src/HOL/Power.thy
changeset 14738 83f1a514dcb4
parent 14577 dbb95b825244
child 15004 44ac09ba7213
     1.1 --- a/src/HOL/Power.thy	Tue May 11 14:00:02 2004 +0200
     1.2 +++ b/src/HOL/Power.thy	Tue May 11 20:11:08 2004 +0200
     1.3 @@ -11,7 +11,7 @@
     1.4  
     1.5  subsection{*Powers for Arbitrary (Semi)Rings*}
     1.6  
     1.7 -axclass ringpower \<subseteq> semiring, power
     1.8 +axclass ringpower \<subseteq> comm_semiring_1_cancel, power
     1.9    power_0 [simp]:   "a ^ 0       = 1"
    1.10    power_Suc: "a ^ (Suc n) = a * (a ^ n)"
    1.11  
    1.12 @@ -46,31 +46,31 @@
    1.13  done
    1.14  
    1.15  lemma zero_less_power:
    1.16 -     "0 < (a::'a::{ordered_semiring,ringpower}) ==> 0 < a^n"
    1.17 +     "0 < (a::'a::{ordered_semidom,ringpower}) ==> 0 < a^n"
    1.18  apply (induct_tac "n")
    1.19  apply (simp_all add: power_Suc zero_less_one mult_pos)
    1.20  done
    1.21  
    1.22  lemma zero_le_power:
    1.23 -     "0 \<le> (a::'a::{ordered_semiring,ringpower}) ==> 0 \<le> a^n"
    1.24 +     "0 \<le> (a::'a::{ordered_semidom,ringpower}) ==> 0 \<le> a^n"
    1.25  apply (simp add: order_le_less)
    1.26  apply (erule disjE)
    1.27  apply (simp_all add: zero_less_power zero_less_one power_0_left)
    1.28  done
    1.29  
    1.30  lemma one_le_power:
    1.31 -     "1 \<le> (a::'a::{ordered_semiring,ringpower}) ==> 1 \<le> a^n"
    1.32 +     "1 \<le> (a::'a::{ordered_semidom,ringpower}) ==> 1 \<le> a^n"
    1.33  apply (induct_tac "n")
    1.34  apply (simp_all add: power_Suc)
    1.35  apply (rule order_trans [OF _ mult_mono [of 1 _ 1]])
    1.36  apply (simp_all add: zero_le_one order_trans [OF zero_le_one])
    1.37  done
    1.38  
    1.39 -lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semiring)"
    1.40 +lemma gt1_imp_ge0: "1 < a ==> 0 \<le> (a::'a::ordered_semidom)"
    1.41    by (simp add: order_trans [OF zero_le_one order_less_imp_le])
    1.42  
    1.43  lemma power_gt1_lemma:
    1.44 -  assumes gt1: "1 < (a::'a::{ordered_semiring,ringpower})"
    1.45 +  assumes gt1: "1 < (a::'a::{ordered_semidom,ringpower})"
    1.46    shows "1 < a * a^n"
    1.47  proof -
    1.48    have "1*1 < a*1" using gt1 by simp
    1.49 @@ -81,11 +81,11 @@
    1.50  qed
    1.51  
    1.52  lemma power_gt1:
    1.53 -     "1 < (a::'a::{ordered_semiring,ringpower}) ==> 1 < a ^ (Suc n)"
    1.54 +     "1 < (a::'a::{ordered_semidom,ringpower}) ==> 1 < a ^ (Suc n)"
    1.55  by (simp add: power_gt1_lemma power_Suc)
    1.56  
    1.57  lemma power_le_imp_le_exp:
    1.58 -  assumes gt1: "(1::'a::{ringpower,ordered_semiring}) < a"
    1.59 +  assumes gt1: "(1::'a::{ringpower,ordered_semidom}) < a"
    1.60    shows "!!n. a^m \<le> a^n ==> m \<le> n"
    1.61  proof (induct m)
    1.62    case 0
    1.63 @@ -109,26 +109,26 @@
    1.64  
    1.65  text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
    1.66  lemma power_inject_exp [simp]:
    1.67 -     "1 < (a::'a::{ordered_semiring,ringpower}) ==> (a^m = a^n) = (m=n)"
    1.68 +     "1 < (a::'a::{ordered_semidom,ringpower}) ==> (a^m = a^n) = (m=n)"
    1.69    by (force simp add: order_antisym power_le_imp_le_exp)
    1.70  
    1.71  text{*Can relax the first premise to @{term "0<a"} in the case of the
    1.72  natural numbers.*}
    1.73  lemma power_less_imp_less_exp:
    1.74 -     "[| (1::'a::{ringpower,ordered_semiring}) < a; a^m < a^n |] ==> m < n"
    1.75 +     "[| (1::'a::{ringpower,ordered_semidom}) < a; a^m < a^n |] ==> m < n"
    1.76  by (simp add: order_less_le [of m n] order_less_le [of "a^m" "a^n"]
    1.77                power_le_imp_le_exp)
    1.78  
    1.79  
    1.80  lemma power_mono:
    1.81 -     "[|a \<le> b; (0::'a::{ringpower,ordered_semiring}) \<le> a|] ==> a^n \<le> b^n"
    1.82 +     "[|a \<le> b; (0::'a::{ringpower,ordered_semidom}) \<le> a|] ==> a^n \<le> b^n"
    1.83  apply (induct_tac "n")
    1.84  apply (simp_all add: power_Suc)
    1.85  apply (auto intro: mult_mono zero_le_power order_trans [of 0 a b])
    1.86  done
    1.87  
    1.88  lemma power_strict_mono [rule_format]:
    1.89 -     "[|a < b; (0::'a::{ringpower,ordered_semiring}) \<le> a|]
    1.90 +     "[|a < b; (0::'a::{ringpower,ordered_semidom}) \<le> a|]
    1.91        ==> 0 < n --> a^n < b^n"
    1.92  apply (induct_tac "n")
    1.93  apply (auto simp add: mult_strict_mono zero_le_power power_Suc
    1.94 @@ -136,7 +136,7 @@
    1.95  done
    1.96  
    1.97  lemma power_eq_0_iff [simp]:
    1.98 -     "(a^n = 0) = (a = (0::'a::{ordered_ring,ringpower}) & 0<n)"
    1.99 +     "(a^n = 0) = (a = (0::'a::{ordered_idom,ringpower}) & 0<n)"
   1.100  apply (induct_tac "n")
   1.101  apply (auto simp add: power_Suc zero_neq_one [THEN not_sym])
   1.102  done
   1.103 @@ -174,13 +174,13 @@
   1.104  apply assumption
   1.105  done
   1.106  
   1.107 -lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_ring,ringpower}) ^ n"
   1.108 +lemma power_abs: "abs(a ^ n) = abs(a::'a::{ordered_idom,ringpower}) ^ n"
   1.109  apply (induct_tac "n")
   1.110  apply (auto simp add: power_Suc abs_mult)
   1.111  done
   1.112  
   1.113  lemma zero_less_power_abs_iff [simp]:
   1.114 -     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_ring,ringpower}) | n=0)"
   1.115 +     "(0 < (abs a)^n) = (a \<noteq> (0::'a::{ordered_idom,ringpower}) | n=0)"
   1.116  proof (induct "n")
   1.117    case 0
   1.118      show ?case by (simp add: zero_less_one)
   1.119 @@ -190,12 +190,12 @@
   1.120  qed
   1.121  
   1.122  lemma zero_le_power_abs [simp]:
   1.123 -     "(0::'a::{ordered_ring,ringpower}) \<le> (abs a)^n"
   1.124 +     "(0::'a::{ordered_idom,ringpower}) \<le> (abs a)^n"
   1.125  apply (induct_tac "n")
   1.126  apply (auto simp add: zero_le_one zero_le_power)
   1.127  done
   1.128  
   1.129 -lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{ring,ringpower}) ^ n"
   1.130 +lemma power_minus: "(-a) ^ n = (- 1)^n * (a::'a::{comm_ring_1,ringpower}) ^ n"
   1.131  proof -
   1.132    have "-a = (- 1) * a"  by (simp add: minus_mult_left [symmetric])
   1.133    thus ?thesis by (simp only: power_mult_distrib)
   1.134 @@ -203,14 +203,14 @@
   1.135  
   1.136  text{*Lemma for @{text power_strict_decreasing}*}
   1.137  lemma power_Suc_less:
   1.138 -     "[|(0::'a::{ordered_semiring,ringpower}) < a; a < 1|]
   1.139 +     "[|(0::'a::{ordered_semidom,ringpower}) < a; a < 1|]
   1.140        ==> a * a^n < a^n"
   1.141  apply (induct_tac n)
   1.142  apply (auto simp add: power_Suc mult_strict_left_mono)
   1.143  done
   1.144  
   1.145  lemma power_strict_decreasing:
   1.146 -     "[|n < N; 0 < a; a < (1::'a::{ordered_semiring,ringpower})|]
   1.147 +     "[|n < N; 0 < a; a < (1::'a::{ordered_semidom,ringpower})|]
   1.148        ==> a^N < a^n"
   1.149  apply (erule rev_mp)
   1.150  apply (induct_tac "N")
   1.151 @@ -223,7 +223,7 @@
   1.152  
   1.153  text{*Proof resembles that of @{text power_strict_decreasing}*}
   1.154  lemma power_decreasing:
   1.155 -     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semiring,ringpower})|]
   1.156 +     "[|n \<le> N; 0 \<le> a; a \<le> (1::'a::{ordered_semidom,ringpower})|]
   1.157        ==> a^N \<le> a^n"
   1.158  apply (erule rev_mp)
   1.159  apply (induct_tac "N")
   1.160 @@ -235,13 +235,13 @@
   1.161  done
   1.162  
   1.163  lemma power_Suc_less_one:
   1.164 -     "[| 0 < a; a < (1::'a::{ordered_semiring,ringpower}) |] ==> a ^ Suc n < 1"
   1.165 +     "[| 0 < a; a < (1::'a::{ordered_semidom,ringpower}) |] ==> a ^ Suc n < 1"
   1.166  apply (insert power_strict_decreasing [of 0 "Suc n" a], simp)
   1.167  done
   1.168  
   1.169  text{*Proof again resembles that of @{text power_strict_decreasing}*}
   1.170  lemma power_increasing:
   1.171 -     "[|n \<le> N; (1::'a::{ordered_semiring,ringpower}) \<le> a|] ==> a^n \<le> a^N"
   1.172 +     "[|n \<le> N; (1::'a::{ordered_semidom,ringpower}) \<le> a|] ==> a^n \<le> a^N"
   1.173  apply (erule rev_mp)
   1.174  apply (induct_tac "N")
   1.175  apply (auto simp add: power_Suc le_Suc_eq)
   1.176 @@ -253,13 +253,13 @@
   1.177  
   1.178  text{*Lemma for @{text power_strict_increasing}*}
   1.179  lemma power_less_power_Suc:
   1.180 -     "(1::'a::{ordered_semiring,ringpower}) < a ==> a^n < a * a^n"
   1.181 +     "(1::'a::{ordered_semidom,ringpower}) < a ==> a^n < a * a^n"
   1.182  apply (induct_tac n)
   1.183  apply (auto simp add: power_Suc mult_strict_left_mono order_less_trans [OF zero_less_one])
   1.184  done
   1.185  
   1.186  lemma power_strict_increasing:
   1.187 -     "[|n < N; (1::'a::{ordered_semiring,ringpower}) < a|] ==> a^n < a^N"
   1.188 +     "[|n < N; (1::'a::{ordered_semidom,ringpower}) < a|] ==> a^n < a^N"
   1.189  apply (erule rev_mp)
   1.190  apply (induct_tac "N")
   1.191  apply (auto simp add: power_less_power_Suc power_Suc less_Suc_eq)
   1.192 @@ -272,7 +272,7 @@
   1.193  
   1.194  lemma power_le_imp_le_base:
   1.195    assumes le: "a ^ Suc n \<le> b ^ Suc n"
   1.196 -      and xnonneg: "(0::'a::{ordered_semiring,ringpower}) \<le> a"
   1.197 +      and xnonneg: "(0::'a::{ordered_semidom,ringpower}) \<le> a"
   1.198        and ynonneg: "0 \<le> b"
   1.199    shows "a \<le> b"
   1.200   proof (rule ccontr)
   1.201 @@ -286,7 +286,7 @@
   1.202  
   1.203  lemma power_inject_base:
   1.204       "[| a ^ Suc n = b ^ Suc n; 0 \<le> a; 0 \<le> b |]
   1.205 -      ==> a = (b::'a::{ordered_semiring,ringpower})"
   1.206 +      ==> a = (b::'a::{ordered_semidom,ringpower})"
   1.207  by (blast intro: power_le_imp_le_base order_antisym order_eq_refl sym)
   1.208  
   1.209