src/HOL/Induct/QuoNestedDataType.thy
changeset 15172 73069e033a0b
child 16417 9bc16273c2d4
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Induct/QuoNestedDataType.thy	Thu Sep 02 16:52:21 2004 +0200
     1.3 @@ -0,0 +1,462 @@
     1.4 +(*  Title:      HOL/Induct/QuoNestedDataType
     1.5 +    ID:         $Id$
     1.6 +    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     1.7 +    Copyright   2004  University of Cambridge
     1.8 +
     1.9 +*)
    1.10 +
    1.11 +header{*Quotienting a Free Algebra Involving Nested Recursion*}
    1.12 +
    1.13 +theory QuoNestedDataType = Main:
    1.14 +
    1.15 +subsection{*Defining the Free Algebra*}
    1.16 +
    1.17 +text{*Messages with encryption and decryption as free constructors.*}
    1.18 +datatype
    1.19 +     freeExp = VAR  nat
    1.20 +	     | PLUS  freeExp freeExp
    1.21 +	     | FNCALL  nat "freeExp list"
    1.22 +
    1.23 +text{*The equivalence relation, which makes PLUS associative.*}
    1.24 +consts  exprel :: "(freeExp * freeExp) set"
    1.25 +
    1.26 +syntax
    1.27 +  "_exprel" :: "[freeExp, freeExp] => bool"  (infixl "~~" 50)
    1.28 +syntax (xsymbols)
    1.29 +  "_exprel" :: "[freeExp, freeExp] => bool"  (infixl "\<sim>" 50)
    1.30 +syntax (HTML output)
    1.31 +  "_exprel" :: "[freeExp, freeExp] => bool"  (infixl "\<sim>" 50)
    1.32 +translations
    1.33 +  "X \<sim> Y" == "(X,Y) \<in> exprel"
    1.34 +
    1.35 +text{*The first rule is the desired equation. The next three rules
    1.36 +make the equations applicable to subterms. The last two rules are symmetry
    1.37 +and transitivity.*}
    1.38 +inductive "exprel"
    1.39 +  intros 
    1.40 +    ASSOC: "PLUS X (PLUS Y Z) \<sim> PLUS (PLUS X Y) Z"
    1.41 +    VAR: "VAR N \<sim> VAR N"
    1.42 +    PLUS: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> PLUS X Y \<sim> PLUS X' Y'"
    1.43 +    FNCALL: "(Xs,Xs') \<in> listrel exprel \<Longrightarrow> FNCALL F Xs \<sim> FNCALL F Xs'"
    1.44 +    SYM:   "X \<sim> Y \<Longrightarrow> Y \<sim> X"
    1.45 +    TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
    1.46 +  monos listrel_mono
    1.47 +
    1.48 +
    1.49 +text{*Proving that it is an equivalence relation*}
    1.50 +
    1.51 +lemma exprel_refl_conj: "X \<sim> X & (Xs,Xs) \<in> listrel(exprel)"
    1.52 +apply (induct X and Xs)
    1.53 +apply (blast intro: exprel.intros listrel.intros)+
    1.54 +done
    1.55 +
    1.56 +lemmas exprel_refl = exprel_refl_conj [THEN conjunct1]
    1.57 +lemmas list_exprel_refl = exprel_refl_conj [THEN conjunct2]
    1.58 +
    1.59 +theorem equiv_exprel: "equiv UNIV exprel"
    1.60 +proof (simp add: equiv_def, intro conjI)
    1.61 +  show "reflexive exprel" by (simp add: refl_def exprel_refl)
    1.62 +  show "sym exprel" by (simp add: sym_def, blast intro: exprel.SYM)
    1.63 +  show "trans exprel" by (simp add: trans_def, blast intro: exprel.TRANS)
    1.64 +qed
    1.65 +
    1.66 +theorem equiv_list_exprel: "equiv UNIV (listrel exprel)"
    1.67 +by (insert equiv_listrel [OF equiv_exprel], simp)
    1.68 +
    1.69 +
    1.70 +lemma FNCALL_Nil: "FNCALL F [] \<sim> FNCALL F []"
    1.71 +apply (rule exprel.intros) 
    1.72 +apply (rule listrel.intros) 
    1.73 +done
    1.74 +
    1.75 +lemma FNCALL_Cons:
    1.76 +     "\<lbrakk>X \<sim> X'; (Xs,Xs') \<in> listrel(exprel)\<rbrakk>
    1.77 +      \<Longrightarrow> FNCALL F (X#Xs) \<sim> FNCALL F (X'#Xs')"
    1.78 +by (blast intro: exprel.intros listrel.intros) 
    1.79 +
    1.80 +
    1.81 +
    1.82 +subsection{*Some Functions on the Free Algebra*}
    1.83 +
    1.84 +subsubsection{*The Set of Variables*}
    1.85 +
    1.86 +text{*A function to return the set of variables present in a message.  It will
    1.87 +be lifted to the initial algrebra, to serve as an example of that process.
    1.88 +Note that the "free" refers to the free datatype rather than to the concept
    1.89 +of a free variable.*}
    1.90 +consts
    1.91 +  freevars      :: "freeExp \<Rightarrow> nat set"
    1.92 +  freevars_list :: "freeExp list \<Rightarrow> nat set"
    1.93 +
    1.94 +primrec
    1.95 +   "freevars (VAR N) = {N}"
    1.96 +   "freevars (PLUS X Y) = freevars X \<union> freevars Y"
    1.97 +   "freevars (FNCALL F Xs) = freevars_list Xs"
    1.98 +
    1.99 +   "freevars_list [] = {}"
   1.100 +   "freevars_list (X # Xs) = freevars X \<union> freevars_list Xs"
   1.101 +
   1.102 +text{*This theorem lets us prove that the vars function respects the
   1.103 +equivalence relation.  It also helps us prove that Variable
   1.104 +  (the abstract constructor) is injective*}
   1.105 +theorem exprel_imp_eq_freevars: "U \<sim> V \<Longrightarrow> freevars U = freevars V"
   1.106 +apply (erule exprel.induct) 
   1.107 +apply (erule_tac [4] listrel.induct) 
   1.108 +apply (simp_all add: Un_assoc)
   1.109 +done
   1.110 +
   1.111 +
   1.112 +
   1.113 +subsubsection{*Functions for Freeness*}
   1.114 +
   1.115 +text{*A discriminator function to distinguish vars, sums and function calls*}
   1.116 +consts freediscrim :: "freeExp \<Rightarrow> int"
   1.117 +primrec
   1.118 +   "freediscrim (VAR N) = 0"
   1.119 +   "freediscrim (PLUS X Y) = 1"
   1.120 +   "freediscrim (FNCALL F Xs) = 2"
   1.121 +
   1.122 +theorem exprel_imp_eq_freediscrim:
   1.123 +     "U \<sim> V \<Longrightarrow> freediscrim U = freediscrim V"
   1.124 +by (erule exprel.induct, auto)
   1.125 +
   1.126 +
   1.127 +text{*This function, which returns the function name, is used to
   1.128 +prove part of the injectivity property for FnCall.*}
   1.129 +consts  freefun :: "freeExp \<Rightarrow> nat"
   1.130 +
   1.131 +primrec
   1.132 +   "freefun (VAR N) = 0"
   1.133 +   "freefun (PLUS X Y) = 0"
   1.134 +   "freefun (FNCALL F Xs) = F"
   1.135 +
   1.136 +theorem exprel_imp_eq_freefun:
   1.137 +     "U \<sim> V \<Longrightarrow> freefun U = freefun V"
   1.138 +by (erule exprel.induct, simp_all add: listrel.intros)
   1.139 +
   1.140 +
   1.141 +text{*This function, which returns the list of function arguments, is used to
   1.142 +prove part of the injectivity property for FnCall.*}
   1.143 +consts  freeargs      :: "freeExp \<Rightarrow> freeExp list"
   1.144 +primrec
   1.145 +   "freeargs (VAR N) = []"
   1.146 +   "freeargs (PLUS X Y) = []"
   1.147 +   "freeargs (FNCALL F Xs) = Xs"
   1.148 +
   1.149 +theorem exprel_imp_eqv_freeargs:
   1.150 +     "U \<sim> V \<Longrightarrow> (freeargs U, freeargs V) \<in> listrel exprel"
   1.151 +apply (erule exprel.induct)  
   1.152 +apply (erule_tac [4] listrel.induct) 
   1.153 +apply (simp_all add: listrel.intros)
   1.154 +apply (blast intro: symD [OF equiv.sym [OF equiv_list_exprel]])
   1.155 +apply (blast intro: transD [OF equiv.trans [OF equiv_list_exprel]])
   1.156 +done
   1.157 +
   1.158 +
   1.159 +
   1.160 +subsection{*The Initial Algebra: A Quotiented Message Type*}
   1.161 +
   1.162 +
   1.163 +typedef (Exp)  exp = "UNIV//exprel"
   1.164 +    by (auto simp add: quotient_def)
   1.165 +
   1.166 +text{*The abstract message constructors*}
   1.167 +
   1.168 +constdefs
   1.169 +  Var :: "nat \<Rightarrow> exp"
   1.170 +  "Var N == Abs_Exp(exprel``{VAR N})"
   1.171 +
   1.172 +  Plus :: "[exp,exp] \<Rightarrow> exp"
   1.173 +   "Plus X Y ==
   1.174 +       Abs_Exp (\<Union>U \<in> Rep_Exp X. \<Union>V \<in> Rep_Exp Y. exprel``{PLUS U V})"
   1.175 +
   1.176 +  FnCall :: "[nat, exp list] \<Rightarrow> exp"
   1.177 +   "FnCall F Xs ==
   1.178 +       Abs_Exp (\<Union>Us \<in> listset (map Rep_Exp Xs). exprel `` {FNCALL F Us})"
   1.179 +
   1.180 +
   1.181 +text{*Reduces equality of equivalence classes to the @{term exprel} relation:
   1.182 +  @{term "(exprel `` {x} = exprel `` {y}) = ((x,y) \<in> exprel)"} *}
   1.183 +lemmas equiv_exprel_iff = eq_equiv_class_iff [OF equiv_exprel UNIV_I UNIV_I]
   1.184 +
   1.185 +declare equiv_exprel_iff [simp]
   1.186 +
   1.187 +
   1.188 +text{*All equivalence classes belong to set of representatives*}
   1.189 +lemma [simp]: "exprel``{U} \<in> Exp"
   1.190 +by (auto simp add: Exp_def quotient_def intro: exprel_refl)
   1.191 +
   1.192 +lemma inj_on_Abs_Exp: "inj_on Abs_Exp Exp"
   1.193 +apply (rule inj_on_inverseI)
   1.194 +apply (erule Abs_Exp_inverse)
   1.195 +done
   1.196 +
   1.197 +text{*Reduces equality on abstractions to equality on representatives*}
   1.198 +declare inj_on_Abs_Exp [THEN inj_on_iff, simp]
   1.199 +
   1.200 +declare Abs_Exp_inverse [simp]
   1.201 +
   1.202 +
   1.203 +text{*Case analysis on the representation of a exp as an equivalence class.*}
   1.204 +lemma eq_Abs_Exp [case_names Abs_Exp, cases type: exp]:
   1.205 +     "(!!U. z = Abs_Exp(exprel``{U}) ==> P) ==> P"
   1.206 +apply (rule Rep_Exp [of z, unfolded Exp_def, THEN quotientE])
   1.207 +apply (drule arg_cong [where f=Abs_Exp])
   1.208 +apply (auto simp add: Rep_Exp_inverse intro: exprel_refl)
   1.209 +done
   1.210 +
   1.211 +
   1.212 +subsection{*Every list of abstract expressions can be expressed in terms of a
   1.213 +  list of concrete expressions*}
   1.214 +
   1.215 +constdefs Abs_ExpList :: "freeExp list => exp list"
   1.216 +    "Abs_ExpList Xs == map (%U. Abs_Exp(exprel``{U})) Xs"
   1.217 +
   1.218 +lemma Abs_ExpList_Nil [simp]: "Abs_ExpList [] == []"
   1.219 +by (simp add: Abs_ExpList_def)
   1.220 +
   1.221 +lemma Abs_ExpList_Cons [simp]:
   1.222 +     "Abs_ExpList (X#Xs) == Abs_Exp (exprel``{X}) # Abs_ExpList Xs"
   1.223 +by (simp add: Abs_ExpList_def)
   1.224 +
   1.225 +lemma ExpList_rep: "\<exists>Us. z = Abs_ExpList Us"
   1.226 +apply (induct z)
   1.227 +apply (rule_tac [2] z=a in eq_Abs_Exp)
   1.228 +apply (auto simp add: Abs_ExpList_def intro: exprel_refl)
   1.229 +done
   1.230 +
   1.231 +lemma eq_Abs_ExpList [case_names Abs_ExpList]:
   1.232 +     "(!!Us. z = Abs_ExpList Us ==> P) ==> P"
   1.233 +by (rule exE [OF ExpList_rep], blast) 
   1.234 +
   1.235 +
   1.236 +subsubsection{*Characteristic Equations for the Abstract Constructors*}
   1.237 +
   1.238 +lemma Plus: "Plus (Abs_Exp(exprel``{U})) (Abs_Exp(exprel``{V})) = 
   1.239 +             Abs_Exp (exprel``{PLUS U V})"
   1.240 +proof -
   1.241 +  have "(\<lambda>U V. exprel `` {PLUS U V}) respects2 exprel"
   1.242 +    by (simp add: congruent2_def exprel.PLUS)
   1.243 +  thus ?thesis
   1.244 +    by (simp add: Plus_def UN_equiv_class2 [OF equiv_exprel equiv_exprel])
   1.245 +qed
   1.246 +
   1.247 +text{*It is not clear what to do with FnCall: it's argument is an abstraction
   1.248 +of an @{typ "exp list"}. Is it just Nil or Cons? What seems to work best is to
   1.249 +regard an @{typ "exp list"} as a @{term "listrel exprel"} equivalence class*}
   1.250 +
   1.251 +text{*This theorem is easily proved but never used. There's no obvious way
   1.252 +even to state the analogous result, @{text FnCall_Cons}.*}
   1.253 +lemma FnCall_Nil: "FnCall F [] = Abs_Exp (exprel``{FNCALL F []})"
   1.254 +  by (simp add: FnCall_def)
   1.255 +
   1.256 +lemma FnCall_respects: 
   1.257 +     "(\<lambda>Us. exprel `` {FNCALL F Us}) respects (listrel exprel)"
   1.258 +  by (simp add: congruent_def exprel.FNCALL)
   1.259 +
   1.260 +lemma FnCall_sing:
   1.261 +     "FnCall F [Abs_Exp(exprel``{U})] = Abs_Exp (exprel``{FNCALL F [U]})"
   1.262 +proof -
   1.263 +  have "(\<lambda>U. exprel `` {FNCALL F [U]}) respects exprel"
   1.264 +    by (simp add: congruent_def FNCALL_Cons listrel.intros)
   1.265 +  thus ?thesis
   1.266 +    by (simp add: FnCall_def UN_equiv_class [OF equiv_exprel])
   1.267 +qed
   1.268 +
   1.269 +lemma listset_Rep_Exp_Abs_Exp:
   1.270 +     "listset (map Rep_Exp (Abs_ExpList Us)) = listrel exprel `` {Us}";
   1.271 +by (induct_tac Us, simp_all add: listrel_Cons Abs_ExpList_def)
   1.272 +
   1.273 +lemma FnCall:
   1.274 +     "FnCall F (Abs_ExpList Us) = Abs_Exp (exprel``{FNCALL F Us})"
   1.275 +proof -
   1.276 +  have "(\<lambda>Us. exprel `` {FNCALL F Us}) respects (listrel exprel)"
   1.277 +    by (simp add: congruent_def exprel.FNCALL)
   1.278 +  thus ?thesis
   1.279 +    by (simp add: FnCall_def UN_equiv_class [OF equiv_list_exprel]
   1.280 +                  listset_Rep_Exp_Abs_Exp)
   1.281 +qed
   1.282 +
   1.283 +
   1.284 +text{*Establishing this equation is the point of the whole exercise*}
   1.285 +theorem Plus_assoc: "Plus X (Plus Y Z) = Plus (Plus X Y) Z"
   1.286 +by (cases X, cases Y, cases Z, simp add: Plus exprel.ASSOC)
   1.287 +
   1.288 +
   1.289 +
   1.290 +subsection{*The Abstract Function to Return the Set of Variables*}
   1.291 +
   1.292 +constdefs
   1.293 +  vars :: "exp \<Rightarrow> nat set"
   1.294 +   "vars X == \<Union>U \<in> Rep_Exp X. freevars U"
   1.295 +
   1.296 +lemma vars_respects: "freevars respects exprel"
   1.297 +by (simp add: congruent_def exprel_imp_eq_freevars) 
   1.298 +
   1.299 +text{*The extension of the function @{term vars} to lists*}
   1.300 +consts vars_list :: "exp list \<Rightarrow> nat set"
   1.301 +primrec
   1.302 +   "vars_list []    = {}"
   1.303 +   "vars_list(E#Es) = vars E \<union> vars_list Es"
   1.304 +
   1.305 +
   1.306 +text{*Now prove the three equations for @{term vars}*}
   1.307 +
   1.308 +lemma vars_Variable [simp]: "vars (Var N) = {N}"
   1.309 +by (simp add: vars_def Var_def 
   1.310 +              UN_equiv_class [OF equiv_exprel vars_respects]) 
   1.311 + 
   1.312 +lemma vars_Plus [simp]: "vars (Plus X Y) = vars X \<union> vars Y"
   1.313 +apply (cases X, cases Y) 
   1.314 +apply (simp add: vars_def Plus 
   1.315 +                 UN_equiv_class [OF equiv_exprel vars_respects]) 
   1.316 +done
   1.317 +
   1.318 +lemma vars_FnCall [simp]: "vars (FnCall F Xs) = vars_list Xs"
   1.319 +apply (cases Xs rule: eq_Abs_ExpList) 
   1.320 +apply (simp add: FnCall)
   1.321 +apply (induct_tac Us) 
   1.322 +apply (simp_all add: vars_def UN_equiv_class [OF equiv_exprel vars_respects])
   1.323 +done
   1.324 +
   1.325 +lemma vars_FnCall_Nil: "vars (FnCall F Nil) = {}" 
   1.326 +by simp
   1.327 +
   1.328 +lemma vars_FnCall_Cons: "vars (FnCall F (X#Xs)) = vars X \<union> vars_list Xs"
   1.329 +by simp
   1.330 +
   1.331 +
   1.332 +subsection{*Injectivity Properties of Some Constructors*}
   1.333 +
   1.334 +lemma VAR_imp_eq: "VAR m \<sim> VAR n \<Longrightarrow> m = n"
   1.335 +by (drule exprel_imp_eq_freevars, simp)
   1.336 +
   1.337 +text{*Can also be proved using the function @{term vars}*}
   1.338 +lemma Var_Var_eq [iff]: "(Var m = Var n) = (m = n)"
   1.339 +by (auto simp add: Var_def exprel_refl dest: VAR_imp_eq)
   1.340 +
   1.341 +lemma VAR_neqv_PLUS: "VAR m \<sim> PLUS X Y \<Longrightarrow> False"
   1.342 +by (drule exprel_imp_eq_freediscrim, simp)
   1.343 +
   1.344 +theorem Var_neq_Plus [iff]: "Var N \<noteq> Plus X Y"
   1.345 +apply (cases X, cases Y) 
   1.346 +apply (simp add: Var_def Plus) 
   1.347 +apply (blast dest: VAR_neqv_PLUS) 
   1.348 +done
   1.349 +
   1.350 +theorem Var_neq_FnCall [iff]: "Var N \<noteq> FnCall F Xs"
   1.351 +apply (cases Xs rule: eq_Abs_ExpList) 
   1.352 +apply (auto simp add: FnCall Var_def)
   1.353 +apply (drule exprel_imp_eq_freediscrim, simp)
   1.354 +done
   1.355 +
   1.356 +subsection{*Injectivity of @{term FnCall}*}
   1.357 +
   1.358 +constdefs
   1.359 +  fun :: "exp \<Rightarrow> nat"
   1.360 +   "fun X == contents (\<Union>U \<in> Rep_Exp X. {freefun U})"
   1.361 +
   1.362 +lemma fun_respects: "(%U. {freefun U}) respects exprel"
   1.363 +by (simp add: congruent_def exprel_imp_eq_freefun) 
   1.364 +
   1.365 +lemma fun_FnCall [simp]: "fun (FnCall F Xs) = F"
   1.366 +apply (cases Xs rule: eq_Abs_ExpList) 
   1.367 +apply (simp add: FnCall fun_def UN_equiv_class [OF equiv_exprel fun_respects])
   1.368 +done
   1.369 +
   1.370 +constdefs
   1.371 +  args :: "exp \<Rightarrow> exp list"
   1.372 +   "args X == contents (\<Union>U \<in> Rep_Exp X. {Abs_ExpList (freeargs U)})"
   1.373 +
   1.374 +text{*This result can probably be generalized to arbitrary equivalence
   1.375 +relations, but with little benefit here.*}
   1.376 +lemma Abs_ExpList_eq:
   1.377 +     "(y, z) \<in> listrel exprel \<Longrightarrow> Abs_ExpList (y) = Abs_ExpList (z)"
   1.378 +by (erule listrel.induct, simp_all)
   1.379 +
   1.380 +lemma args_respects: "(%U. {Abs_ExpList (freeargs U)}) respects exprel"
   1.381 +by (simp add: congruent_def Abs_ExpList_eq exprel_imp_eqv_freeargs) 
   1.382 +
   1.383 +lemma args_FnCall [simp]: "args (FnCall F Xs) = Xs"
   1.384 +apply (cases Xs rule: eq_Abs_ExpList) 
   1.385 +apply (simp add: FnCall args_def UN_equiv_class [OF equiv_exprel args_respects])
   1.386 +done
   1.387 +
   1.388 +
   1.389 +lemma FnCall_FnCall_eq [iff]:
   1.390 +     "(FnCall F Xs = FnCall F' Xs') = (F=F' & Xs=Xs')" 
   1.391 +proof
   1.392 +  assume "FnCall F Xs = FnCall F' Xs'"
   1.393 +  hence "fun (FnCall F Xs) = fun (FnCall F' Xs')" 
   1.394 +    and "args (FnCall F Xs) = args (FnCall F' Xs')" by auto
   1.395 +  thus "F=F' & Xs=Xs'" by simp
   1.396 +next
   1.397 +  assume "F=F' & Xs=Xs'" thus "FnCall F Xs = FnCall F' Xs'" by simp
   1.398 +qed
   1.399 +
   1.400 +
   1.401 +subsection{*The Abstract Discriminator*}
   1.402 +text{*However, as @{text FnCall_Var_neq_Var} illustrates, we don't need this
   1.403 +function in order to prove discrimination theorems.*}
   1.404 +
   1.405 +constdefs
   1.406 +  discrim :: "exp \<Rightarrow> int"
   1.407 +   "discrim X == contents (\<Union>U \<in> Rep_Exp X. {freediscrim U})"
   1.408 +
   1.409 +lemma discrim_respects: "(\<lambda>U. {freediscrim U}) respects exprel"
   1.410 +by (simp add: congruent_def exprel_imp_eq_freediscrim) 
   1.411 +
   1.412 +text{*Now prove the four equations for @{term discrim}*}
   1.413 +
   1.414 +lemma discrim_Var [simp]: "discrim (Var N) = 0"
   1.415 +by (simp add: discrim_def Var_def 
   1.416 +              UN_equiv_class [OF equiv_exprel discrim_respects]) 
   1.417 +
   1.418 +lemma discrim_Plus [simp]: "discrim (Plus X Y) = 1"
   1.419 +apply (cases X, cases Y) 
   1.420 +apply (simp add: discrim_def Plus 
   1.421 +                 UN_equiv_class [OF equiv_exprel discrim_respects]) 
   1.422 +done
   1.423 +
   1.424 +lemma discrim_FnCall [simp]: "discrim (FnCall F Xs) = 2"
   1.425 +apply (rule_tac z=Xs in eq_Abs_ExpList) 
   1.426 +apply (simp add: discrim_def FnCall
   1.427 +                 UN_equiv_class [OF equiv_exprel discrim_respects]) 
   1.428 +done
   1.429 +
   1.430 +
   1.431 +text{*The structural induction rule for the abstract type*}
   1.432 +theorem exp_induct:
   1.433 +  assumes V:    "\<And>nat. P1 (Var nat)"
   1.434 +      and P:    "\<And>exp1 exp2. \<lbrakk>P1 exp1; P1 exp2\<rbrakk> \<Longrightarrow> P1 (Plus exp1 exp2)"
   1.435 +      and F:    "\<And>nat list. P2 list \<Longrightarrow> P1 (FnCall nat list)"
   1.436 +      and Nil:  "P2 []"
   1.437 +      and Cons: "\<And>exp list. \<lbrakk>P1 exp; P2 list\<rbrakk> \<Longrightarrow> P2 (exp # list)"
   1.438 +  shows "P1 exp & P2 list"
   1.439 +proof (cases exp, rule eq_Abs_ExpList [of list], clarify)  
   1.440 +  fix U Us
   1.441 +  show "P1 (Abs_Exp (exprel `` {U})) \<and>
   1.442 +        P2 (Abs_ExpList Us)"
   1.443 +  proof (induct U and Us)
   1.444 +    case (VAR nat) 
   1.445 +    with V show ?case by (simp add: Var_def) 
   1.446 +  next
   1.447 +    case (PLUS X Y)
   1.448 +    with P [of "Abs_Exp (exprel `` {X})" "Abs_Exp (exprel `` {Y})"]
   1.449 +    show ?case by (simp add: Plus) 
   1.450 +  next
   1.451 +    case (FNCALL nat list)
   1.452 +    with F [of "Abs_ExpList list"]
   1.453 +    show ?case by (simp add: FnCall) 
   1.454 +  next
   1.455 +    case Nil_freeExp
   1.456 +    with Nil show ?case by simp
   1.457 +  next
   1.458 +    case Cons_freeExp
   1.459 +     with Cons
   1.460 +    show ?case by simp
   1.461 +  qed
   1.462 +qed
   1.463 +
   1.464 +end
   1.465 +