src/HOL/Library/Abstract_Rat.thy
changeset 24197 c9e3cb5e5681
child 25005 60e5516c7b06
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Library/Abstract_Rat.thy	Thu Aug 09 15:52:49 2007 +0200
     1.3 @@ -0,0 +1,502 @@
     1.4 +(*  Title:      HOL/Library/Abstract_Rat.thy
     1.5 +    ID:         $Id$
     1.6 +    Author:     Amine Chaieb
     1.7 +*)
     1.8 +
     1.9 +header {* Abstract rational numbers *}
    1.10 +
    1.11 +theory Abstract_Rat
    1.12 +imports GCD
    1.13 +begin
    1.14 +
    1.15 +types Num = "int \<times> int"
    1.16 +syntax "_Num0" :: "Num" ("0\<^sub>N")
    1.17 +translations "0\<^sub>N" \<rightleftharpoons> "(0, 0)"
    1.18 +syntax "_Numi" :: "int \<Rightarrow> Num" ("_\<^sub>N")
    1.19 +translations "i\<^sub>N" \<rightleftharpoons> "(i, 1) \<Colon> Num"
    1.20 +
    1.21 +definition
    1.22 +  isnormNum :: "Num \<Rightarrow> bool"
    1.23 +where
    1.24 +  "isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> igcd a b = 1))"
    1.25 +
    1.26 +definition
    1.27 +  normNum :: "Num \<Rightarrow> Num"
    1.28 +where
    1.29 +  "normNum = (\<lambda>(a,b). (if a=0 \<or> b = 0 then (0,0) else 
    1.30 +  (let g = igcd a b 
    1.31 +   in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))"
    1.32 +
    1.33 +lemma normNum_isnormNum [simp]: "isnormNum (normNum x)"
    1.34 +proof -
    1.35 +  have " \<exists> a b. x = (a,b)" by auto
    1.36 +  then obtain a b where x[simp]: "x = (a,b)" by blast
    1.37 +  {assume "a=0 \<or> b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)}  
    1.38 +  moreover
    1.39 +  {assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0" 
    1.40 +    let ?g = "igcd a b"
    1.41 +    let ?a' = "a div ?g"
    1.42 +    let ?b' = "b div ?g"
    1.43 +    let ?g' = "igcd ?a' ?b'"
    1.44 +    from anz bnz have "?g \<noteq> 0" by simp  with igcd_pos[of a b] 
    1.45 +    have gpos: "?g > 0"  by arith
    1.46 +    have gdvd: "?g dvd a" "?g dvd b" by (simp_all add: igcd_dvd1 igcd_dvd2)
    1.47 +    from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)]
    1.48 +    anz bnz
    1.49 +    have nz':"?a' \<noteq> 0" "?b' \<noteq> 0" 
    1.50 +      by - (rule notI,simp add:igcd_def)+
    1.51 +    from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by blast
    1.52 +    from div_igcd_relprime[OF stupid] have gp1: "?g' = 1" .
    1.53 +    from bnz have "b < 0 \<or> b > 0" by arith
    1.54 +    moreover
    1.55 +    {assume b: "b > 0"
    1.56 +      from pos_imp_zdiv_nonneg_iff[OF gpos] b
    1.57 +      have "?b' \<ge> 0" by simp
    1.58 +      with nz' have b': "?b' > 0" by simp
    1.59 +      from b b' anz bnz nz' gp1 have ?thesis 
    1.60 +	by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
    1.61 +    moreover {assume b: "b < 0"
    1.62 +      {assume b': "?b' \<ge> 0" 
    1.63 +	from gpos have th: "?g \<ge> 0" by arith
    1.64 +	from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)]
    1.65 +	have False using b by simp }
    1.66 +      hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) 
    1.67 +      from anz bnz nz' b b' gp1 have ?thesis 
    1.68 +	by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)}
    1.69 +    ultimately have ?thesis by blast
    1.70 +  }
    1.71 +  ultimately show ?thesis by blast
    1.72 +qed
    1.73 +
    1.74 +text {* Arithmetic over Num *}
    1.75 +
    1.76 +definition
    1.77 +  Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "+\<^sub>N" 60)
    1.78 +where
    1.79 +  "Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b') 
    1.80 +    else if a'=0 \<or> b' = 0 then normNum(a,b) 
    1.81 +    else normNum(a*b' + b*a', b*b'))"
    1.82 +
    1.83 +definition
    1.84 +  Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "*\<^sub>N" 60)
    1.85 +where
    1.86 +  "Nmul = (\<lambda>(a,b) (a',b'). let g = igcd (a*a') (b*b') 
    1.87 +    in (a*a' div g, b*b' div g))"
    1.88 +
    1.89 +definition
    1.90 +  Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
    1.91 +where
    1.92 +  "Nneg \<equiv> (\<lambda>(a,b). (-a,b))"
    1.93 +
    1.94 +definition
    1.95 +  Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "-\<^sub>N" 60)
    1.96 +where
    1.97 +  "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)"
    1.98 +
    1.99 +definition
   1.100 +  Ninv :: "Num \<Rightarrow> Num" 
   1.101 +where
   1.102 +  "Ninv \<equiv> \<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a)"
   1.103 +
   1.104 +definition
   1.105 +  Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num" (infixl "\<div>\<^sub>N" 60)
   1.106 +where
   1.107 +  "Ndiv \<equiv> \<lambda>a b. a *\<^sub>N Ninv b"
   1.108 +
   1.109 +lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)"
   1.110 +  by(simp add: isnormNum_def Nneg_def split_def)
   1.111 +lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)"
   1.112 +  by (simp add: Nadd_def split_def)
   1.113 +lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)"
   1.114 +  by (simp add: Nsub_def split_def)
   1.115 +lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y"
   1.116 +  shows "isnormNum (x *\<^sub>N y)"
   1.117 +proof-
   1.118 +  have "\<exists>a b. x = (a,b)" and "\<exists> a' b'. y = (a',b')" by auto
   1.119 +  then obtain a b a' b' where ab: "x = (a,b)"  and ab': "y = (a',b')" by blast 
   1.120 +  {assume "a = 0"
   1.121 +    hence ?thesis using xn ab ab'
   1.122 +      by (simp add: igcd_def isnormNum_def Let_def Nmul_def split_def)}
   1.123 +  moreover
   1.124 +  {assume "a' = 0"
   1.125 +    hence ?thesis using yn ab ab' 
   1.126 +      by (simp add: igcd_def isnormNum_def Let_def Nmul_def split_def)}
   1.127 +  moreover
   1.128 +  {assume a: "a \<noteq>0" and a': "a'\<noteq>0"
   1.129 +    hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def)
   1.130 +    from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a*a', b*b')" 
   1.131 +      using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def)
   1.132 +    hence ?thesis by simp}
   1.133 +  ultimately show ?thesis by blast
   1.134 +qed
   1.135 +
   1.136 +lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)"
   1.137 +by (simp add: Ninv_def isnormNum_def split_def)
   1.138 +(cases "fst x = 0",auto simp add: igcd_commute)
   1.139 +
   1.140 +lemma isnormNum_int[simp]: 
   1.141 +  "isnormNum 0\<^sub>N" "isnormNum (1::int)\<^sub>N" "i \<noteq> 0 \<Longrightarrow> isnormNum i\<^sub>N"
   1.142 +  by (simp_all add: isnormNum_def igcd_def)
   1.143 +
   1.144 +
   1.145 +text {* Relations over Num *}
   1.146 +
   1.147 +definition
   1.148 +  Nlt0:: "Num \<Rightarrow> bool" ("0>\<^sub>N")
   1.149 +where
   1.150 +  "Nlt0 = (\<lambda>(a,b). a < 0)"
   1.151 +
   1.152 +definition
   1.153 +  Nle0:: "Num \<Rightarrow> bool" ("0\<ge>\<^sub>N")
   1.154 +where
   1.155 +  "Nle0 = (\<lambda>(a,b). a \<le> 0)"
   1.156 +
   1.157 +definition
   1.158 +  Ngt0:: "Num \<Rightarrow> bool" ("0<\<^sub>N")
   1.159 +where
   1.160 +  "Ngt0 = (\<lambda>(a,b). a > 0)"
   1.161 +
   1.162 +definition
   1.163 +  Nge0:: "Num \<Rightarrow> bool" ("0\<le>\<^sub>N")
   1.164 +where
   1.165 +  "Nge0 = (\<lambda>(a,b). a \<ge> 0)"
   1.166 +
   1.167 +definition
   1.168 +  Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "<\<^sub>N" 55)
   1.169 +where
   1.170 +  "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))"
   1.171 +
   1.172 +definition
   1.173 +  Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool" (infix "\<le>\<^sub>N" 55)
   1.174 +where
   1.175 +  "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))"
   1.176 +
   1.177 +definition
   1.178 +  "INum = (\<lambda>(a,b). of_int a / of_int b)"
   1.179 +
   1.180 +lemma INum_int [simp]: "INum i\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)"
   1.181 +  by (simp_all add: INum_def)
   1.182 +
   1.183 +lemma isnormNum_unique[simp]: 
   1.184 +  assumes na: "isnormNum x" and nb: "isnormNum y" 
   1.185 +  shows "((INum x ::'a::{ring_char_0,field, division_by_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
   1.186 +proof
   1.187 +  have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto
   1.188 +  then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast
   1.189 +  assume H: ?lhs 
   1.190 +  {assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0" hence ?rhs
   1.191 +      using na nb H
   1.192 +      apply (simp add: INum_def split_def isnormNum_def)
   1.193 +      apply (cases "a = 0", simp_all)
   1.194 +      apply (cases "b = 0", simp_all)
   1.195 +      apply (cases "a' = 0", simp_all)
   1.196 +      apply (cases "a' = 0", simp_all add: of_int_eq_0_iff)
   1.197 +      done}
   1.198 +  moreover
   1.199 +  { assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0"
   1.200 +    from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def)
   1.201 +    from prems have eq:"a * b' = a'*b" 
   1.202 +      by (simp add: INum_def  eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult)
   1.203 +    from prems have gcd1: "igcd a b = 1" "igcd b a = 1" "igcd a' b' = 1" "igcd b' a' = 1"       
   1.204 +      by (simp_all add: isnormNum_def add: igcd_commute)
   1.205 +    from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'" 
   1.206 +      apply(unfold dvd_def)
   1.207 +      apply (rule_tac x="b'" in exI, simp add: mult_ac)
   1.208 +      apply (rule_tac x="a'" in exI, simp add: mult_ac)
   1.209 +      apply (rule_tac x="b" in exI, simp add: mult_ac)
   1.210 +      apply (rule_tac x="a" in exI, simp add: mult_ac)
   1.211 +      done
   1.212 +    from zdvd_dvd_eq[OF bz zrelprime_dvd_mult[OF gcd1(2) raw_dvd(2)]
   1.213 +      zrelprime_dvd_mult[OF gcd1(4) raw_dvd(4)]]
   1.214 +      have eq1: "b = b'" using pos by simp_all
   1.215 +      with eq have "a = a'" using pos by simp
   1.216 +      with eq1 have ?rhs by simp}
   1.217 +  ultimately show ?rhs by blast
   1.218 +next
   1.219 +  assume ?rhs thus ?lhs by simp
   1.220 +qed
   1.221 +
   1.222 +
   1.223 +lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{ring_char_0, field,division_by_zero})) = (x = 0\<^sub>N)"
   1.224 +  unfolding INum_int(2)[symmetric]
   1.225 +  by (rule isnormNum_unique, simp_all)
   1.226 +
   1.227 +lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) = 
   1.228 +    of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)"
   1.229 +proof -
   1.230 +  assume "d ~= 0"
   1.231 +  hence dz: "of_int d \<noteq> (0::'a)" by (simp add: of_int_eq_0_iff)
   1.232 +  let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)"
   1.233 +  let ?f = "\<lambda>x. x / of_int d"
   1.234 +  have "x = (x div d) * d + x mod d"
   1.235 +    by auto
   1.236 +  then have eq: "of_int x = ?t"
   1.237 +    by (simp only: of_int_mult[symmetric] of_int_add [symmetric])
   1.238 +  then have "of_int x / of_int d = ?t / of_int d" 
   1.239 +    using cong[OF refl[of ?f] eq] by simp
   1.240 +  then show ?thesis by (simp add: add_divide_distrib ring_simps prems)
   1.241 +qed
   1.242 +
   1.243 +lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
   1.244 +    (of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d"
   1.245 +  apply (frule of_int_div_aux [of d n, where ?'a = 'a])
   1.246 +  apply simp
   1.247 +  apply (simp add: zdvd_iff_zmod_eq_0)
   1.248 +done
   1.249 +
   1.250 +
   1.251 +lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_by_zero})"
   1.252 +proof-
   1.253 +  have "\<exists> a b. x = (a,b)" by auto
   1.254 +  then obtain a b where x[simp]: "x = (a,b)" by blast
   1.255 +  {assume "a=0 \<or> b = 0" hence ?thesis
   1.256 +      by (simp add: INum_def normNum_def split_def Let_def)}
   1.257 +  moreover 
   1.258 +  {assume a: "a\<noteq>0" and b: "b\<noteq>0"
   1.259 +    let ?g = "igcd a b"
   1.260 +    from a b have g: "?g \<noteq> 0"by simp
   1.261 +    from of_int_div[OF g, where ?'a = 'a]
   1.262 +    have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)}
   1.263 +  ultimately show ?thesis by blast
   1.264 +qed
   1.265 +
   1.266 +lemma INum_normNum_iff [code]: "(INum x ::'a::{field, division_by_zero, ring_char_0}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs")
   1.267 +proof -
   1.268 +  have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)"
   1.269 +    by (simp del: normNum)
   1.270 +  also have "\<dots> = ?lhs" by simp
   1.271 +  finally show ?thesis by simp
   1.272 +qed
   1.273 +
   1.274 +lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0,division_by_zero,field})"
   1.275 +proof-
   1.276 +let ?z = "0:: 'a"
   1.277 +  have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
   1.278 +  then obtain a b a' b' where x[simp]: "x = (a,b)" 
   1.279 +    and y[simp]: "y = (a',b')" by blast
   1.280 +  {assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0" hence ?thesis 
   1.281 +      apply (cases "a=0",simp_all add: Nadd_def)
   1.282 +      apply (cases "b= 0",simp_all add: INum_def)
   1.283 +       apply (cases "a'= 0",simp_all)
   1.284 +       apply (cases "b'= 0",simp_all)
   1.285 +       done }
   1.286 +  moreover 
   1.287 +  {assume aa':"a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0" 
   1.288 +    {assume z: "a * b' + b * a' = 0"
   1.289 +      hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp
   1.290 +      hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z"  by (simp add:add_divide_distrib) 
   1.291 +      hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp 
   1.292 +      from z aa' bb' have ?thesis 
   1.293 +	by (simp add: th Nadd_def normNum_def INum_def split_def)}
   1.294 +    moreover {assume z: "a * b' + b * a' \<noteq> 0"
   1.295 +      let ?g = "igcd (a * b' + b * a') (b*b')"
   1.296 +      have gz: "?g \<noteq> 0" using z by simp
   1.297 +      have ?thesis using aa' bb' z gz
   1.298 +	of_int_div[where ?'a = 'a, 
   1.299 +	OF gz igcd_dvd1[where i="a * b' + b * a'" and j="b*b'"]]
   1.300 +	of_int_div[where ?'a = 'a,
   1.301 +	OF gz igcd_dvd2[where i="a * b' + b * a'" and j="b*b'"]]
   1.302 +	by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib)}
   1.303 +    ultimately have ?thesis using aa' bb' 
   1.304 +      by (simp add: Nadd_def INum_def normNum_def x y Let_def) }
   1.305 +  ultimately show ?thesis by blast
   1.306 +qed
   1.307 +
   1.308 +lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {ring_char_0,division_by_zero,field}) "
   1.309 +proof-
   1.310 +  let ?z = "0::'a"
   1.311 +  have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
   1.312 +  then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast
   1.313 +  {assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0" hence ?thesis 
   1.314 +      apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def)
   1.315 +      apply (cases "b=0",simp_all)
   1.316 +      apply (cases "a'=0",simp_all) 
   1.317 +      done }
   1.318 +  moreover
   1.319 +  {assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
   1.320 +    let ?g="igcd (a*a') (b*b')"
   1.321 +    have gz: "?g \<noteq> 0" using z by simp
   1.322 +    from z of_int_div[where ?'a = 'a, OF gz igcd_dvd1[where i="a*a'" and j="b*b'"]] 
   1.323 +      of_int_div[where ?'a = 'a , OF gz igcd_dvd2[where i="a*a'" and j="b*b'"]] 
   1.324 +    have ?thesis by (simp add: Nmul_def x y Let_def INum_def)}
   1.325 +  ultimately show ?thesis by blast
   1.326 +qed
   1.327 +
   1.328 +lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)"
   1.329 +  by (simp add: Nneg_def split_def INum_def)
   1.330 +
   1.331 +lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {ring_char_0,division_by_zero,field})"
   1.332 +by (simp add: Nsub_def split_def)
   1.333 +
   1.334 +lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_by_zero,field}) / (INum x)"
   1.335 +  by (simp add: Ninv_def INum_def split_def)
   1.336 +
   1.337 +lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_by_zero,field})" by (simp add: Ndiv_def)
   1.338 +
   1.339 +lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" 
   1.340 +  shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})< 0) = 0>\<^sub>N x "
   1.341 +proof-
   1.342 +  have " \<exists> a b. x = (a,b)" by simp
   1.343 +  then obtain a b where x[simp]:"x = (a,b)" by blast
   1.344 +  {assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) }
   1.345 +  moreover
   1.346 +  {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
   1.347 +    from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"]
   1.348 +    have ?thesis by (simp add: Nlt0_def INum_def)}
   1.349 +  ultimately show ?thesis by blast
   1.350 +qed
   1.351 +
   1.352 +lemma Nle0_iff[simp]:assumes nx: "isnormNum x" 
   1.353 +  shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<le> 0) = 0\<ge>\<^sub>N x"
   1.354 +proof-
   1.355 +  have " \<exists> a b. x = (a,b)" by simp
   1.356 +  then obtain a b where x[simp]:"x = (a,b)" by blast
   1.357 +  {assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) }
   1.358 +  moreover
   1.359 +  {assume a: "a\<noteq>0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def)
   1.360 +    from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"]
   1.361 +    have ?thesis by (simp add: Nle0_def INum_def)}
   1.362 +  ultimately show ?thesis by blast
   1.363 +qed
   1.364 +
   1.365 +lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})> 0) = 0<\<^sub>N x"
   1.366 +proof-
   1.367 +  have " \<exists> a b. x = (a,b)" by simp
   1.368 +  then obtain a b where x[simp]:"x = (a,b)" by blast
   1.369 +  {assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) }
   1.370 +  moreover
   1.371 +  {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
   1.372 +    from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"]
   1.373 +    have ?thesis by (simp add: Ngt0_def INum_def)}
   1.374 +  ultimately show ?thesis by blast
   1.375 +qed
   1.376 +lemma Nge0_iff[simp]:assumes nx: "isnormNum x" 
   1.377 +  shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) \<ge> 0) = 0\<le>\<^sub>N x"
   1.378 +proof-
   1.379 +  have " \<exists> a b. x = (a,b)" by simp
   1.380 +  then obtain a b where x[simp]:"x = (a,b)" by blast
   1.381 +  {assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) }
   1.382 +  moreover
   1.383 +  {assume a: "a\<noteq>0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def)
   1.384 +    from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"]
   1.385 +    have ?thesis by (simp add: Nge0_def INum_def)}
   1.386 +  ultimately show ?thesis by blast
   1.387 +qed
   1.388 +
   1.389 +lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
   1.390 +  shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field}) < INum y) = (x <\<^sub>N y)"
   1.391 +proof-
   1.392 +  let ?z = "0::'a"
   1.393 +  have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp
   1.394 +  also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp
   1.395 +  finally show ?thesis by (simp add: Nlt_def)
   1.396 +qed
   1.397 +
   1.398 +lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
   1.399 +  shows "((INum x :: 'a :: {ring_char_0,division_by_zero,ordered_field})\<le> INum y) = (x \<le>\<^sub>N y)"
   1.400 +proof-
   1.401 +  have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp
   1.402 +  also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp
   1.403 +  finally show ?thesis by (simp add: Nle_def)
   1.404 +qed
   1.405 +
   1.406 +lemma Nadd_commute: "x +\<^sub>N y = y +\<^sub>N x"
   1.407 +proof-
   1.408 +  have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all
   1.409 +  have "(INum (x +\<^sub>N y)::'a :: {ring_char_0,division_by_zero,field}) = INum (y +\<^sub>N x)" by simp
   1.410 +  with isnormNum_unique[OF n] show ?thesis by simp
   1.411 +qed
   1.412 +
   1.413 +lemma[simp]: "(0, b) +\<^sub>N y = normNum y" "(a, 0) +\<^sub>N y = normNum y" 
   1.414 +  "x +\<^sub>N (0, b) = normNum x" "x +\<^sub>N (a, 0) = normNum x"
   1.415 +  apply (simp add: Nadd_def split_def, simp add: Nadd_def split_def)
   1.416 +  apply (subst Nadd_commute,simp add: Nadd_def split_def)
   1.417 +  apply (subst Nadd_commute,simp add: Nadd_def split_def)
   1.418 +  done
   1.419 +
   1.420 +lemma normNum_nilpotent_aux[simp]: assumes nx: "isnormNum x" 
   1.421 +  shows "normNum x = x"
   1.422 +proof-
   1.423 +  let ?a = "normNum x"
   1.424 +  have n: "isnormNum ?a" by simp
   1.425 +  have th:"INum ?a = (INum x ::'a :: {ring_char_0, division_by_zero,field})" by simp
   1.426 +  with isnormNum_unique[OF n nx]  
   1.427 +  show ?thesis by simp
   1.428 +qed
   1.429 +
   1.430 +lemma normNum_nilpotent[simp]: "normNum (normNum x) = normNum x"
   1.431 +  by simp
   1.432 +lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N"
   1.433 +  by (simp_all add: normNum_def)
   1.434 +lemma normNum_Nadd: "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp
   1.435 +lemma Nadd_normNum1[simp]: "normNum x +\<^sub>N y = x +\<^sub>N y"
   1.436 +proof-
   1.437 +  have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all
   1.438 +  have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   1.439 +  also have "\<dots> = INum (x +\<^sub>N y)" by simp
   1.440 +  finally show ?thesis using isnormNum_unique[OF n] by simp
   1.441 +qed
   1.442 +lemma Nadd_normNum2[simp]: "x +\<^sub>N normNum y = x +\<^sub>N y"
   1.443 +proof-
   1.444 +  have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all
   1.445 +  have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   1.446 +  also have "\<dots> = INum (x +\<^sub>N y)" by simp
   1.447 +  finally show ?thesis using isnormNum_unique[OF n] by simp
   1.448 +qed
   1.449 +
   1.450 +lemma Nadd_assoc: "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)"
   1.451 +proof-
   1.452 +  have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all
   1.453 +  have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   1.454 +  with isnormNum_unique[OF n] show ?thesis by simp
   1.455 +qed
   1.456 +
   1.457 +lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x"
   1.458 +  by (simp add: Nmul_def split_def Let_def igcd_commute mult_commute)
   1.459 +
   1.460 +lemma Nmul_assoc: assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z"
   1.461 +  shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)"
   1.462 +proof-
   1.463 +  from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" 
   1.464 +    by simp_all
   1.465 +  have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a :: {ring_char_0, division_by_zero,field})" by simp
   1.466 +  with isnormNum_unique[OF n] show ?thesis by simp
   1.467 +qed
   1.468 +
   1.469 +lemma Nsub0: assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)"
   1.470 +proof-
   1.471 +  {fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}"
   1.472 +    from isnormNum_unique[where ?'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] 
   1.473 +    have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp
   1.474 +    also have "\<dots> = (INum x = (INum y:: 'a))" by simp
   1.475 +    also have "\<dots> = (x = y)" using x y by simp
   1.476 +    finally show ?thesis .}
   1.477 +qed
   1.478 +
   1.479 +lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N"
   1.480 +  by (simp_all add: Nmul_def Let_def split_def)
   1.481 +
   1.482 +lemma Nmul_eq0[simp]: assumes nx:"isnormNum x" and ny: "isnormNum y"
   1.483 +  shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)"
   1.484 +proof-
   1.485 +  {fix h :: "'a :: {ring_char_0,division_by_zero,ordered_field}"
   1.486 +  have " \<exists> a b a' b'. x = (a,b) \<and> y= (a',b')" by auto
   1.487 +  then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast
   1.488 +  have n0: "isnormNum 0\<^sub>N" by simp
   1.489 +  show ?thesis using nx ny 
   1.490 +    apply (simp only: isnormNum_unique[where ?'a = 'a, OF  Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a])
   1.491 +    apply (simp add: INum_def split_def isnormNum_def fst_conv snd_conv)
   1.492 +    apply (cases "a=0",simp_all)
   1.493 +    apply (cases "a'=0",simp_all)
   1.494 +    done }
   1.495 +qed
   1.496 +lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c"
   1.497 +  by (simp add: Nneg_def split_def)
   1.498 +
   1.499 +lemma Nmul1[simp]: 
   1.500 +  "isnormNum c \<Longrightarrow> 1\<^sub>N *\<^sub>N c = c" 
   1.501 +  "isnormNum c \<Longrightarrow> c *\<^sub>N 1\<^sub>N  = c" 
   1.502 +  apply (simp_all add: Nmul_def Let_def split_def isnormNum_def)
   1.503 +  by (cases "fst c = 0", simp_all,cases c, simp_all)+
   1.504 +
   1.505 +end
   1.506 \ No newline at end of file