src/HOLCF/ConvexPD.thy
changeset 25904 8161f137b0e9
child 25925 3dc4acca4388
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOLCF/ConvexPD.thy	Mon Jan 14 19:26:41 2008 +0100
     1.3 @@ -0,0 +1,630 @@
     1.4 +(*  Title:      HOLCF/ConvexPD.thy
     1.5 +    ID:         $Id$
     1.6 +    Author:     Brian Huffman
     1.7 +*)
     1.8 +
     1.9 +header {* Convex powerdomain *}
    1.10 +
    1.11 +theory ConvexPD
    1.12 +imports UpperPD LowerPD
    1.13 +begin
    1.14 +
    1.15 +subsection {* Basis preorder *}
    1.16 +
    1.17 +definition
    1.18 +  convex_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<natural>" 50) where
    1.19 +  "convex_le = (\<lambda>u v. u \<le>\<sharp> v \<and> u \<le>\<flat> v)"
    1.20 +
    1.21 +lemma convex_le_refl [simp]: "t \<le>\<natural> t"
    1.22 +unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl)
    1.23 +
    1.24 +lemma convex_le_trans: "\<lbrakk>t \<le>\<natural> u; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> t \<le>\<natural> v"
    1.25 +unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans)
    1.26 +
    1.27 +interpretation convex_le: preorder [convex_le]
    1.28 +by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans)
    1.29 +
    1.30 +lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<natural> t"
    1.31 +unfolding convex_le_def Rep_PDUnit by simp
    1.32 +
    1.33 +lemma PDUnit_convex_mono: "compact_le x y \<Longrightarrow> PDUnit x \<le>\<natural> PDUnit y"
    1.34 +unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono)
    1.35 +
    1.36 +lemma PDPlus_convex_mono: "\<lbrakk>s \<le>\<natural> t; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<natural> PDPlus t v"
    1.37 +unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono)
    1.38 +
    1.39 +lemma convex_le_PDUnit_PDUnit_iff [simp]:
    1.40 +  "(PDUnit a \<le>\<natural> PDUnit b) = compact_le a b"
    1.41 +unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast
    1.42 +
    1.43 +lemma convex_le_PDUnit_lemma1:
    1.44 +  "(PDUnit a \<le>\<natural> t) = (\<forall>b\<in>Rep_pd_basis t. compact_le a b)"
    1.45 +unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit
    1.46 +using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast
    1.47 +
    1.48 +lemma convex_le_PDUnit_PDPlus_iff [simp]:
    1.49 +  "(PDUnit a \<le>\<natural> PDPlus t u) = (PDUnit a \<le>\<natural> t \<and> PDUnit a \<le>\<natural> u)"
    1.50 +unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast
    1.51 +
    1.52 +lemma convex_le_PDUnit_lemma2:
    1.53 +  "(t \<le>\<natural> PDUnit b) = (\<forall>a\<in>Rep_pd_basis t. compact_le a b)"
    1.54 +unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit
    1.55 +using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast
    1.56 +
    1.57 +lemma convex_le_PDPlus_PDUnit_iff [simp]:
    1.58 +  "(PDPlus t u \<le>\<natural> PDUnit a) = (t \<le>\<natural> PDUnit a \<and> u \<le>\<natural> PDUnit a)"
    1.59 +unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast
    1.60 +
    1.61 +lemma convex_le_PDPlus_lemma:
    1.62 +  assumes z: "PDPlus t u \<le>\<natural> z"
    1.63 +  shows "\<exists>v w. z = PDPlus v w \<and> t \<le>\<natural> v \<and> u \<le>\<natural> w"
    1.64 +proof (intro exI conjI)
    1.65 +  let ?A = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis t. compact_le a b}"
    1.66 +  let ?B = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis u. compact_le a b}"
    1.67 +  let ?v = "Abs_pd_basis ?A"
    1.68 +  let ?w = "Abs_pd_basis ?B"
    1.69 +  have Rep_v: "Rep_pd_basis ?v = ?A"
    1.70 +    apply (rule Abs_pd_basis_inverse)
    1.71 +    apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE])
    1.72 +    apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)
    1.73 +    apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)
    1.74 +    apply (simp add: pd_basis_def)
    1.75 +    apply fast
    1.76 +    done
    1.77 +  have Rep_w: "Rep_pd_basis ?w = ?B"
    1.78 +    apply (rule Abs_pd_basis_inverse)
    1.79 +    apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE])
    1.80 +    apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)
    1.81 +    apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)
    1.82 +    apply (simp add: pd_basis_def)
    1.83 +    apply fast
    1.84 +    done
    1.85 +  show "z = PDPlus ?v ?w"
    1.86 +    apply (insert z)
    1.87 +    apply (simp add: convex_le_def, erule conjE)
    1.88 +    apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus)
    1.89 +    apply (simp add: Rep_v Rep_w)
    1.90 +    apply (rule equalityI)
    1.91 +     apply (rule subsetI)
    1.92 +     apply (simp only: upper_le_def)
    1.93 +     apply (drule (1) bspec, erule bexE)
    1.94 +     apply (simp add: Rep_PDPlus)
    1.95 +     apply fast
    1.96 +    apply fast
    1.97 +    done
    1.98 +  show "t \<le>\<natural> ?v" "u \<le>\<natural> ?w"
    1.99 +   apply (insert z)
   1.100 +   apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w)
   1.101 +   apply fast+
   1.102 +   done
   1.103 +qed
   1.104 +
   1.105 +lemma convex_le_induct [induct set: convex_le]:
   1.106 +  assumes le: "t \<le>\<natural> u"
   1.107 +  assumes 2: "\<And>t u v. \<lbrakk>P t u; P u v\<rbrakk> \<Longrightarrow> P t v"
   1.108 +  assumes 3: "\<And>a b. compact_le a b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
   1.109 +  assumes 4: "\<And>t u v w. \<lbrakk>P t v; P u w\<rbrakk> \<Longrightarrow> P (PDPlus t u) (PDPlus v w)"
   1.110 +  shows "P t u"
   1.111 +using le apply (induct t arbitrary: u rule: pd_basis_induct)
   1.112 +apply (erule rev_mp)
   1.113 +apply (induct_tac u rule: pd_basis_induct1)
   1.114 +apply (simp add: 3)
   1.115 +apply (simp, clarify, rename_tac a b t)
   1.116 +apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)")
   1.117 +apply (simp add: PDPlus_absorb)
   1.118 +apply (erule (1) 4 [OF 3])
   1.119 +apply (drule convex_le_PDPlus_lemma, clarify)
   1.120 +apply (simp add: 4)
   1.121 +done
   1.122 +
   1.123 +lemma approx_pd_convex_mono1:
   1.124 +  "i \<le> j \<Longrightarrow> approx_pd i t \<le>\<natural> approx_pd j t"
   1.125 +apply (induct t rule: pd_basis_induct)
   1.126 +apply (simp add: compact_approx_mono1)
   1.127 +apply (simp add: PDPlus_convex_mono)
   1.128 +done
   1.129 +
   1.130 +lemma approx_pd_convex_le: "approx_pd i t \<le>\<natural> t"
   1.131 +apply (induct t rule: pd_basis_induct)
   1.132 +apply (simp add: compact_approx_le)
   1.133 +apply (simp add: PDPlus_convex_mono)
   1.134 +done
   1.135 +
   1.136 +lemma approx_pd_convex_mono:
   1.137 +  "t \<le>\<natural> u \<Longrightarrow> approx_pd n t \<le>\<natural> approx_pd n u"
   1.138 +apply (erule convex_le_induct)
   1.139 +apply (erule (1) convex_le_trans)
   1.140 +apply (simp add: compact_approx_mono)
   1.141 +apply (simp add: PDPlus_convex_mono)
   1.142 +done
   1.143 +
   1.144 +
   1.145 +subsection {* Type definition *}
   1.146 +
   1.147 +cpodef (open) 'a convex_pd =
   1.148 +  "{S::'a::bifinite pd_basis set. convex_le.ideal S}"
   1.149 +apply (simp add: convex_le.adm_ideal)
   1.150 +apply (fast intro: convex_le.ideal_principal)
   1.151 +done
   1.152 +
   1.153 +lemma ideal_Rep_convex_pd: "convex_le.ideal (Rep_convex_pd xs)"
   1.154 +by (rule Rep_convex_pd [simplified])
   1.155 +
   1.156 +lemma Rep_convex_pd_mono: "xs \<sqsubseteq> ys \<Longrightarrow> Rep_convex_pd xs \<subseteq> Rep_convex_pd ys"
   1.157 +unfolding less_convex_pd_def less_set_def .
   1.158 +
   1.159 +
   1.160 +subsection {* Principal ideals *}
   1.161 +
   1.162 +definition
   1.163 +  convex_principal :: "'a pd_basis \<Rightarrow> 'a convex_pd" where
   1.164 +  "convex_principal t = Abs_convex_pd {u. u \<le>\<natural> t}"
   1.165 +
   1.166 +lemma Rep_convex_principal:
   1.167 +  "Rep_convex_pd (convex_principal t) = {u. u \<le>\<natural> t}"
   1.168 +unfolding convex_principal_def
   1.169 +apply (rule Abs_convex_pd_inverse [simplified])
   1.170 +apply (rule convex_le.ideal_principal)
   1.171 +done
   1.172 +
   1.173 +interpretation convex_pd:
   1.174 +  bifinite_basis [convex_le convex_principal Rep_convex_pd approx_pd]
   1.175 +apply unfold_locales
   1.176 +apply (rule ideal_Rep_convex_pd)
   1.177 +apply (rule cont_Rep_convex_pd)
   1.178 +apply (rule Rep_convex_principal)
   1.179 +apply (simp only: less_convex_pd_def less_set_def)
   1.180 +apply (rule approx_pd_convex_le)
   1.181 +apply (rule approx_pd_idem)
   1.182 +apply (erule approx_pd_convex_mono)
   1.183 +apply (rule approx_pd_convex_mono1, simp)
   1.184 +apply (rule finite_range_approx_pd)
   1.185 +apply (rule ex_approx_pd_eq)
   1.186 +done
   1.187 +
   1.188 +lemma convex_principal_less_iff [simp]:
   1.189 +  "(convex_principal t \<sqsubseteq> convex_principal u) = (t \<le>\<natural> u)"
   1.190 +unfolding less_convex_pd_def Rep_convex_principal less_set_def
   1.191 +by (fast intro: convex_le_refl elim: convex_le_trans)
   1.192 +
   1.193 +lemma convex_principal_mono:
   1.194 +  "t \<le>\<natural> u \<Longrightarrow> convex_principal t \<sqsubseteq> convex_principal u"
   1.195 +by (rule convex_principal_less_iff [THEN iffD2])
   1.196 +
   1.197 +lemma compact_convex_principal: "compact (convex_principal t)"
   1.198 +by (rule convex_pd.compact_principal)
   1.199 +
   1.200 +lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot) \<sqsubseteq> ys"
   1.201 +by (induct ys rule: convex_pd.principal_induct, simp, simp)
   1.202 +
   1.203 +instance convex_pd :: (bifinite) pcpo
   1.204 +by (intro_classes, fast intro: convex_pd_minimal)
   1.205 +
   1.206 +lemma inst_convex_pd_pcpo: "\<bottom> = convex_principal (PDUnit compact_bot)"
   1.207 +by (rule convex_pd_minimal [THEN UU_I, symmetric])
   1.208 +
   1.209 +
   1.210 +subsection {* Approximation *}
   1.211 +
   1.212 +instance convex_pd :: (bifinite) approx ..
   1.213 +
   1.214 +defs (overloaded)
   1.215 +  approx_convex_pd_def:
   1.216 +    "approx \<equiv> (\<lambda>n. convex_pd.basis_fun (\<lambda>t. convex_principal (approx_pd n t)))"
   1.217 +
   1.218 +lemma approx_convex_principal [simp]:
   1.219 +  "approx n\<cdot>(convex_principal t) = convex_principal (approx_pd n t)"
   1.220 +unfolding approx_convex_pd_def
   1.221 +apply (rule convex_pd.basis_fun_principal)
   1.222 +apply (erule convex_principal_mono [OF approx_pd_convex_mono])
   1.223 +done
   1.224 +
   1.225 +lemma chain_approx_convex_pd:
   1.226 +  "chain (approx :: nat \<Rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd)"
   1.227 +unfolding approx_convex_pd_def
   1.228 +by (rule convex_pd.chain_basis_fun_take)
   1.229 +
   1.230 +lemma lub_approx_convex_pd:
   1.231 +  "(\<Squnion>i. approx i\<cdot>xs) = (xs::'a convex_pd)"
   1.232 +unfolding approx_convex_pd_def
   1.233 +by (rule convex_pd.lub_basis_fun_take)
   1.234 +
   1.235 +lemma approx_convex_pd_idem:
   1.236 +  "approx n\<cdot>(approx n\<cdot>xs) = approx n\<cdot>(xs::'a convex_pd)"
   1.237 +apply (induct xs rule: convex_pd.principal_induct, simp)
   1.238 +apply (simp add: approx_pd_idem)
   1.239 +done
   1.240 +
   1.241 +lemma approx_eq_convex_principal:
   1.242 +  "\<exists>t\<in>Rep_convex_pd xs. approx n\<cdot>xs = convex_principal (approx_pd n t)"
   1.243 +unfolding approx_convex_pd_def
   1.244 +by (rule convex_pd.basis_fun_take_eq_principal)
   1.245 +
   1.246 +lemma finite_fixes_approx_convex_pd:
   1.247 +  "finite {xs::'a convex_pd. approx n\<cdot>xs = xs}"
   1.248 +unfolding approx_convex_pd_def
   1.249 +by (rule convex_pd.finite_fixes_basis_fun_take)
   1.250 +
   1.251 +instance convex_pd :: (bifinite) bifinite
   1.252 +apply intro_classes
   1.253 +apply (simp add: chain_approx_convex_pd)
   1.254 +apply (rule lub_approx_convex_pd)
   1.255 +apply (rule approx_convex_pd_idem)
   1.256 +apply (rule finite_fixes_approx_convex_pd)
   1.257 +done
   1.258 +
   1.259 +lemma compact_imp_convex_principal:
   1.260 +  "compact xs \<Longrightarrow> \<exists>t. xs = convex_principal t"
   1.261 +apply (drule bifinite_compact_eq_approx)
   1.262 +apply (erule exE)
   1.263 +apply (erule subst)
   1.264 +apply (cut_tac n=i and xs=xs in approx_eq_convex_principal)
   1.265 +apply fast
   1.266 +done
   1.267 +
   1.268 +lemma convex_principal_induct:
   1.269 +  "\<lbrakk>adm P; \<And>t. P (convex_principal t)\<rbrakk> \<Longrightarrow> P xs"
   1.270 +apply (erule approx_induct, rename_tac xs)
   1.271 +apply (cut_tac n=n and xs=xs in approx_eq_convex_principal)
   1.272 +apply (clarify, simp)
   1.273 +done
   1.274 +
   1.275 +lemma convex_principal_induct2:
   1.276 +  "\<lbrakk>\<And>ys. adm (\<lambda>xs. P xs ys); \<And>xs. adm (\<lambda>ys. P xs ys);
   1.277 +    \<And>t u. P (convex_principal t) (convex_principal u)\<rbrakk> \<Longrightarrow> P xs ys"
   1.278 +apply (rule_tac x=ys in spec)
   1.279 +apply (rule_tac xs=xs in convex_principal_induct, simp)
   1.280 +apply (rule allI, rename_tac ys)
   1.281 +apply (rule_tac xs=ys in convex_principal_induct, simp)
   1.282 +apply simp
   1.283 +done
   1.284 +
   1.285 +
   1.286 +subsection {* Monadic unit *}
   1.287 +
   1.288 +definition
   1.289 +  convex_unit :: "'a \<rightarrow> 'a convex_pd" where
   1.290 +  "convex_unit = compact_basis.basis_fun (\<lambda>a. convex_principal (PDUnit a))"
   1.291 +
   1.292 +lemma convex_unit_Rep_compact_basis [simp]:
   1.293 +  "convex_unit\<cdot>(Rep_compact_basis a) = convex_principal (PDUnit a)"
   1.294 +unfolding convex_unit_def
   1.295 +apply (rule compact_basis.basis_fun_principal)
   1.296 +apply (rule convex_principal_mono)
   1.297 +apply (erule PDUnit_convex_mono)
   1.298 +done
   1.299 +
   1.300 +lemma convex_unit_strict [simp]: "convex_unit\<cdot>\<bottom> = \<bottom>"
   1.301 +unfolding inst_convex_pd_pcpo Rep_compact_bot [symmetric] by simp
   1.302 +
   1.303 +lemma approx_convex_unit [simp]:
   1.304 +  "approx n\<cdot>(convex_unit\<cdot>x) = convex_unit\<cdot>(approx n\<cdot>x)"
   1.305 +apply (induct x rule: compact_basis_induct, simp)
   1.306 +apply (simp add: approx_Rep_compact_basis)
   1.307 +done
   1.308 +
   1.309 +lemma convex_unit_less_iff [simp]:
   1.310 +  "(convex_unit\<cdot>x \<sqsubseteq> convex_unit\<cdot>y) = (x \<sqsubseteq> y)"
   1.311 + apply (rule iffI)
   1.312 +  apply (rule bifinite_less_ext)
   1.313 +  apply (drule_tac f="approx i" in monofun_cfun_arg, simp)
   1.314 +  apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp)
   1.315 +  apply (cut_tac x="approx i\<cdot>y" in compact_imp_Rep_compact_basis, simp)
   1.316 +  apply (clarify, simp add: compact_le_def)
   1.317 + apply (erule monofun_cfun_arg)
   1.318 +done
   1.319 +
   1.320 +lemma convex_unit_eq_iff [simp]:
   1.321 +  "(convex_unit\<cdot>x = convex_unit\<cdot>y) = (x = y)"
   1.322 +unfolding po_eq_conv by simp
   1.323 +
   1.324 +lemma convex_unit_strict_iff [simp]: "(convex_unit\<cdot>x = \<bottom>) = (x = \<bottom>)"
   1.325 +unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff)
   1.326 +
   1.327 +lemma compact_convex_unit_iff [simp]:
   1.328 +  "compact (convex_unit\<cdot>x) = compact x"
   1.329 +unfolding bifinite_compact_iff by simp
   1.330 +
   1.331 +
   1.332 +subsection {* Monadic plus *}
   1.333 +
   1.334 +definition
   1.335 +  convex_plus :: "'a convex_pd \<rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd" where
   1.336 +  "convex_plus = convex_pd.basis_fun (\<lambda>t. convex_pd.basis_fun (\<lambda>u.
   1.337 +      convex_principal (PDPlus t u)))"
   1.338 +
   1.339 +abbreviation
   1.340 +  convex_add :: "'a convex_pd \<Rightarrow> 'a convex_pd \<Rightarrow> 'a convex_pd"
   1.341 +    (infixl "+\<natural>" 65) where
   1.342 +  "xs +\<natural> ys == convex_plus\<cdot>xs\<cdot>ys"
   1.343 +
   1.344 +lemma convex_plus_principal [simp]:
   1.345 +  "convex_plus\<cdot>(convex_principal t)\<cdot>(convex_principal u) =
   1.346 +   convex_principal (PDPlus t u)"
   1.347 +unfolding convex_plus_def
   1.348 +by (simp add: convex_pd.basis_fun_principal
   1.349 +    convex_pd.basis_fun_mono PDPlus_convex_mono)
   1.350 +
   1.351 +lemma approx_convex_plus [simp]:
   1.352 +  "approx n\<cdot>(convex_plus\<cdot>xs\<cdot>ys) = convex_plus\<cdot>(approx n\<cdot>xs)\<cdot>(approx n\<cdot>ys)"
   1.353 +by (induct xs ys rule: convex_principal_induct2, simp, simp, simp)
   1.354 +
   1.355 +lemma convex_plus_commute: "convex_plus\<cdot>xs\<cdot>ys = convex_plus\<cdot>ys\<cdot>xs"
   1.356 +apply (induct xs ys rule: convex_principal_induct2, simp, simp)
   1.357 +apply (simp add: PDPlus_commute)
   1.358 +done
   1.359 +
   1.360 +lemma convex_plus_assoc:
   1.361 +  "convex_plus\<cdot>(convex_plus\<cdot>xs\<cdot>ys)\<cdot>zs = convex_plus\<cdot>xs\<cdot>(convex_plus\<cdot>ys\<cdot>zs)"
   1.362 +apply (induct xs ys arbitrary: zs rule: convex_principal_induct2, simp, simp)
   1.363 +apply (rule_tac xs=zs in convex_principal_induct, simp)
   1.364 +apply (simp add: PDPlus_assoc)
   1.365 +done
   1.366 +
   1.367 +lemma convex_plus_absorb: "convex_plus\<cdot>xs\<cdot>xs = xs"
   1.368 +apply (induct xs rule: convex_principal_induct, simp)
   1.369 +apply (simp add: PDPlus_absorb)
   1.370 +done
   1.371 +
   1.372 +lemma convex_unit_less_plus_iff [simp]:
   1.373 +  "(convex_unit\<cdot>x \<sqsubseteq> convex_plus\<cdot>ys\<cdot>zs) =
   1.374 +   (convex_unit\<cdot>x \<sqsubseteq> ys \<and> convex_unit\<cdot>x \<sqsubseteq> zs)"
   1.375 + apply (rule iffI)
   1.376 +  apply (subgoal_tac
   1.377 +    "adm (\<lambda>f. f\<cdot>(convex_unit\<cdot>x) \<sqsubseteq> f\<cdot>ys \<and> f\<cdot>(convex_unit\<cdot>x) \<sqsubseteq> f\<cdot>zs)")
   1.378 +   apply (drule admD [rule_format], rule chain_approx)
   1.379 +    apply (drule_tac f="approx i" in monofun_cfun_arg)
   1.380 +    apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp)
   1.381 +    apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_convex_principal, simp)
   1.382 +    apply (cut_tac xs="approx i\<cdot>zs" in compact_imp_convex_principal, simp)
   1.383 +    apply (clarify, simp)
   1.384 +   apply simp
   1.385 +  apply simp
   1.386 + apply (erule conjE)
   1.387 + apply (subst convex_plus_absorb [of "convex_unit\<cdot>x", symmetric])
   1.388 + apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
   1.389 +done
   1.390 +
   1.391 +lemma convex_plus_less_unit_iff [simp]:
   1.392 +  "(convex_plus\<cdot>xs\<cdot>ys \<sqsubseteq> convex_unit\<cdot>z) =
   1.393 +   (xs \<sqsubseteq> convex_unit\<cdot>z \<and> ys \<sqsubseteq> convex_unit\<cdot>z)"
   1.394 + apply (rule iffI)
   1.395 +  apply (subgoal_tac
   1.396 +    "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>(convex_unit\<cdot>z) \<and> f\<cdot>ys \<sqsubseteq> f\<cdot>(convex_unit\<cdot>z))")
   1.397 +   apply (drule admD [rule_format], rule chain_approx)
   1.398 +    apply (drule_tac f="approx i" in monofun_cfun_arg)
   1.399 +    apply (cut_tac xs="approx i\<cdot>xs" in compact_imp_convex_principal, simp)
   1.400 +    apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_convex_principal, simp)
   1.401 +    apply (cut_tac x="approx i\<cdot>z" in compact_imp_Rep_compact_basis, simp)
   1.402 +    apply (clarify, simp)
   1.403 +   apply simp
   1.404 +  apply simp
   1.405 + apply (erule conjE)
   1.406 + apply (subst convex_plus_absorb [of "convex_unit\<cdot>z", symmetric])
   1.407 + apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
   1.408 +done
   1.409 +
   1.410 +
   1.411 +subsection {* Induction rules *}
   1.412 +
   1.413 +lemma convex_pd_induct1:
   1.414 +  assumes P: "adm P"
   1.415 +  assumes unit: "\<And>x. P (convex_unit\<cdot>x)"
   1.416 +  assumes insert:
   1.417 +    "\<And>x ys. \<lbrakk>P (convex_unit\<cdot>x); P ys\<rbrakk> \<Longrightarrow> P (convex_plus\<cdot>(convex_unit\<cdot>x)\<cdot>ys)"
   1.418 +  shows "P (xs::'a convex_pd)"
   1.419 +apply (induct xs rule: convex_principal_induct, rule P)
   1.420 +apply (induct_tac t rule: pd_basis_induct1)
   1.421 +apply (simp only: convex_unit_Rep_compact_basis [symmetric])
   1.422 +apply (rule unit)
   1.423 +apply (simp only: convex_unit_Rep_compact_basis [symmetric]
   1.424 +                  convex_plus_principal [symmetric])
   1.425 +apply (erule insert [OF unit])
   1.426 +done
   1.427 +
   1.428 +lemma convex_pd_induct:
   1.429 +  assumes P: "adm P"
   1.430 +  assumes unit: "\<And>x. P (convex_unit\<cdot>x)"
   1.431 +  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (convex_plus\<cdot>xs\<cdot>ys)"
   1.432 +  shows "P (xs::'a convex_pd)"
   1.433 +apply (induct xs rule: convex_principal_induct, rule P)
   1.434 +apply (induct_tac t rule: pd_basis_induct)
   1.435 +apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit)
   1.436 +apply (simp only: convex_plus_principal [symmetric] plus)
   1.437 +done
   1.438 +
   1.439 +
   1.440 +subsection {* Monadic bind *}
   1.441 +
   1.442 +definition
   1.443 +  convex_bind_basis ::
   1.444 +  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
   1.445 +  "convex_bind_basis = fold_pd
   1.446 +    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
   1.447 +    (\<lambda>x y. \<Lambda> f. convex_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))"
   1.448 +
   1.449 +lemma ACI_convex_bind: "ACIf (\<lambda>x y. \<Lambda> f. convex_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))"
   1.450 +apply unfold_locales
   1.451 +apply (simp add: convex_plus_commute)
   1.452 +apply (simp add: convex_plus_assoc)
   1.453 +apply (simp add: convex_plus_absorb eta_cfun)
   1.454 +done
   1.455 +
   1.456 +lemma convex_bind_basis_simps [simp]:
   1.457 +  "convex_bind_basis (PDUnit a) =
   1.458 +    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
   1.459 +  "convex_bind_basis (PDPlus t u) =
   1.460 +    (\<Lambda> f. convex_plus\<cdot>(convex_bind_basis t\<cdot>f)\<cdot>(convex_bind_basis u\<cdot>f))"
   1.461 +unfolding convex_bind_basis_def
   1.462 +apply -
   1.463 +apply (rule ACIf.fold_pd_PDUnit [OF ACI_convex_bind])
   1.464 +apply (rule ACIf.fold_pd_PDPlus [OF ACI_convex_bind])
   1.465 +done
   1.466 +
   1.467 +lemma monofun_LAM:
   1.468 +  "\<lbrakk>cont f; cont g; \<And>x. f x \<sqsubseteq> g x\<rbrakk> \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)"
   1.469 +by (simp add: expand_cfun_less)
   1.470 +
   1.471 +lemma convex_bind_basis_mono:
   1.472 +  "t \<le>\<natural> u \<Longrightarrow> convex_bind_basis t \<sqsubseteq> convex_bind_basis u"
   1.473 +apply (erule convex_le_induct)
   1.474 +apply (erule (1) trans_less)
   1.475 +apply (simp add: monofun_LAM compact_le_def monofun_cfun)
   1.476 +apply (simp add: monofun_LAM compact_le_def monofun_cfun)
   1.477 +done
   1.478 +
   1.479 +definition
   1.480 +  convex_bind :: "'a convex_pd \<rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
   1.481 +  "convex_bind = convex_pd.basis_fun convex_bind_basis"
   1.482 +
   1.483 +lemma convex_bind_principal [simp]:
   1.484 +  "convex_bind\<cdot>(convex_principal t) = convex_bind_basis t"
   1.485 +unfolding convex_bind_def
   1.486 +apply (rule convex_pd.basis_fun_principal)
   1.487 +apply (erule convex_bind_basis_mono)
   1.488 +done
   1.489 +
   1.490 +lemma convex_bind_unit [simp]:
   1.491 +  "convex_bind\<cdot>(convex_unit\<cdot>x)\<cdot>f = f\<cdot>x"
   1.492 +by (induct x rule: compact_basis_induct, simp, simp)
   1.493 +
   1.494 +lemma convex_bind_plus [simp]:
   1.495 +  "convex_bind\<cdot>(convex_plus\<cdot>xs\<cdot>ys)\<cdot>f =
   1.496 +   convex_plus\<cdot>(convex_bind\<cdot>xs\<cdot>f)\<cdot>(convex_bind\<cdot>ys\<cdot>f)"
   1.497 +by (induct xs ys rule: convex_principal_induct2, simp, simp, simp)
   1.498 +
   1.499 +lemma convex_bind_strict [simp]: "convex_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
   1.500 +unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit)
   1.501 +
   1.502 +
   1.503 +subsection {* Map and join *}
   1.504 +
   1.505 +definition
   1.506 +  convex_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a convex_pd \<rightarrow> 'b convex_pd" where
   1.507 +  "convex_map = (\<Lambda> f xs. convex_bind\<cdot>xs\<cdot>(\<Lambda> x. convex_unit\<cdot>(f\<cdot>x)))"
   1.508 +
   1.509 +definition
   1.510 +  convex_join :: "'a convex_pd convex_pd \<rightarrow> 'a convex_pd" where
   1.511 +  "convex_join = (\<Lambda> xss. convex_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
   1.512 +
   1.513 +lemma convex_map_unit [simp]:
   1.514 +  "convex_map\<cdot>f\<cdot>(convex_unit\<cdot>x) = convex_unit\<cdot>(f\<cdot>x)"
   1.515 +unfolding convex_map_def by simp
   1.516 +
   1.517 +lemma convex_map_plus [simp]:
   1.518 +  "convex_map\<cdot>f\<cdot>(convex_plus\<cdot>xs\<cdot>ys) =
   1.519 +   convex_plus\<cdot>(convex_map\<cdot>f\<cdot>xs)\<cdot>(convex_map\<cdot>f\<cdot>ys)"
   1.520 +unfolding convex_map_def by simp
   1.521 +
   1.522 +lemma convex_join_unit [simp]:
   1.523 +  "convex_join\<cdot>(convex_unit\<cdot>xs) = xs"
   1.524 +unfolding convex_join_def by simp
   1.525 +
   1.526 +lemma convex_join_plus [simp]:
   1.527 +  "convex_join\<cdot>(convex_plus\<cdot>xss\<cdot>yss) =
   1.528 +   convex_plus\<cdot>(convex_join\<cdot>xss)\<cdot>(convex_join\<cdot>yss)"
   1.529 +unfolding convex_join_def by simp
   1.530 +
   1.531 +lemma convex_map_ident: "convex_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
   1.532 +by (induct xs rule: convex_pd_induct, simp_all)
   1.533 +
   1.534 +lemma convex_map_map:
   1.535 +  "convex_map\<cdot>f\<cdot>(convex_map\<cdot>g\<cdot>xs) = convex_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
   1.536 +by (induct xs rule: convex_pd_induct, simp_all)
   1.537 +
   1.538 +lemma convex_join_map_unit:
   1.539 +  "convex_join\<cdot>(convex_map\<cdot>convex_unit\<cdot>xs) = xs"
   1.540 +by (induct xs rule: convex_pd_induct, simp_all)
   1.541 +
   1.542 +lemma convex_join_map_join:
   1.543 +  "convex_join\<cdot>(convex_map\<cdot>convex_join\<cdot>xsss) = convex_join\<cdot>(convex_join\<cdot>xsss)"
   1.544 +by (induct xsss rule: convex_pd_induct, simp_all)
   1.545 +
   1.546 +lemma convex_join_map_map:
   1.547 +  "convex_join\<cdot>(convex_map\<cdot>(convex_map\<cdot>f)\<cdot>xss) =
   1.548 +   convex_map\<cdot>f\<cdot>(convex_join\<cdot>xss)"
   1.549 +by (induct xss rule: convex_pd_induct, simp_all)
   1.550 +
   1.551 +lemma convex_map_approx: "convex_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"
   1.552 +by (induct xs rule: convex_pd_induct, simp_all)
   1.553 +
   1.554 +
   1.555 +subsection {* Conversions to other powerdomains *}
   1.556 +
   1.557 +text {* Convex to upper *}
   1.558 +
   1.559 +lemma convex_le_imp_upper_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<sharp> u"
   1.560 +unfolding convex_le_def by simp
   1.561 +
   1.562 +definition
   1.563 +  convex_to_upper :: "'a convex_pd \<rightarrow> 'a upper_pd" where
   1.564 +  "convex_to_upper = convex_pd.basis_fun upper_principal"
   1.565 +
   1.566 +lemma convex_to_upper_principal [simp]:
   1.567 +  "convex_to_upper\<cdot>(convex_principal t) = upper_principal t"
   1.568 +unfolding convex_to_upper_def
   1.569 +apply (rule convex_pd.basis_fun_principal)
   1.570 +apply (rule upper_principal_mono)
   1.571 +apply (erule convex_le_imp_upper_le)
   1.572 +done
   1.573 +
   1.574 +lemma convex_to_upper_unit [simp]:
   1.575 +  "convex_to_upper\<cdot>(convex_unit\<cdot>x) = upper_unit\<cdot>x"
   1.576 +by (induct x rule: compact_basis_induct, simp, simp)
   1.577 +
   1.578 +lemma convex_to_upper_plus [simp]:
   1.579 +  "convex_to_upper\<cdot>(convex_plus\<cdot>xs\<cdot>ys) =
   1.580 +   upper_plus\<cdot>(convex_to_upper\<cdot>xs)\<cdot>(convex_to_upper\<cdot>ys)"
   1.581 +by (induct xs ys rule: convex_principal_induct2, simp, simp, simp)
   1.582 +
   1.583 +lemma approx_convex_to_upper:
   1.584 +  "approx i\<cdot>(convex_to_upper\<cdot>xs) = convex_to_upper\<cdot>(approx i\<cdot>xs)"
   1.585 +by (induct xs rule: convex_pd_induct, simp, simp, simp)
   1.586 +
   1.587 +text {* Convex to lower *}
   1.588 +
   1.589 +lemma convex_le_imp_lower_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<flat> u"
   1.590 +unfolding convex_le_def by simp
   1.591 +
   1.592 +definition
   1.593 +  convex_to_lower :: "'a convex_pd \<rightarrow> 'a lower_pd" where
   1.594 +  "convex_to_lower = convex_pd.basis_fun lower_principal"
   1.595 +
   1.596 +lemma convex_to_lower_principal [simp]:
   1.597 +  "convex_to_lower\<cdot>(convex_principal t) = lower_principal t"
   1.598 +unfolding convex_to_lower_def
   1.599 +apply (rule convex_pd.basis_fun_principal)
   1.600 +apply (rule lower_principal_mono)
   1.601 +apply (erule convex_le_imp_lower_le)
   1.602 +done
   1.603 +
   1.604 +lemma convex_to_lower_unit [simp]:
   1.605 +  "convex_to_lower\<cdot>(convex_unit\<cdot>x) = lower_unit\<cdot>x"
   1.606 +by (induct x rule: compact_basis_induct, simp, simp)
   1.607 +
   1.608 +lemma convex_to_lower_plus [simp]:
   1.609 +  "convex_to_lower\<cdot>(convex_plus\<cdot>xs\<cdot>ys) =
   1.610 +   lower_plus\<cdot>(convex_to_lower\<cdot>xs)\<cdot>(convex_to_lower\<cdot>ys)"
   1.611 +by (induct xs ys rule: convex_principal_induct2, simp, simp, simp)
   1.612 +
   1.613 +lemma approx_convex_to_lower:
   1.614 +  "approx i\<cdot>(convex_to_lower\<cdot>xs) = convex_to_lower\<cdot>(approx i\<cdot>xs)"
   1.615 +by (induct xs rule: convex_pd_induct, simp, simp, simp)
   1.616 +
   1.617 +text {* Ordering property *}
   1.618 +
   1.619 +lemma convex_pd_less_iff:
   1.620 +  "(xs \<sqsubseteq> ys) =
   1.621 +    (convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and>
   1.622 +     convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)"
   1.623 + apply (safe elim!: monofun_cfun_arg)
   1.624 + apply (rule bifinite_less_ext)
   1.625 + apply (drule_tac f="approx i" in monofun_cfun_arg)
   1.626 + apply (drule_tac f="approx i" in monofun_cfun_arg)
   1.627 + apply (cut_tac xs="approx i\<cdot>xs" in compact_imp_convex_principal, simp)
   1.628 + apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_convex_principal, simp)
   1.629 + apply clarify
   1.630 + apply (simp add: approx_convex_to_upper approx_convex_to_lower convex_le_def)
   1.631 +done
   1.632 +
   1.633 +end