doc-src/ZF/ZF_examples.thy
changeset 14159 e2eba24c8a2a
parent 14152 12f6f18e7afc
child 16417 9bc16273c2d4
     1.1 --- a/doc-src/ZF/ZF_examples.thy	Wed Aug 20 13:05:22 2003 +0200
     1.2 +++ b/doc-src/ZF/ZF_examples.thy	Wed Aug 20 13:34:17 2003 +0200
     1.3 @@ -33,28 +33,93 @@
     1.4    apply auto
     1.5    done
     1.6  
     1.7 -lemma Br_iff: "Br(a, l, r) = Br(a', l', r') <-> a = a' & l = l' & r = r'"
     1.8 +lemma Br_iff: "Br(a,l,r) = Br(a',l',r') <-> a=a' & l=l' & r=r'"
     1.9    -- "Proving a freeness theorem."
    1.10    by (blast elim!: bt.free_elims)
    1.11  
    1.12 -inductive_cases BrE: "Br(a, l, r) \<in> bt(A)"
    1.13 +inductive_cases Br_in_bt: "Br(a,l,r) \<in> bt(A)"
    1.14    -- "An elimination rule, for type-checking."
    1.15  
    1.16  text {*
    1.17 -@{thm[display] BrE[no_vars]}
    1.18 -\rulename{BrE}
    1.19 +@{thm[display] Br_in_bt[no_vars]}
    1.20  *};
    1.21  
    1.22 +subsection{*Primitive recursion*}
    1.23 +
    1.24 +consts  n_nodes :: "i => i"
    1.25 +primrec
    1.26 +  "n_nodes(Lf) = 0"
    1.27 +  "n_nodes(Br(a,l,r)) = succ(n_nodes(l) #+ n_nodes(r))"
    1.28 +
    1.29 +lemma n_nodes_type [simp]: "t \<in> bt(A) ==> n_nodes(t) \<in> nat"
    1.30 +  by (induct_tac t, auto) 
    1.31 +
    1.32 +consts  n_nodes_aux :: "i => i"
    1.33 +primrec
    1.34 +  "n_nodes_aux(Lf) = (\<lambda>k \<in> nat. k)"
    1.35 +  "n_nodes_aux(Br(a,l,r)) = 
    1.36 +      (\<lambda>k \<in> nat. n_nodes_aux(r) `  (n_nodes_aux(l) ` succ(k)))"
    1.37 +
    1.38 +lemma n_nodes_aux_eq [rule_format]:
    1.39 +     "t \<in> bt(A) ==> \<forall>k \<in> nat. n_nodes_aux(t)`k = n_nodes(t) #+ k"
    1.40 +  by (induct_tac t, simp_all) 
    1.41 +
    1.42 +constdefs  n_nodes_tail :: "i => i"
    1.43 +   "n_nodes_tail(t) == n_nodes_aux(t) ` 0"
    1.44 +
    1.45 +lemma "t \<in> bt(A) ==> n_nodes_tail(t) = n_nodes(t)"
    1.46 + by (simp add: n_nodes_tail_def n_nodes_aux_eq) 
    1.47 +
    1.48 +
    1.49 +subsection {*Inductive definitions*}
    1.50 +
    1.51 +consts  Fin       :: "i=>i"
    1.52 +inductive
    1.53 +  domains   "Fin(A)" \<subseteq> "Pow(A)"
    1.54 +  intros
    1.55 +    emptyI:  "0 \<in> Fin(A)"
    1.56 +    consI:   "[| a \<in> A;  b \<in> Fin(A) |] ==> cons(a,b) \<in> Fin(A)"
    1.57 +  type_intros  empty_subsetI cons_subsetI PowI
    1.58 +  type_elims   PowD [THEN revcut_rl]
    1.59 +
    1.60 +
    1.61 +consts  acc :: "i => i"
    1.62 +inductive
    1.63 +  domains "acc(r)" \<subseteq> "field(r)"
    1.64 +  intros
    1.65 +    vimage:  "[| r-``{a}: Pow(acc(r)); a \<in> field(r) |] ==> a \<in> acc(r)"
    1.66 +  monos      Pow_mono
    1.67 +
    1.68 +
    1.69 +consts
    1.70 +  llist  :: "i=>i";
    1.71 +
    1.72 +codatatype
    1.73 +  "llist(A)" = LNil | LCons ("a \<in> A", "l \<in> llist(A)")
    1.74 +
    1.75 +
    1.76 +(*Coinductive definition of equality*)
    1.77 +consts
    1.78 +  lleq :: "i=>i"
    1.79 +
    1.80 +(*Previously used <*> in the domain and variant pairs as elements.  But
    1.81 +  standard pairs work just as well.  To use variant pairs, must change prefix
    1.82 +  a q/Q to the Sigma, Pair and converse rules.*)
    1.83 +coinductive
    1.84 +  domains "lleq(A)" \<subseteq> "llist(A) * llist(A)"
    1.85 +  intros
    1.86 +    LNil:  "<LNil, LNil> \<in> lleq(A)"
    1.87 +    LCons: "[| a \<in> A; <l,l'> \<in> lleq(A) |] 
    1.88 +            ==> <LCons(a,l), LCons(a,l')> \<in> lleq(A)"
    1.89 +  type_intros  llist.intros
    1.90 +
    1.91 +
    1.92  subsection{*Powerset example*}
    1.93  
    1.94 -lemma Pow_mono: "A<=B  ==>  Pow(A) <= Pow(B)"
    1.95 -  --{* @{subgoals[display,indent=0,margin=65]} *}
    1.96 +lemma Pow_mono: "A\<subseteq>B  ==>  Pow(A) \<subseteq> Pow(B)"
    1.97  apply (rule subsetI)
    1.98 -  --{* @{subgoals[display,indent=0,margin=65]} *}
    1.99  apply (rule PowI)
   1.100 -  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.101  apply (drule PowD)
   1.102 -  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.103  apply (erule subset_trans, assumption)
   1.104  done
   1.105  
   1.106 @@ -76,7 +141,9 @@
   1.107    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.108  apply (drule PowD)+
   1.109    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.110 -apply (rule Int_greatest, assumption+)
   1.111 +apply (rule Int_greatest)
   1.112 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.113 +apply (assumption+)
   1.114  done
   1.115  
   1.116  text{*Trying again from the beginning in order to use @{text blast}*}
   1.117 @@ -84,20 +151,24 @@
   1.118  by blast
   1.119  
   1.120  
   1.121 -lemma "C<=D ==> Union(C) <= Union(D)"
   1.122 +lemma "C\<subseteq>D ==> Union(C) \<subseteq> Union(D)"
   1.123    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.124  apply (rule subsetI)
   1.125    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.126  apply (erule UnionE)
   1.127    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.128  apply (rule UnionI)
   1.129 -apply (erule subsetD, assumption, assumption)
   1.130    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.131 +apply (erule subsetD)
   1.132 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.133 +apply assumption 
   1.134 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.135 +apply assumption 
   1.136  done
   1.137  
   1.138 -text{*Trying again from the beginning in order to prove from the definitions*}
   1.139 +text{*A more abstract version of the same proof*}
   1.140  
   1.141 -lemma "C<=D ==> Union(C) <= Union(D)"
   1.142 +lemma "C\<subseteq>D ==> Union(C) \<subseteq> Union(D)"
   1.143    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.144  apply (rule Union_least)
   1.145    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.146 @@ -107,15 +178,25 @@
   1.147  done
   1.148  
   1.149  
   1.150 -lemma "[| a:A;  f: A->B;  g: C->D;  A Int C = 0 |] ==> (f Un g)`a = f`a"
   1.151 +lemma "[| a \<in> A;  f \<in> A->B;  g \<in> C->D;  A \<inter> C = 0 |] ==> (f \<union> g)`a = f`a"
   1.152    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.153  apply (rule apply_equality)
   1.154    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.155  apply (rule UnI1)
   1.156    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.157 -apply (rule apply_Pair, assumption+)
   1.158 +apply (rule apply_Pair)
   1.159    --{* @{subgoals[display,indent=0,margin=65]} *}
   1.160 -apply (rule fun_disjoint_Un, assumption+)
   1.161 +apply assumption 
   1.162 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.163 +apply assumption 
   1.164 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.165 +apply (rule fun_disjoint_Un)
   1.166 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.167 +apply assumption 
   1.168 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.169 +apply assumption 
   1.170 +  --{* @{subgoals[display,indent=0,margin=65]} *}
   1.171 +apply assumption 
   1.172  done
   1.173  
   1.174  end