src/HOL/Matrix_LP/ComputeFloat.thy
changeset 47859 9f492f5b0cec
parent 46363 c55a07526dbe
child 47978 2a1953f0d20d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Matrix_LP/ComputeFloat.thy	Sat Mar 17 12:52:40 2012 +0100
     1.3 @@ -0,0 +1,309 @@
     1.4 +(*  Title:      HOL/Matrix/ComputeFloat.thy
     1.5 +    Author:     Steven Obua
     1.6 +*)
     1.7 +
     1.8 +header {* Floating Point Representation of the Reals *}
     1.9 +
    1.10 +theory ComputeFloat
    1.11 +imports Complex_Main "~~/src/HOL/Library/Lattice_Algebras"
    1.12 +uses "~~/src/Tools/float.ML" ("~~/src/HOL/Tools/float_arith.ML")
    1.13 +begin
    1.14 +
    1.15 +definition int_of_real :: "real \<Rightarrow> int"
    1.16 +  where "int_of_real x = (SOME y. real y = x)"
    1.17 +
    1.18 +definition real_is_int :: "real \<Rightarrow> bool"
    1.19 +  where "real_is_int x = (EX (u::int). x = real u)"
    1.20 +
    1.21 +lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
    1.22 +  by (auto simp add: real_is_int_def int_of_real_def)
    1.23 +
    1.24 +lemma real_is_int_real[simp]: "real_is_int (real (x::int))"
    1.25 +by (auto simp add: real_is_int_def int_of_real_def)
    1.26 +
    1.27 +lemma int_of_real_real[simp]: "int_of_real (real x) = x"
    1.28 +by (simp add: int_of_real_def)
    1.29 +
    1.30 +lemma real_int_of_real[simp]: "real_is_int x \<Longrightarrow> real (int_of_real x) = x"
    1.31 +by (auto simp add: int_of_real_def real_is_int_def)
    1.32 +
    1.33 +lemma real_is_int_add_int_of_real: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)"
    1.34 +by (auto simp add: int_of_real_def real_is_int_def)
    1.35 +
    1.36 +lemma real_is_int_add[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a+b)"
    1.37 +apply (subst real_is_int_def2)
    1.38 +apply (simp add: real_is_int_add_int_of_real real_int_of_real)
    1.39 +done
    1.40 +
    1.41 +lemma int_of_real_sub: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)"
    1.42 +by (auto simp add: int_of_real_def real_is_int_def)
    1.43 +
    1.44 +lemma real_is_int_sub[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a-b)"
    1.45 +apply (subst real_is_int_def2)
    1.46 +apply (simp add: int_of_real_sub real_int_of_real)
    1.47 +done
    1.48 +
    1.49 +lemma real_is_int_rep: "real_is_int x \<Longrightarrow> ?! (a::int). real a = x"
    1.50 +by (auto simp add: real_is_int_def)
    1.51 +
    1.52 +lemma int_of_real_mult:
    1.53 +  assumes "real_is_int a" "real_is_int b"
    1.54 +  shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)"
    1.55 +  using assms
    1.56 +  by (auto simp add: real_is_int_def real_of_int_mult[symmetric]
    1.57 +           simp del: real_of_int_mult)
    1.58 +
    1.59 +lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)"
    1.60 +apply (subst real_is_int_def2)
    1.61 +apply (simp add: int_of_real_mult)
    1.62 +done
    1.63 +
    1.64 +lemma real_is_int_0[simp]: "real_is_int (0::real)"
    1.65 +by (simp add: real_is_int_def int_of_real_def)
    1.66 +
    1.67 +lemma real_is_int_1[simp]: "real_is_int (1::real)"
    1.68 +proof -
    1.69 +  have "real_is_int (1::real) = real_is_int(real (1::int))" by auto
    1.70 +  also have "\<dots> = True" by (simp only: real_is_int_real)
    1.71 +  ultimately show ?thesis by auto
    1.72 +qed
    1.73 +
    1.74 +lemma real_is_int_n1: "real_is_int (-1::real)"
    1.75 +proof -
    1.76 +  have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
    1.77 +  also have "\<dots> = True" by (simp only: real_is_int_real)
    1.78 +  ultimately show ?thesis by auto
    1.79 +qed
    1.80 +
    1.81 +lemma real_is_int_number_of[simp]: "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
    1.82 +  by (auto simp: real_is_int_def intro!: exI[of _ "number_of x"])
    1.83 +
    1.84 +lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
    1.85 +by (simp add: int_of_real_def)
    1.86 +
    1.87 +lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
    1.88 +proof -
    1.89 +  have 1: "(1::real) = real (1::int)" by auto
    1.90 +  show ?thesis by (simp only: 1 int_of_real_real)
    1.91 +qed
    1.92 +
    1.93 +lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
    1.94 +  unfolding int_of_real_def
    1.95 +  by (intro some_equality)
    1.96 +     (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject)
    1.97 +
    1.98 +lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
    1.99 +by (rule zdiv_int)
   1.100 +
   1.101 +lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
   1.102 +by (rule zmod_int)
   1.103 +
   1.104 +lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
   1.105 +by arith
   1.106 +
   1.107 +lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
   1.108 +  by auto
   1.109 +
   1.110 +lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
   1.111 +  by simp
   1.112 +
   1.113 +lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)"
   1.114 +  by simp
   1.115 +
   1.116 +lemma mult_left_one: "1 * a = (a::'a::semiring_1)"
   1.117 +  by simp
   1.118 +
   1.119 +lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
   1.120 +  by simp
   1.121 +
   1.122 +lemma int_pow_0: "(a::int)^(Numeral0) = 1"
   1.123 +  by simp
   1.124 +
   1.125 +lemma int_pow_1: "(a::int)^(Numeral1) = a"
   1.126 +  by simp
   1.127 +
   1.128 +lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
   1.129 +  by simp
   1.130 +
   1.131 +lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
   1.132 +  by simp
   1.133 +
   1.134 +lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
   1.135 +  by simp
   1.136 +
   1.137 +lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
   1.138 +  by simp
   1.139 +
   1.140 +lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
   1.141 +  by simp
   1.142 +
   1.143 +lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
   1.144 +proof -
   1.145 +  have 1:"((-1)::nat) = 0"
   1.146 +    by simp
   1.147 +  show ?thesis by (simp add: 1)
   1.148 +qed
   1.149 +
   1.150 +lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)"
   1.151 +  by simp
   1.152 +
   1.153 +lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')"
   1.154 +  by simp
   1.155 +
   1.156 +lemma lift_bool: "x \<Longrightarrow> x=True"
   1.157 +  by simp
   1.158 +
   1.159 +lemma nlift_bool: "~x \<Longrightarrow> x=False"
   1.160 +  by simp
   1.161 +
   1.162 +lemma not_false_eq_true: "(~ False) = True" by simp
   1.163 +
   1.164 +lemma not_true_eq_false: "(~ True) = False" by simp
   1.165 +
   1.166 +lemmas binarith =
   1.167 +  normalize_bin_simps
   1.168 +  pred_bin_simps succ_bin_simps
   1.169 +  add_bin_simps minus_bin_simps mult_bin_simps
   1.170 +
   1.171 +lemma int_eq_number_of_eq:
   1.172 +  "(((number_of v)::int)=(number_of w)) = iszero ((number_of (v + uminus w))::int)"
   1.173 +  by (rule eq_number_of_eq)
   1.174 +
   1.175 +lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)"
   1.176 +  by (simp only: iszero_number_of_Pls)
   1.177 +
   1.178 +lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
   1.179 +  by simp
   1.180 +
   1.181 +lemma int_iszero_number_of_Bit0: "iszero ((number_of (Int.Bit0 w))::int) = iszero ((number_of w)::int)"
   1.182 +  by simp
   1.183 +
   1.184 +lemma int_iszero_number_of_Bit1: "\<not> iszero ((number_of (Int.Bit1 w))::int)"
   1.185 +  by simp
   1.186 +
   1.187 +lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)"
   1.188 +  unfolding neg_def number_of_is_id by simp
   1.189 +
   1.190 +lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))"
   1.191 +  by simp
   1.192 +
   1.193 +lemma int_neg_number_of_Min: "neg (-1::int)"
   1.194 +  by simp
   1.195 +
   1.196 +lemma int_neg_number_of_Bit0: "neg ((number_of (Int.Bit0 w))::int) = neg ((number_of w)::int)"
   1.197 +  by simp
   1.198 +
   1.199 +lemma int_neg_number_of_Bit1: "neg ((number_of (Int.Bit1 w))::int) = neg ((number_of w)::int)"
   1.200 +  by simp
   1.201 +
   1.202 +lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (y + (uminus x)))::int))"
   1.203 +  unfolding neg_def number_of_is_id by (simp add: not_less)
   1.204 +
   1.205 +lemmas intarithrel =
   1.206 +  int_eq_number_of_eq
   1.207 +  lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_Bit0
   1.208 +  lift_bool[OF int_iszero_number_of_Bit1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min]
   1.209 +  int_neg_number_of_Bit0 int_neg_number_of_Bit1 int_le_number_of_eq
   1.210 +
   1.211 +lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)"
   1.212 +  by simp
   1.213 +
   1.214 +lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (v + (uminus w))"
   1.215 +  by simp
   1.216 +
   1.217 +lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (v * w)"
   1.218 +  by simp
   1.219 +
   1.220 +lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)"
   1.221 +  by simp
   1.222 +
   1.223 +lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym
   1.224 +
   1.225 +lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
   1.226 +
   1.227 +lemmas powerarith = nat_number_of zpower_number_of_even
   1.228 +  zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
   1.229 +  zpower_Pls zpower_Min
   1.230 +
   1.231 +definition float :: "(int \<times> int) \<Rightarrow> real" where
   1.232 +  "float = (\<lambda>(a, b). real a * 2 powr real b)"
   1.233 +
   1.234 +lemma float_add_l0: "float (0, e) + x = x"
   1.235 +  by (simp add: float_def)
   1.236 +
   1.237 +lemma float_add_r0: "x + float (0, e) = x"
   1.238 +  by (simp add: float_def)
   1.239 +
   1.240 +lemma float_add:
   1.241 +  "float (a1, e1) + float (a2, e2) =
   1.242 +  (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) else float (a1*2^(nat (e1-e2))+a2, e2))"
   1.243 +  by (simp add: float_def algebra_simps powr_realpow[symmetric] powr_divide2[symmetric])
   1.244 +
   1.245 +lemma float_mult_l0: "float (0, e) * x = float (0, 0)"
   1.246 +  by (simp add: float_def)
   1.247 +
   1.248 +lemma float_mult_r0: "x * float (0, e) = float (0, 0)"
   1.249 +  by (simp add: float_def)
   1.250 +
   1.251 +lemma float_mult:
   1.252 +  "float (a1, e1) * float (a2, e2) = (float (a1 * a2, e1 + e2))"
   1.253 +  by (simp add: float_def powr_add)
   1.254 +
   1.255 +lemma float_minus:
   1.256 +  "- (float (a,b)) = float (-a, b)"
   1.257 +  by (simp add: float_def)
   1.258 +
   1.259 +lemma zero_le_float:
   1.260 +  "(0 <= float (a,b)) = (0 <= a)"
   1.261 +  using powr_gt_zero[of 2 "real b", arith]
   1.262 +  by (simp add: float_def zero_le_mult_iff)
   1.263 +
   1.264 +lemma float_le_zero:
   1.265 +  "(float (a,b) <= 0) = (a <= 0)"
   1.266 +  using powr_gt_zero[of 2 "real b", arith]
   1.267 +  by (simp add: float_def mult_le_0_iff)
   1.268 +
   1.269 +lemma float_abs:
   1.270 +  "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))"
   1.271 +  using powr_gt_zero[of 2 "real b", arith]
   1.272 +  by (simp add: float_def abs_if mult_less_0_iff)
   1.273 +
   1.274 +lemma float_zero:
   1.275 +  "float (0, b) = 0"
   1.276 +  by (simp add: float_def)
   1.277 +
   1.278 +lemma float_pprt:
   1.279 +  "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))"
   1.280 +  by (auto simp add: zero_le_float float_le_zero float_zero)
   1.281 +
   1.282 +lemma float_nprt:
   1.283 +  "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))"
   1.284 +  by (auto simp add: zero_le_float float_le_zero float_zero)
   1.285 +
   1.286 +definition lbound :: "real \<Rightarrow> real"
   1.287 +  where "lbound x = min 0 x"
   1.288 +
   1.289 +definition ubound :: "real \<Rightarrow> real"
   1.290 +  where "ubound x = max 0 x"
   1.291 +
   1.292 +lemma lbound: "lbound x \<le> x"   
   1.293 +  by (simp add: lbound_def)
   1.294 +
   1.295 +lemma ubound: "x \<le> ubound x"
   1.296 +  by (simp add: ubound_def)
   1.297 +
   1.298 +lemma pprt_lbound: "pprt (lbound x) = float (0, 0)"
   1.299 +  by (auto simp: float_def lbound_def)
   1.300 +
   1.301 +lemma nprt_ubound: "nprt (ubound x) = float (0, 0)"
   1.302 +  by (auto simp: float_def ubound_def)
   1.303 +
   1.304 +lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 
   1.305 +          float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound
   1.306 +
   1.307 +(* for use with the compute oracle *)
   1.308 +lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false
   1.309 +
   1.310 +use "~~/src/HOL/Tools/float_arith.ML"
   1.311 +
   1.312 +end