src/HOL/Hahn_Banach/Vector_Space.thy
changeset 31795 be3e1cc5005c
parent 29252 ea97aa6aeba2
child 36770 739a9379e29b
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Hahn_Banach/Vector_Space.thy	Wed Jun 24 21:46:54 2009 +0200
     1.3 @@ -0,0 +1,418 @@
     1.4 +(*  Title:      HOL/Hahn_Banach/Vector_Space.thy
     1.5 +    Author:     Gertrud Bauer, TU Munich
     1.6 +*)
     1.7 +
     1.8 +header {* Vector spaces *}
     1.9 +
    1.10 +theory Vector_Space
    1.11 +imports Real Bounds Zorn
    1.12 +begin
    1.13 +
    1.14 +subsection {* Signature *}
    1.15 +
    1.16 +text {*
    1.17 +  For the definition of real vector spaces a type @{typ 'a} of the
    1.18 +  sort @{text "{plus, minus, zero}"} is considered, on which a real
    1.19 +  scalar multiplication @{text \<cdot>} is declared.
    1.20 +*}
    1.21 +
    1.22 +consts
    1.23 +  prod  :: "real \<Rightarrow> 'a::{plus, minus, zero} \<Rightarrow> 'a"     (infixr "'(*')" 70)
    1.24 +
    1.25 +notation (xsymbols)
    1.26 +  prod  (infixr "\<cdot>" 70)
    1.27 +notation (HTML output)
    1.28 +  prod  (infixr "\<cdot>" 70)
    1.29 +
    1.30 +
    1.31 +subsection {* Vector space laws *}
    1.32 +
    1.33 +text {*
    1.34 +  A \emph{vector space} is a non-empty set @{text V} of elements from
    1.35 +  @{typ 'a} with the following vector space laws: The set @{text V} is
    1.36 +  closed under addition and scalar multiplication, addition is
    1.37 +  associative and commutative; @{text "- x"} is the inverse of @{text
    1.38 +  x} w.~r.~t.~addition and @{text 0} is the neutral element of
    1.39 +  addition.  Addition and multiplication are distributive; scalar
    1.40 +  multiplication is associative and the real number @{text "1"} is
    1.41 +  the neutral element of scalar multiplication.
    1.42 +*}
    1.43 +
    1.44 +locale var_V = fixes V
    1.45 +
    1.46 +locale vectorspace = var_V +
    1.47 +  assumes non_empty [iff, intro?]: "V \<noteq> {}"
    1.48 +    and add_closed [iff]: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y \<in> V"
    1.49 +    and mult_closed [iff]: "x \<in> V \<Longrightarrow> a \<cdot> x \<in> V"
    1.50 +    and add_assoc: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + y) + z = x + (y + z)"
    1.51 +    and add_commute: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y = y + x"
    1.52 +    and diff_self [simp]: "x \<in> V \<Longrightarrow> x - x = 0"
    1.53 +    and add_zero_left [simp]: "x \<in> V \<Longrightarrow> 0 + x = x"
    1.54 +    and add_mult_distrib1: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y"
    1.55 +    and add_mult_distrib2: "x \<in> V \<Longrightarrow> (a + b) \<cdot> x = a \<cdot> x + b \<cdot> x"
    1.56 +    and mult_assoc: "x \<in> V \<Longrightarrow> (a * b) \<cdot> x = a \<cdot> (b \<cdot> x)"
    1.57 +    and mult_1 [simp]: "x \<in> V \<Longrightarrow> 1 \<cdot> x = x"
    1.58 +    and negate_eq1: "x \<in> V \<Longrightarrow> - x = (- 1) \<cdot> x"
    1.59 +    and diff_eq1: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y = x + - y"
    1.60 +
    1.61 +lemma (in vectorspace) negate_eq2: "x \<in> V \<Longrightarrow> (- 1) \<cdot> x = - x"
    1.62 +  by (rule negate_eq1 [symmetric])
    1.63 +
    1.64 +lemma (in vectorspace) negate_eq2a: "x \<in> V \<Longrightarrow> -1 \<cdot> x = - x"
    1.65 +  by (simp add: negate_eq1)
    1.66 +
    1.67 +lemma (in vectorspace) diff_eq2: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + - y = x - y"
    1.68 +  by (rule diff_eq1 [symmetric])
    1.69 +
    1.70 +lemma (in vectorspace) diff_closed [iff]: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y \<in> V"
    1.71 +  by (simp add: diff_eq1 negate_eq1)
    1.72 +
    1.73 +lemma (in vectorspace) neg_closed [iff]: "x \<in> V \<Longrightarrow> - x \<in> V"
    1.74 +  by (simp add: negate_eq1)
    1.75 +
    1.76 +lemma (in vectorspace) add_left_commute:
    1.77 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> x + (y + z) = y + (x + z)"
    1.78 +proof -
    1.79 +  assume xyz: "x \<in> V"  "y \<in> V"  "z \<in> V"
    1.80 +  then have "x + (y + z) = (x + y) + z"
    1.81 +    by (simp only: add_assoc)
    1.82 +  also from xyz have "\<dots> = (y + x) + z" by (simp only: add_commute)
    1.83 +  also from xyz have "\<dots> = y + (x + z)" by (simp only: add_assoc)
    1.84 +  finally show ?thesis .
    1.85 +qed
    1.86 +
    1.87 +theorems (in vectorspace) add_ac =
    1.88 +  add_assoc add_commute add_left_commute
    1.89 +
    1.90 +
    1.91 +text {* The existence of the zero element of a vector space
    1.92 +  follows from the non-emptiness of carrier set. *}
    1.93 +
    1.94 +lemma (in vectorspace) zero [iff]: "0 \<in> V"
    1.95 +proof -
    1.96 +  from non_empty obtain x where x: "x \<in> V" by blast
    1.97 +  then have "0 = x - x" by (rule diff_self [symmetric])
    1.98 +  also from x x have "\<dots> \<in> V" by (rule diff_closed)
    1.99 +  finally show ?thesis .
   1.100 +qed
   1.101 +
   1.102 +lemma (in vectorspace) add_zero_right [simp]:
   1.103 +  "x \<in> V \<Longrightarrow>  x + 0 = x"
   1.104 +proof -
   1.105 +  assume x: "x \<in> V"
   1.106 +  from this and zero have "x + 0 = 0 + x" by (rule add_commute)
   1.107 +  also from x have "\<dots> = x" by (rule add_zero_left)
   1.108 +  finally show ?thesis .
   1.109 +qed
   1.110 +
   1.111 +lemma (in vectorspace) mult_assoc2:
   1.112 +    "x \<in> V \<Longrightarrow> a \<cdot> b \<cdot> x = (a * b) \<cdot> x"
   1.113 +  by (simp only: mult_assoc)
   1.114 +
   1.115 +lemma (in vectorspace) diff_mult_distrib1:
   1.116 +    "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<cdot> (x - y) = a \<cdot> x - a \<cdot> y"
   1.117 +  by (simp add: diff_eq1 negate_eq1 add_mult_distrib1 mult_assoc2)
   1.118 +
   1.119 +lemma (in vectorspace) diff_mult_distrib2:
   1.120 +  "x \<in> V \<Longrightarrow> (a - b) \<cdot> x = a \<cdot> x - (b \<cdot> x)"
   1.121 +proof -
   1.122 +  assume x: "x \<in> V"
   1.123 +  have " (a - b) \<cdot> x = (a + - b) \<cdot> x"
   1.124 +    by (simp add: real_diff_def)
   1.125 +  also from x have "\<dots> = a \<cdot> x + (- b) \<cdot> x"
   1.126 +    by (rule add_mult_distrib2)
   1.127 +  also from x have "\<dots> = a \<cdot> x + - (b \<cdot> x)"
   1.128 +    by (simp add: negate_eq1 mult_assoc2)
   1.129 +  also from x have "\<dots> = a \<cdot> x - (b \<cdot> x)"
   1.130 +    by (simp add: diff_eq1)
   1.131 +  finally show ?thesis .
   1.132 +qed
   1.133 +
   1.134 +lemmas (in vectorspace) distrib =
   1.135 +  add_mult_distrib1 add_mult_distrib2
   1.136 +  diff_mult_distrib1 diff_mult_distrib2
   1.137 +
   1.138 +
   1.139 +text {* \medskip Further derived laws: *}
   1.140 +
   1.141 +lemma (in vectorspace) mult_zero_left [simp]:
   1.142 +  "x \<in> V \<Longrightarrow> 0 \<cdot> x = 0"
   1.143 +proof -
   1.144 +  assume x: "x \<in> V"
   1.145 +  have "0 \<cdot> x = (1 - 1) \<cdot> x" by simp
   1.146 +  also have "\<dots> = (1 + - 1) \<cdot> x" by simp
   1.147 +  also from x have "\<dots> =  1 \<cdot> x + (- 1) \<cdot> x"
   1.148 +    by (rule add_mult_distrib2)
   1.149 +  also from x have "\<dots> = x + (- 1) \<cdot> x" by simp
   1.150 +  also from x have "\<dots> = x + - x" by (simp add: negate_eq2a)
   1.151 +  also from x have "\<dots> = x - x" by (simp add: diff_eq2)
   1.152 +  also from x have "\<dots> = 0" by simp
   1.153 +  finally show ?thesis .
   1.154 +qed
   1.155 +
   1.156 +lemma (in vectorspace) mult_zero_right [simp]:
   1.157 +  "a \<cdot> 0 = (0::'a)"
   1.158 +proof -
   1.159 +  have "a \<cdot> 0 = a \<cdot> (0 - (0::'a))" by simp
   1.160 +  also have "\<dots> =  a \<cdot> 0 - a \<cdot> 0"
   1.161 +    by (rule diff_mult_distrib1) simp_all
   1.162 +  also have "\<dots> = 0" by simp
   1.163 +  finally show ?thesis .
   1.164 +qed
   1.165 +
   1.166 +lemma (in vectorspace) minus_mult_cancel [simp]:
   1.167 +    "x \<in> V \<Longrightarrow> (- a) \<cdot> - x = a \<cdot> x"
   1.168 +  by (simp add: negate_eq1 mult_assoc2)
   1.169 +
   1.170 +lemma (in vectorspace) add_minus_left_eq_diff:
   1.171 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - x + y = y - x"
   1.172 +proof -
   1.173 +  assume xy: "x \<in> V"  "y \<in> V"
   1.174 +  then have "- x + y = y + - x" by (simp add: add_commute)
   1.175 +  also from xy have "\<dots> = y - x" by (simp add: diff_eq1)
   1.176 +  finally show ?thesis .
   1.177 +qed
   1.178 +
   1.179 +lemma (in vectorspace) add_minus [simp]:
   1.180 +    "x \<in> V \<Longrightarrow> x + - x = 0"
   1.181 +  by (simp add: diff_eq2)
   1.182 +
   1.183 +lemma (in vectorspace) add_minus_left [simp]:
   1.184 +    "x \<in> V \<Longrightarrow> - x + x = 0"
   1.185 +  by (simp add: diff_eq2 add_commute)
   1.186 +
   1.187 +lemma (in vectorspace) minus_minus [simp]:
   1.188 +    "x \<in> V \<Longrightarrow> - (- x) = x"
   1.189 +  by (simp add: negate_eq1 mult_assoc2)
   1.190 +
   1.191 +lemma (in vectorspace) minus_zero [simp]:
   1.192 +    "- (0::'a) = 0"
   1.193 +  by (simp add: negate_eq1)
   1.194 +
   1.195 +lemma (in vectorspace) minus_zero_iff [simp]:
   1.196 +  "x \<in> V \<Longrightarrow> (- x = 0) = (x = 0)"
   1.197 +proof
   1.198 +  assume x: "x \<in> V"
   1.199 +  {
   1.200 +    from x have "x = - (- x)" by (simp add: minus_minus)
   1.201 +    also assume "- x = 0"
   1.202 +    also have "- \<dots> = 0" by (rule minus_zero)
   1.203 +    finally show "x = 0" .
   1.204 +  next
   1.205 +    assume "x = 0"
   1.206 +    then show "- x = 0" by simp
   1.207 +  }
   1.208 +qed
   1.209 +
   1.210 +lemma (in vectorspace) add_minus_cancel [simp]:
   1.211 +    "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + (- x + y) = y"
   1.212 +  by (simp add: add_assoc [symmetric] del: add_commute)
   1.213 +
   1.214 +lemma (in vectorspace) minus_add_cancel [simp]:
   1.215 +    "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - x + (x + y) = y"
   1.216 +  by (simp add: add_assoc [symmetric] del: add_commute)
   1.217 +
   1.218 +lemma (in vectorspace) minus_add_distrib [simp]:
   1.219 +    "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - (x + y) = - x + - y"
   1.220 +  by (simp add: negate_eq1 add_mult_distrib1)
   1.221 +
   1.222 +lemma (in vectorspace) diff_zero [simp]:
   1.223 +    "x \<in> V \<Longrightarrow> x - 0 = x"
   1.224 +  by (simp add: diff_eq1)
   1.225 +
   1.226 +lemma (in vectorspace) diff_zero_right [simp]:
   1.227 +    "x \<in> V \<Longrightarrow> 0 - x = - x"
   1.228 +  by (simp add: diff_eq1)
   1.229 +
   1.230 +lemma (in vectorspace) add_left_cancel:
   1.231 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + y = x + z) = (y = z)"
   1.232 +proof
   1.233 +  assume x: "x \<in> V" and y: "y \<in> V" and z: "z \<in> V"
   1.234 +  {
   1.235 +    from y have "y = 0 + y" by simp
   1.236 +    also from x y have "\<dots> = (- x + x) + y" by simp
   1.237 +    also from x y have "\<dots> = - x + (x + y)"
   1.238 +      by (simp add: add_assoc neg_closed)
   1.239 +    also assume "x + y = x + z"
   1.240 +    also from x z have "- x + (x + z) = - x + x + z"
   1.241 +      by (simp add: add_assoc [symmetric] neg_closed)
   1.242 +    also from x z have "\<dots> = z" by simp
   1.243 +    finally show "y = z" .
   1.244 +  next
   1.245 +    assume "y = z"
   1.246 +    then show "x + y = x + z" by (simp only:)
   1.247 +  }
   1.248 +qed
   1.249 +
   1.250 +lemma (in vectorspace) add_right_cancel:
   1.251 +    "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (y + x = z + x) = (y = z)"
   1.252 +  by (simp only: add_commute add_left_cancel)
   1.253 +
   1.254 +lemma (in vectorspace) add_assoc_cong:
   1.255 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x' \<in> V \<Longrightarrow> y' \<in> V \<Longrightarrow> z \<in> V
   1.256 +    \<Longrightarrow> x + y = x' + y' \<Longrightarrow> x + (y + z) = x' + (y' + z)"
   1.257 +  by (simp only: add_assoc [symmetric])
   1.258 +
   1.259 +lemma (in vectorspace) mult_left_commute:
   1.260 +    "x \<in> V \<Longrightarrow> a \<cdot> b \<cdot> x = b \<cdot> a \<cdot> x"
   1.261 +  by (simp add: real_mult_commute mult_assoc2)
   1.262 +
   1.263 +lemma (in vectorspace) mult_zero_uniq:
   1.264 +  "x \<in> V \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> a \<cdot> x = 0 \<Longrightarrow> a = 0"
   1.265 +proof (rule classical)
   1.266 +  assume a: "a \<noteq> 0"
   1.267 +  assume x: "x \<in> V"  "x \<noteq> 0" and ax: "a \<cdot> x = 0"
   1.268 +  from x a have "x = (inverse a * a) \<cdot> x" by simp
   1.269 +  also from `x \<in> V` have "\<dots> = inverse a \<cdot> (a \<cdot> x)" by (rule mult_assoc)
   1.270 +  also from ax have "\<dots> = inverse a \<cdot> 0" by simp
   1.271 +  also have "\<dots> = 0" by simp
   1.272 +  finally have "x = 0" .
   1.273 +  with `x \<noteq> 0` show "a = 0" by contradiction
   1.274 +qed
   1.275 +
   1.276 +lemma (in vectorspace) mult_left_cancel:
   1.277 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (a \<cdot> x = a \<cdot> y) = (x = y)"
   1.278 +proof
   1.279 +  assume x: "x \<in> V" and y: "y \<in> V" and a: "a \<noteq> 0"
   1.280 +  from x have "x = 1 \<cdot> x" by simp
   1.281 +  also from a have "\<dots> = (inverse a * a) \<cdot> x" by simp
   1.282 +  also from x have "\<dots> = inverse a \<cdot> (a \<cdot> x)"
   1.283 +    by (simp only: mult_assoc)
   1.284 +  also assume "a \<cdot> x = a \<cdot> y"
   1.285 +  also from a y have "inverse a \<cdot> \<dots> = y"
   1.286 +    by (simp add: mult_assoc2)
   1.287 +  finally show "x = y" .
   1.288 +next
   1.289 +  assume "x = y"
   1.290 +  then show "a \<cdot> x = a \<cdot> y" by (simp only:)
   1.291 +qed
   1.292 +
   1.293 +lemma (in vectorspace) mult_right_cancel:
   1.294 +  "x \<in> V \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> (a \<cdot> x = b \<cdot> x) = (a = b)"
   1.295 +proof
   1.296 +  assume x: "x \<in> V" and neq: "x \<noteq> 0"
   1.297 +  {
   1.298 +    from x have "(a - b) \<cdot> x = a \<cdot> x - b \<cdot> x"
   1.299 +      by (simp add: diff_mult_distrib2)
   1.300 +    also assume "a \<cdot> x = b \<cdot> x"
   1.301 +    with x have "a \<cdot> x - b \<cdot> x = 0" by simp
   1.302 +    finally have "(a - b) \<cdot> x = 0" .
   1.303 +    with x neq have "a - b = 0" by (rule mult_zero_uniq)
   1.304 +    then show "a = b" by simp
   1.305 +  next
   1.306 +    assume "a = b"
   1.307 +    then show "a \<cdot> x = b \<cdot> x" by (simp only:)
   1.308 +  }
   1.309 +qed
   1.310 +
   1.311 +lemma (in vectorspace) eq_diff_eq:
   1.312 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x = z - y) = (x + y = z)"
   1.313 +proof
   1.314 +  assume x: "x \<in> V" and y: "y \<in> V" and z: "z \<in> V"
   1.315 +  {
   1.316 +    assume "x = z - y"
   1.317 +    then have "x + y = z - y + y" by simp
   1.318 +    also from y z have "\<dots> = z + - y + y"
   1.319 +      by (simp add: diff_eq1)
   1.320 +    also have "\<dots> = z + (- y + y)"
   1.321 +      by (rule add_assoc) (simp_all add: y z)
   1.322 +    also from y z have "\<dots> = z + 0"
   1.323 +      by (simp only: add_minus_left)
   1.324 +    also from z have "\<dots> = z"
   1.325 +      by (simp only: add_zero_right)
   1.326 +    finally show "x + y = z" .
   1.327 +  next
   1.328 +    assume "x + y = z"
   1.329 +    then have "z - y = (x + y) - y" by simp
   1.330 +    also from x y have "\<dots> = x + y + - y"
   1.331 +      by (simp add: diff_eq1)
   1.332 +    also have "\<dots> = x + (y + - y)"
   1.333 +      by (rule add_assoc) (simp_all add: x y)
   1.334 +    also from x y have "\<dots> = x" by simp
   1.335 +    finally show "x = z - y" ..
   1.336 +  }
   1.337 +qed
   1.338 +
   1.339 +lemma (in vectorspace) add_minus_eq_minus:
   1.340 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y = 0 \<Longrightarrow> x = - y"
   1.341 +proof -
   1.342 +  assume x: "x \<in> V" and y: "y \<in> V"
   1.343 +  from x y have "x = (- y + y) + x" by simp
   1.344 +  also from x y have "\<dots> = - y + (x + y)" by (simp add: add_ac)
   1.345 +  also assume "x + y = 0"
   1.346 +  also from y have "- y + 0 = - y" by simp
   1.347 +  finally show "x = - y" .
   1.348 +qed
   1.349 +
   1.350 +lemma (in vectorspace) add_minus_eq:
   1.351 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y = 0 \<Longrightarrow> x = y"
   1.352 +proof -
   1.353 +  assume x: "x \<in> V" and y: "y \<in> V"
   1.354 +  assume "x - y = 0"
   1.355 +  with x y have eq: "x + - y = 0" by (simp add: diff_eq1)
   1.356 +  with _ _ have "x = - (- y)"
   1.357 +    by (rule add_minus_eq_minus) (simp_all add: x y)
   1.358 +  with x y show "x = y" by simp
   1.359 +qed
   1.360 +
   1.361 +lemma (in vectorspace) add_diff_swap:
   1.362 +  "a \<in> V \<Longrightarrow> b \<in> V \<Longrightarrow> c \<in> V \<Longrightarrow> d \<in> V \<Longrightarrow> a + b = c + d
   1.363 +    \<Longrightarrow> a - c = d - b"
   1.364 +proof -
   1.365 +  assume vs: "a \<in> V"  "b \<in> V"  "c \<in> V"  "d \<in> V"
   1.366 +    and eq: "a + b = c + d"
   1.367 +  then have "- c + (a + b) = - c + (c + d)"
   1.368 +    by (simp add: add_left_cancel)
   1.369 +  also have "\<dots> = d" using `c \<in> V` `d \<in> V` by (rule minus_add_cancel)
   1.370 +  finally have eq: "- c + (a + b) = d" .
   1.371 +  from vs have "a - c = (- c + (a + b)) + - b"
   1.372 +    by (simp add: add_ac diff_eq1)
   1.373 +  also from vs eq have "\<dots>  = d + - b"
   1.374 +    by (simp add: add_right_cancel)
   1.375 +  also from vs have "\<dots> = d - b" by (simp add: diff_eq2)
   1.376 +  finally show "a - c = d - b" .
   1.377 +qed
   1.378 +
   1.379 +lemma (in vectorspace) vs_add_cancel_21:
   1.380 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> u \<in> V
   1.381 +    \<Longrightarrow> (x + (y + z) = y + u) = (x + z = u)"
   1.382 +proof
   1.383 +  assume vs: "x \<in> V"  "y \<in> V"  "z \<in> V"  "u \<in> V"
   1.384 +  {
   1.385 +    from vs have "x + z = - y + y + (x + z)" by simp
   1.386 +    also have "\<dots> = - y + (y + (x + z))"
   1.387 +      by (rule add_assoc) (simp_all add: vs)
   1.388 +    also from vs have "y + (x + z) = x + (y + z)"
   1.389 +      by (simp add: add_ac)
   1.390 +    also assume "x + (y + z) = y + u"
   1.391 +    also from vs have "- y + (y + u) = u" by simp
   1.392 +    finally show "x + z = u" .
   1.393 +  next
   1.394 +    assume "x + z = u"
   1.395 +    with vs show "x + (y + z) = y + u"
   1.396 +      by (simp only: add_left_commute [of x])
   1.397 +  }
   1.398 +qed
   1.399 +
   1.400 +lemma (in vectorspace) add_cancel_end:
   1.401 +  "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + (y + z) = y) = (x = - z)"
   1.402 +proof
   1.403 +  assume vs: "x \<in> V"  "y \<in> V"  "z \<in> V"
   1.404 +  {
   1.405 +    assume "x + (y + z) = y"
   1.406 +    with vs have "(x + z) + y = 0 + y"
   1.407 +      by (simp add: add_ac)
   1.408 +    with vs have "x + z = 0"
   1.409 +      by (simp only: add_right_cancel add_closed zero)
   1.410 +    with vs show "x = - z" by (simp add: add_minus_eq_minus)
   1.411 +  next
   1.412 +    assume eq: "x = - z"
   1.413 +    then have "x + (y + z) = - z + (y + z)" by simp
   1.414 +    also have "\<dots> = y + (- z + z)"
   1.415 +      by (rule add_left_commute) (simp_all add: vs)
   1.416 +    also from vs have "\<dots> = y"  by simp
   1.417 +    finally show "x + (y + z) = y" .
   1.418 +  }
   1.419 +qed
   1.420 +
   1.421 +end