \begin{center}
    1.49 +  @{text "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
    1.50 +  \end{center}
    1.51 +  is called the \emph{norm} of @{text f}.
    1.52 +
    1.53 +  For non-trivial vector spaces @{text "V \<noteq> {0}"} the norm can be
    1.54 +  defined as
    1.55 +  \begin{center}
    1.56 +  @{text "\<parallel>f\<parallel> = \<sup>x \<noteq> 0. \<bar>f x\<bar> / \<parallel>x\<parallel>"}
    1.57 +  \end{center}
    1.58 +
    1.59 +  For the case @{text "V = {0}"} the supremum would be taken from an
    1.60 +  empty set. Since @{text \<real>} is unbounded, there would be no supremum.
    1.61 +  To avoid this situation it must be guaranteed that there is an
    1.62 +  element in this set. This element must be @{text "{} \<ge> 0"} so that
    1.63 +  @{text fn_norm} has the norm properties. Furthermore it does not
    1.64 +  have to change the norm in all other cases, so it must be @{text 0},
    1.65 +  as all other elements are @{text "{} \<ge> 0"}.
    1.66 +
    1.67 +  Thus we define the set @{text B} where the supremum is taken from as
    1.68 +  follows:
    1.69 +  \begin{center}
    1.70 +  @{text "{0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel>. x \<noteq> 0 \<and> x \<in> F}"}
    1.71 +  \end{center}
    1.72 +
    1.73 +  @{text fn_norm} is equal to the supremum of @{text B}, if the
    1.74 +  supremum exists (otherwise it is undefined).
    1.75 +*}
    1.76 +
    1.77 +locale fn_norm = norm_syntax +
    1.78 +  fixes B defines "B V f \<equiv> {0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel> | x. x \<noteq> 0 \<and> x \<in> V}"
    1.79 +  fixes fn_norm ("\<parallel>_\<parallel>\<hyphen>_" [0, 1000] 999)
    1.80 +  defines "\<parallel>f\<parallel>\<hyphen>V \<equiv> \<Squnion>(B V f)"
    1.81 +
    1.82 +locale normed_vectorspace_with_fn_norm = normed_vectorspace + fn_norm
    1.83 +
    1.84 +lemma (in fn_norm) B_not_empty [intro]: "0 \<in> B V f"
    1.85 +  by (simp add: B_def)
    1.86 +
    1.87 +text {*
    1.88 +  The following lemma states that every continuous linear form on a
    1.89 +  normed space @{text "(V, \<parallel>\<cdot>\<parallel>)"} has a function norm.
    1.90 +*}
    1.91 +
    1.92 +lemma (in normed_vectorspace_with_fn_norm) fn_norm_works:
    1.93 +  assumes "continuous V norm f"
    1.94 +  shows "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
    1.95 +proof -
    1.96 +  interpret continuous V norm f by fact
    1.97 +  txt {* The existence of the supremum is shown using the
    1.98 +    completeness of the reals. Completeness means, that every
    1.99 +    non-empty bounded set of reals has a supremum. *}
   1.100 +  have "\<exists>a. lub (B V f) a"
   1.101 +  proof (rule real_complete)
   1.102 +    txt {* First we have to show that @{text B} is non-empty: *}
   1.103 +    have "0 \<in> B V f" ..
   1.104 +    then show "\<exists>x. x \<in> B V f" ..
   1.105 +
   1.106 +    txt {* Then we have to show that @{text B} is bounded: *}
   1.107 +    show "\<exists>c. \<forall>y \<in> B V f. y \<le> c"
   1.108 +    proof -
   1.109 +      txt {* We know that @{text f} is bounded by some value @{text c}. *}
   1.110 +      from bounded obtain c where c: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
   1.111 +
   1.112 +      txt {* To prove the thesis, we have to show that there is some
   1.113 +        @{text b}, such that @{text "y \<le> b"} for all @{text "y \<in>
   1.114 +        B"}. Due to the definition of @{text B} there are two cases. *}
   1.115 +
   1.116 +      def b \<equiv> "max c 0"
   1.117 +      have "\<forall>y \<in> B V f. y \<le> b"
   1.118 +      proof
   1.119 +        fix y assume y: "y \<in> B V f"
   1.120 +        show "y \<le> b"
   1.121 +        proof cases
   1.122 +          assume "y = 0"
   1.123 +          then show ?thesis unfolding b_def by arith
   1.124 +        next
   1.125 +          txt {* The second case is @{text "y = \<bar>f x\<bar> / \<parallel>x\<parallel>"} for some
   1.126 +            @{text "x \<in> V"} with @{text "x \<noteq> 0"}. *}
   1.127 +          assume "y \<noteq> 0"
   1.128 +          with y obtain x where y_rep: "y = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
   1.129 +              and x: "x \<in> V" and neq: "x \<noteq> 0"
   1.130 +            by (auto simp add: B_def real_divide_def)
   1.131 +          from x neq have gt: "0 < \<parallel>x\<parallel>" ..
   1.132 +
   1.133 +          txt {* The thesis follows by a short calculation using the
   1.134 +            fact that @{text f} is bounded. *}
   1.135 +
   1.136 +          note y_rep
   1.137 +          also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
   1.138 +          proof (rule mult_right_mono)
   1.139 +            from c x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
   1.140 +            from gt have "0 < inverse \<parallel>x\<parallel>" 
   1.141 +              by (rule positive_imp_inverse_positive)
   1.142 +            then show "0 \<le> inverse \<parallel>x\<parallel>" by (rule order_less_imp_le)
   1.143 +          qed
   1.144 +          also have "\<dots> = c * (\<parallel>x\<parallel> * inverse \<parallel>x\<parallel>)"
   1.145 +            by (rule real_mult_assoc)
   1.146 +          also
   1.147 +          from gt have "\<parallel>x\<parallel> \<noteq> 0" by simp
   1.148 +          then have "\<parallel>x\<parallel> * inverse \<parallel>x\<parallel> = 1" by simp 
   1.149 +          also have "c * 1 \<le> b" by (simp add: b_def le_maxI1)
   1.150 +          finally show "y \<le> b" .
   1.151 +        qed
   1.152 +      qed
   1.153 +      then show ?thesis ..
   1.154 +    qed
   1.155 +  qed
   1.156 +  then show ?thesis unfolding fn_norm_def by (rule the_lubI_ex)
   1.157 +qed
   1.158 +
   1.159 +lemma (in normed_vectorspace_with_fn_norm) fn_norm_ub [iff?]:
   1.160 +  assumes "continuous V norm f"
   1.161 +  assumes b: "b \<in> B V f"
   1.162 +  shows "b \<le> \<parallel>f\<parallel>\<hyphen>V"
   1.163 +proof -
   1.164 +  interpret continuous V norm f by fact
   1.165 +  have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
   1.166 +    using `continuous V norm f` by (rule fn_norm_works)
   1.167 +  from this and b show ?thesis ..
   1.168 +qed
   1.169 +
   1.170 +lemma (in normed_vectorspace_with_fn_norm) fn_norm_leastB:
   1.171 +  assumes "continuous V norm f"
   1.172 +  assumes b: "\<And>b. b \<in> B V f \<Longrightarrow> b \<le> y"
   1.173 +  shows "\<parallel>f\<parallel>\<hyphen>V \<le> y"
   1.174 +proof -
   1.175 +  interpret continuous V norm f by fact
   1.176 +  have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
   1.177 +    using `continuous V norm f` by (rule fn_norm_works)
   1.178 +  from this and b show ?thesis ..
   1.179 +qed
   1.180 +
   1.181 +text {* The norm of a continuous function is always @{text "\<ge> 0"}. *}
   1.182 +
   1.183 +lemma (in normed_vectorspace_with_fn_norm) fn_norm_ge_zero [iff]:
   1.184 +  assumes "continuous V norm f"
   1.185 +  shows "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
   1.186 +proof -
   1.187 +  interpret continuous V norm f by fact
   1.188 +  txt {* The function norm is defined as the supremum of @{text B}.
   1.189 +    So it is @{text "\<ge> 0"} if all elements in @{text B} are @{text "\<ge>
   1.190 +    0"}, provided the supremum exists and @{text B} is not empty. *}
   1.191 +  have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
   1.192 +    using `continuous V norm f` by (rule fn_norm_works)
   1.193 +  moreover have "0 \<in> B V f" ..
   1.194 +  ultimately show ?thesis ..
   1.195 +qed
   1.196 +
   1.197 +text {*
   1.198 +  \medskip The fundamental property of function norms is:
   1.199 +  \begin{center}
   1.200 +  @{text "\<bar>f x\<bar> \<le> \<parallel>f\<parallel> \<cdot> \<parallel>x\<parallel>"}
   1.201 +  \end{center}
   1.202 +*}
   1.203 +
   1.204 +lemma (in normed_vectorspace_with_fn_norm) fn_norm_le_cong:
   1.205 +  assumes "continuous V norm f" "linearform V f"
   1.206 +  assumes x: "x \<in> V"
   1.207 +  shows "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
   1.208 +proof -
   1.209 +  interpret continuous V norm f by fact
   1.210 +  interpret linearform V f .
   1.211 +  show ?thesis
   1.212 +  proof cases
   1.213 +    assume "x = 0"
   1.214 +    then have "\<bar>f x\<bar> = \<bar>f 0\<bar>" by simp
   1.215 +    also have "f 0 = 0" by rule unfold_locales
   1.216 +    also have "\<bar>\<dots>\<bar> = 0" by simp
   1.217 +    also have a: "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
   1.218 +      using `continuous V norm f` by (rule fn_norm_ge_zero)
   1.219 +    from x have "0 \<le> norm x" ..
   1.220 +    with a have "0 \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" by (simp add: zero_le_mult_iff)
   1.221 +    finally show "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" .
   1.222 +  next
   1.223 +    assume "x \<noteq> 0"
   1.224 +    with x have neq: "\<parallel>x\<parallel> \<noteq> 0" by simp
   1.225 +    then have "\<bar>f x\<bar> = (\<bar>f x\<bar> * inverse \<parallel>x\<parallel>) * \<parallel>x\<parallel>" by simp
   1.226 +    also have "\<dots> \<le>  \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
   1.227 +    proof (rule mult_right_mono)
   1.228 +      from x show "0 \<le> \<parallel>x\<parallel>" ..
   1.229 +      from x and neq have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<in> B V f"
   1.230 +	by (auto simp add: B_def real_divide_def)
   1.231 +      with `continuous V norm f` show "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> \<parallel>f\<parallel>\<hyphen>V"
   1.232 +	by (rule fn_norm_ub)
   1.233 +    qed
   1.234 +    finally show ?thesis .
   1.235 +  qed
   1.236 +qed
   1.237 +
   1.238 +text {*
   1.239 +  \medskip The function norm is the least positive real number for
   1.240 +  which the following inequation holds:
   1.241 +  \begin{center}
   1.242 +    @{text "\<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
   1.243 +  \end{center}
   1.244 +*}
   1.245 +
   1.246 +lemma (in normed_vectorspace_with_fn_norm) fn_norm_least [intro?]:
   1.247 +  assumes "continuous V norm f"
   1.248 +  assumes ineq: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" and ge: "0 \<le> c"
   1.249 +  shows "\<parallel>f\<parallel>\<hyphen>V \<le> c"
   1.250 +proof -
   1.251 +  interpret continuous V norm f by fact
   1.252 +  show ?thesis
   1.253 +  proof (rule fn_norm_leastB [folded B_def fn_norm_def])
   1.254 +    fix b assume b: "b \<in> B V f"
   1.255 +    show "b \<le> c"
   1.256 +    proof cases
   1.257 +      assume "b = 0"
   1.258 +      with ge show ?thesis by simp
   1.259 +    next
   1.260 +      assume "b \<noteq> 0"
   1.261 +      with b obtain x where b_rep: "b = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
   1.262 +        and x_neq: "x \<noteq> 0" and x: "x \<in> V"
   1.263 +	by (auto simp add: B_def real_divide_def)
   1.264 +      note b_rep
   1.265 +      also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
   1.266 +      proof (rule mult_right_mono)
   1.267 +	have "0 < \<parallel>x\<parallel>" using x x_neq ..
   1.268 +	then show "0 \<le> inverse \<parallel>x\<parallel>" by simp
   1.269 +	from ineq and x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
   1.270 +      qed
   1.271 +      also have "\<dots> = c"
   1.272 +      proof -
   1.273 +	from x_neq and x have "\<parallel>x\<parallel> \<noteq> 0" by simp
   1.274 +	then show ?thesis by simp
   1.275 +      qed
   1.276 +      finally show ?thesis .
   1.277 +    qed
   1.278 +  qed (insert `continuous V norm f`, simp_all add: continuous_def)
   1.279 +qed
   1.280 +
   1.281 +end