doc-src/ZF/ZF.tex
changeset 14158 15bab630ae31
parent 14154 3bc0128e2c74
child 14202 643fc73e2910
     1.1 --- a/doc-src/ZF/ZF.tex	Wed Aug 20 11:12:48 2003 +0200
     1.2 +++ b/doc-src/ZF/ZF.tex	Wed Aug 20 13:05:22 2003 +0200
     1.3 @@ -231,7 +231,7 @@
     1.4           & | & term " -`` " term \\
     1.5           & | & term " ` " term \\
     1.6           & | & term " * " term \\
     1.7 -         & | & term " Int " term \\
     1.8 +         & | & term " \isasyminter " term \\
     1.9           & | & term " \isasymunion " term \\
    1.10           & | & term " - " term \\
    1.11           & | & term " -> " term \\
    1.12 @@ -373,7 +373,7 @@
    1.13  
    1.14  \tdx{Inter_def}:   Inter(A) == {\ttlbrace}x \isasymin Union(A) . {\isasymforall}y \isasymin A. x \isasymin y{\ttrbrace}
    1.15  \tdx{Un_def}:      A \isasymunion B  == Union(Upair(A,B))
    1.16 -\tdx{Int_def}:     A Int B  == Inter(Upair(A,B))
    1.17 +\tdx{Int_def}:     A \isasyminter B  == Inter(Upair(A,B))
    1.18  \tdx{Diff_def}:    A - B    == {\ttlbrace}x \isasymin A . x \isasymnotin B{\ttrbrace}
    1.19  \subcaption{Union, intersection, difference}
    1.20  \end{alltt*}
    1.21 @@ -434,7 +434,8 @@
    1.22  same set, if $P(x,y)$ is single-valued.  The nice syntax for replacement
    1.23  expands to \isa{Replace}.
    1.24  
    1.25 -Other consequences of replacement include functional replacement
    1.26 +Other consequences of replacement include replacement for 
    1.27 +meta-level functions
    1.28  (\cdx{RepFun}) and definite descriptions (\cdx{The}).
    1.29  Axioms for separation (\cdx{Collect}) and unordered pairs
    1.30  (\cdx{Upair}) are traditionally assumed, but they actually follow
    1.31 @@ -617,10 +618,10 @@
    1.32  \tdx{UnCI}:      (c \isasymnotin B ==> c\isasymin{}A) ==> c\isasymin{}A \isasymunion B
    1.33  \tdx{UnE}:       [| c\isasymin{}A \isasymunion B;  c\isasymin{}A ==> P;  c\isasymin{}B ==> P |] ==> P
    1.34  
    1.35 -\tdx{IntI}:      [| c\isasymin{}A;  c\isasymin{}B |] ==> c\isasymin{}A Int B
    1.36 -\tdx{IntD1}:     c\isasymin{}A Int B ==> c\isasymin{}A
    1.37 -\tdx{IntD2}:     c\isasymin{}A Int B ==> c\isasymin{}B
    1.38 -\tdx{IntE}:      [| c\isasymin{}A Int B;  [| c\isasymin{}A; c\isasymin{}B |] ==> P |] ==> P
    1.39 +\tdx{IntI}:      [| c\isasymin{}A;  c\isasymin{}B |] ==> c\isasymin{}A \isasyminter B
    1.40 +\tdx{IntD1}:     c\isasymin{}A \isasyminter B ==> c\isasymin{}A
    1.41 +\tdx{IntD2}:     c\isasymin{}A \isasyminter B ==> c\isasymin{}B
    1.42 +\tdx{IntE}:      [| c\isasymin{}A \isasyminter B;  [| c\isasymin{}A; c\isasymin{}B |] ==> P |] ==> P
    1.43  
    1.44  \tdx{DiffI}:     [| c\isasymin{}A;  c \isasymnotin B |] ==> c\isasymin{}A - B
    1.45  \tdx{DiffD1}:    c\isasymin{}A - B ==> c\isasymin{}A
    1.46 @@ -715,12 +716,12 @@
    1.47  \tdx{Un_upper2}:      B \isasymsubseteq A \isasymunion B
    1.48  \tdx{Un_least}:       [| A \isasymsubseteq C;  B \isasymsubseteq C |] ==> A \isasymunion B \isasymsubseteq C
    1.49  
    1.50 -\tdx{Int_lower1}:     A Int B \isasymsubseteq A
    1.51 -\tdx{Int_lower2}:     A Int B \isasymsubseteq B
    1.52 -\tdx{Int_greatest}:   [| C \isasymsubseteq A;  C \isasymsubseteq B |] ==> C \isasymsubseteq A Int B
    1.53 +\tdx{Int_lower1}:     A \isasyminter B \isasymsubseteq A
    1.54 +\tdx{Int_lower2}:     A \isasyminter B \isasymsubseteq B
    1.55 +\tdx{Int_greatest}:   [| C \isasymsubseteq A;  C \isasymsubseteq B |] ==> C \isasymsubseteq A \isasyminter B
    1.56  
    1.57  \tdx{Diff_subset}:    A-B \isasymsubseteq A
    1.58 -\tdx{Diff_contains}:  [| C \isasymsubseteq A;  C Int B = 0 |] ==> C \isasymsubseteq A-B
    1.59 +\tdx{Diff_contains}:  [| C \isasymsubseteq A;  C \isasyminter B = 0 |] ==> C \isasymsubseteq A-B
    1.60  
    1.61  \tdx{Collect_subset}: Collect(A,P) \isasymsubseteq A
    1.62  \end{alltt*}
    1.63 @@ -825,9 +826,9 @@
    1.64  \tdx{fieldCI}:     (<c,a> \isasymnotin r ==> <a,b>\isasymin{}r) ==> a\isasymin{}field(r)
    1.65  
    1.66  \tdx{fieldE}:      [| a\isasymin{}field(r); 
    1.67 -                  !!x. <a,x>\isasymin{}r ==> P; 
    1.68 -                  !!x. <x,a>\isasymin{}r ==> P      
    1.69 -               |] ==> P
    1.70 +                !!x. <a,x>\isasymin{}r ==> P; 
    1.71 +                !!x. <x,a>\isasymin{}r ==> P      
    1.72 +             |] ==> P
    1.73  
    1.74  \tdx{field_subset}:  field(A*A) \isasymsubseteq A
    1.75  \end{alltt*}
    1.76 @@ -867,7 +868,7 @@
    1.77  \begin{alltt*}\isastyleminor
    1.78  \tdx{fun_is_rel}:     f\isasymin{}Pi(A,B) ==> f \isasymsubseteq Sigma(A,B)
    1.79  
    1.80 -\tdx{apply_equality}: [| <a,b>\isasymin{}f; f\isasymin{}Pi(A,B) |] ==> f`a = b
    1.81 +\tdx{apply_equality}:  [| <a,b>\isasymin{}f; f\isasymin{}Pi(A,B) |] ==> f`a = b
    1.82  \tdx{apply_equality2}: [| <a,b>\isasymin{}f; <a,c>\isasymin{}f; f\isasymin{}Pi(A,B) |] ==> b=c
    1.83  
    1.84  \tdx{apply_type}:     [| f\isasymin{}Pi(A,B); a\isasymin{}A |] ==> f`a\isasymin{}B(a)
    1.85 @@ -912,7 +913,7 @@
    1.86  \tdx{fun_empty}:           0\isasymin{}0->0
    1.87  \tdx{fun_single}:          {\ttlbrace}<a,b>{\ttrbrace}\isasymin{}{\ttlbrace}a{\ttrbrace} -> {\ttlbrace}b{\ttrbrace}
    1.88  
    1.89 -\tdx{fun_disjoint_Un}:     [| f\isasymin{}A->B; g\isasymin{}C->D; A Int C = 0  |] ==>  
    1.90 +\tdx{fun_disjoint_Un}:     [| f\isasymin{}A->B; g\isasymin{}C->D; A \isasyminter C = 0  |] ==>  
    1.91                       (f \isasymunion g)\isasymin{}(A \isasymunion C) -> (B \isasymunion D)
    1.92  
    1.93  \tdx{fun_disjoint_apply1}: [| a\isasymin{}A; f\isasymin{}A->B; g\isasymin{}C->D;  A\isasyminter{}C = 0 |] ==>  
    1.94 @@ -955,28 +956,28 @@
    1.95  
    1.96  \begin{figure}
    1.97  \begin{alltt*}\isastyleminor
    1.98 -\tdx{Int_absorb}:        A Int A = A
    1.99 -\tdx{Int_commute}:       A Int B = B Int A
   1.100 -\tdx{Int_assoc}:         (A Int B) Int C  =  A Int (B Int C)
   1.101 -\tdx{Int_Un_distrib}:    (A \isasymunion B) Int C  =  (A Int C) \isasymunion (B Int C)
   1.102 +\tdx{Int_absorb}:        A \isasyminter A = A
   1.103 +\tdx{Int_commute}:       A \isasyminter B = B \isasyminter A
   1.104 +\tdx{Int_assoc}:         (A \isasyminter B) \isasyminter C  =  A \isasyminter (B \isasyminter C)
   1.105 +\tdx{Int_Un_distrib}:    (A \isasymunion B) \isasyminter C  =  (A \isasyminter C) \isasymunion (B \isasyminter C)
   1.106  
   1.107  \tdx{Un_absorb}:         A \isasymunion A = A
   1.108  \tdx{Un_commute}:        A \isasymunion B = B \isasymunion A
   1.109  \tdx{Un_assoc}:          (A \isasymunion B) \isasymunion C  =  A \isasymunion (B \isasymunion C)
   1.110 -\tdx{Un_Int_distrib}:    (A Int B) \isasymunion C  =  (A \isasymunion C) Int (B \isasymunion C)
   1.111 +\tdx{Un_Int_distrib}:    (A \isasyminter B) \isasymunion C  =  (A \isasymunion C) \isasyminter (B \isasymunion C)
   1.112  
   1.113  \tdx{Diff_cancel}:       A-A = 0
   1.114 -\tdx{Diff_disjoint}:     A Int (B-A) = 0
   1.115 +\tdx{Diff_disjoint}:     A \isasyminter (B-A) = 0
   1.116  \tdx{Diff_partition}:    A \isasymsubseteq B ==> A \isasymunion (B-A) = B
   1.117  \tdx{double_complement}: [| A \isasymsubseteq B; B \isasymsubseteq C |] ==> (B - (C-A)) = A
   1.118 -\tdx{Diff_Un}:           A - (B \isasymunion C) = (A-B) Int (A-C)
   1.119 -\tdx{Diff_Int}:          A - (B Int C) = (A-B) \isasymunion (A-C)
   1.120 +\tdx{Diff_Un}:           A - (B \isasymunion C) = (A-B) \isasyminter (A-C)
   1.121 +\tdx{Diff_Int}:          A - (B \isasyminter C) = (A-B) \isasymunion (A-C)
   1.122  
   1.123  \tdx{Union_Un_distrib}:  Union(A \isasymunion B) = Union(A) \isasymunion Union(B)
   1.124  \tdx{Inter_Un_distrib}:  [| a \isasymin A;  b \isasymin B |] ==> 
   1.125 -                   Inter(A \isasymunion B) = Inter(A) Int Inter(B)
   1.126 -
   1.127 -\tdx{Int_Union_RepFun}:  A Int Union(B) = ({\isasymUnion}C \isasymin B. A Int C)
   1.128 +                   Inter(A \isasymunion B) = Inter(A) \isasyminter Inter(B)
   1.129 +
   1.130 +\tdx{Int_Union_RepFun}:  A \isasyminter Union(B) = ({\isasymUnion}C \isasymin B. A \isasyminter C)
   1.131  
   1.132  \tdx{Un_Inter_RepFun}:   b \isasymin B ==> 
   1.133                     A \isasymunion Inter(B) = ({\isasymInter}C \isasymin B. A \isasymunion C)
   1.134 @@ -987,11 +988,11 @@
   1.135  \tdx{SUM_Un_distrib2}:   (SUM x \isasymin C. A(x) \isasymunion B(x)) =
   1.136                     (SUM x \isasymin C. A(x)) \isasymunion (SUM x \isasymin C. B(x))
   1.137  
   1.138 -\tdx{SUM_Int_distrib1}:  (SUM x \isasymin A Int B. C(x)) =
   1.139 -                   (SUM x \isasymin A. C(x)) Int (SUM x \isasymin B. C(x))
   1.140 -
   1.141 -\tdx{SUM_Int_distrib2}:  (SUM x \isasymin C. A(x) Int B(x)) =
   1.142 -                   (SUM x \isasymin C. A(x)) Int (SUM x \isasymin C. B(x))
   1.143 +\tdx{SUM_Int_distrib1}:  (SUM x \isasymin A \isasyminter B. C(x)) =
   1.144 +                   (SUM x \isasymin A. C(x)) \isasyminter (SUM x \isasymin B. C(x))
   1.145 +
   1.146 +\tdx{SUM_Int_distrib2}:  (SUM x \isasymin C. A(x) \isasyminter B(x)) =
   1.147 +                   (SUM x \isasymin C. A(x)) \isasyminter (SUM x \isasymin C. B(x))
   1.148  \end{alltt*}
   1.149  \caption{Equalities} \label{zf-equalities}
   1.150  \end{figure}
   1.151 @@ -1109,13 +1110,13 @@
   1.152  \begin{figure}
   1.153  \begin{alltt*}\isastyleminor
   1.154  \tdx{bnd_mono_def}:  bnd_mono(D,h) == 
   1.155 -                 h(D) \isasymsubseteq D & ({\isasymforall}W X. W \isasymsubseteq X --> X \isasymsubseteq D --> h(W) \isasymsubseteq h(X))
   1.156 +               h(D)\isasymsubseteq{}D & ({\isasymforall}W X. W\isasymsubseteq{}X --> X\isasymsubseteq{}D --> h(W)\isasymsubseteq{}h(X))
   1.157  
   1.158  \tdx{lfp_def}:       lfp(D,h) == Inter({\ttlbrace}X \isasymin Pow(D). h(X) \isasymsubseteq X{\ttrbrace})
   1.159  \tdx{gfp_def}:       gfp(D,h) == Union({\ttlbrace}X \isasymin Pow(D). X \isasymsubseteq h(X){\ttrbrace})
   1.160  
   1.161  
   1.162 -\tdx{lfp_lowerbound} [| h(A) \isasymsubseteq A;  A \isasymsubseteq D |] ==> lfp(D,h) \isasymsubseteq A
   1.163 +\tdx{lfp_lowerbound}: [| h(A) \isasymsubseteq A;  A \isasymsubseteq D |] ==> lfp(D,h) \isasymsubseteq A
   1.164  
   1.165  \tdx{lfp_subset}:    lfp(D,h) \isasymsubseteq D
   1.166  
   1.167 @@ -1133,7 +1134,7 @@
   1.168                    !!X. X \isasymsubseteq D ==> h(X) \isasymsubseteq i(X)  
   1.169                 |] ==> lfp(D,h) \isasymsubseteq lfp(E,i)
   1.170  
   1.171 -\tdx{gfp_upperbound} [| A \isasymsubseteq h(A);  A \isasymsubseteq D |] ==> A \isasymsubseteq gfp(D,h)
   1.172 +\tdx{gfp_upperbound}: [| A \isasymsubseteq h(A);  A \isasymsubseteq D |] ==> A \isasymsubseteq gfp(D,h)
   1.173  
   1.174  \tdx{gfp_subset}:    gfp(D,h) \isasymsubseteq D
   1.175  
   1.176 @@ -1191,7 +1192,7 @@
   1.177  \tdx{Fin_induct}
   1.178      [| b \isasymin Fin(A);
   1.179         P(0);
   1.180 -       !!x y. [| x \isasymin A;  y \isasymin Fin(A);  x \isasymnotin y;  P(y) |] ==> P(cons(x,y))
   1.181 +       !!x y. [| x\isasymin{}A; y\isasymin{}Fin(A); x\isasymnotin{}y; P(y) |] ==> P(cons(x,y))
   1.182      |] ==> P(b)
   1.183  
   1.184  \tdx{Fin_mono}:       A \isasymsubseteq B ==> Fin(A) \isasymsubseteq Fin(B)
   1.185 @@ -1216,8 +1217,8 @@
   1.186  
   1.187  \underscoreon %%because @ is used here
   1.188  \begin{alltt*}\isastyleminor
   1.189 -\tdx{NilI}:           Nil \isasymin list(A)
   1.190 -\tdx{ConsI}:          [| a \isasymin A;  l \isasymin list(A) |] ==> Cons(a,l) \isasymin list(A)
   1.191 +\tdx{NilI}:       Nil \isasymin list(A)
   1.192 +\tdx{ConsI}:      [| a \isasymin A;  l \isasymin list(A) |] ==> Cons(a,l) \isasymin list(A)
   1.193  
   1.194  \tdx{List.induct}
   1.195      [| l \isasymin list(A);
   1.196 @@ -1230,11 +1231,11 @@
   1.197  
   1.198  \tdx{list_mono}:      A \isasymsubseteq B ==> list(A) \isasymsubseteq list(B)
   1.199  
   1.200 -\tdx{map_ident}:      l \isasymin list(A) ==> map(\%u. u, l) = l
   1.201 -\tdx{map_compose}:    l \isasymin list(A) ==> map(h, map(j,l)) = map(\%u. h(j(u)), l)
   1.202 -\tdx{map_app_distrib} xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)
   1.203 +\tdx{map_ident}:      l\isasymin{}list(A) ==> map(\%u. u, l) = l
   1.204 +\tdx{map_compose}:    l\isasymin{}list(A) ==> map(h, map(j,l)) = map(\%u. h(j(u)), l)
   1.205 +\tdx{map_app_distrib}: xs\isasymin{}list(A) ==> map(h, xs@ys) = map(h,xs)@map(h,ys)
   1.206  \tdx{map_type}
   1.207 -    [| l \isasymin list(A);  !!x. x \isasymin A ==> h(x) \isasymin B |] ==> map(h,l) \isasymin list(B)
   1.208 +    [| l\isasymin{}list(A); !!x. x\isasymin{}A ==> h(x)\isasymin{}B |] ==> map(h,l)\isasymin{}list(B)
   1.209  \tdx{map_flat}
   1.210      ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))
   1.211  \end{alltt*}
   1.212 @@ -1265,40 +1266,39 @@
   1.213  \tdx{comp_def}: r O s     == {\ttlbrace}xz \isasymin domain(s)*range(r) . 
   1.214                          {\isasymexists}x y z. xz=<x,z> & <x,y> \isasymin s & <y,z> \isasymin r{\ttrbrace}
   1.215  \tdx{id_def}:   id(A)     == (lam x \isasymin A. x)
   1.216 -\tdx{inj_def}:  inj(A,B)  == {\ttlbrace} f \isasymin A->B. {\isasymforall}w \isasymin A. {\isasymforall}x \isasymin A. f`w=f`x --> w=x {\ttrbrace}
   1.217 -\tdx{surj_def}: surj(A,B) == {\ttlbrace} f \isasymin A->B . {\isasymforall}y \isasymin B. {\isasymexists}x \isasymin A. f`x=y {\ttrbrace}
   1.218 -\tdx{bij_def}:  bij(A,B)  == inj(A,B) Int surj(A,B)
   1.219 -
   1.220 -
   1.221 -\tdx{left_inverse}:    [| f \isasymin inj(A,B);  a \isasymin A |] ==> converse(f)`(f`a) = a
   1.222 -\tdx{right_inverse}:   [| f \isasymin inj(A,B);  b \isasymin range(f) |] ==> 
   1.223 +\tdx{inj_def}:  inj(A,B)  == {\ttlbrace} f\isasymin{}A->B. {\isasymforall}w\isasymin{}A. {\isasymforall}x\isasymin{}A. f`w=f`x --> w=x {\ttrbrace}
   1.224 +\tdx{surj_def}: surj(A,B) == {\ttlbrace} f\isasymin{}A->B . {\isasymforall}y\isasymin{}B. {\isasymexists}x\isasymin{}A. f`x=y {\ttrbrace}
   1.225 +\tdx{bij_def}:  bij(A,B)  == inj(A,B) \isasyminter surj(A,B)
   1.226 +
   1.227 +
   1.228 +\tdx{left_inverse}:    [| f\isasymin{}inj(A,B);  a\isasymin{}A |] ==> converse(f)`(f`a) = a
   1.229 +\tdx{right_inverse}:   [| f\isasymin{}inj(A,B);  b\isasymin{}range(f) |] ==> 
   1.230                   f`(converse(f)`b) = b
   1.231  
   1.232 -\tdx{inj_converse_inj} f \isasymin inj(A,B) ==> converse(f) \isasymin inj(range(f), A)
   1.233 -\tdx{bij_converse_bij} f \isasymin bij(A,B) ==> converse(f) \isasymin bij(B,A)
   1.234 -
   1.235 -\tdx{comp_type}:       [| s \isasymsubseteq A*B;  r \isasymsubseteq B*C |] ==> (r O s) \isasymsubseteq A*C
   1.236 -\tdx{comp_assoc}:      (r O s) O t = r O (s O t)
   1.237 -
   1.238 -\tdx{left_comp_id}:    r \isasymsubseteq A*B ==> id(B) O r = r
   1.239 -\tdx{right_comp_id}:   r \isasymsubseteq A*B ==> r O id(A) = r
   1.240 -
   1.241 -\tdx{comp_func}:       [| g \isasymin A->B; f \isasymin B->C |] ==> (f O g)
   1.242 -\isasymin A ->C
   1.243 -\tdx{comp_func_apply}: [| g \isasymin A->B; f \isasymin B->C; a \isasymin A |] ==> (f O g)`a = f`(g`a)
   1.244 -
   1.245 -\tdx{comp_inj}:        [| g \isasymin inj(A,B);  f \isasymin inj(B,C)  |] ==> (f O g):inj(A,C)
   1.246 -\tdx{comp_surj}:       [| g \isasymin surj(A,B); f \isasymin surj(B,C) |] ==> (f O g):surj(A,C)
   1.247 -\tdx{comp_bij}:        [| g \isasymin bij(A,B); f \isasymin bij(B,C) |] ==> (f O g):bij(A,C)
   1.248 -
   1.249 -\tdx{left_comp_inverse}:    f \isasymin inj(A,B) ==> converse(f) O f = id(A)
   1.250 -\tdx{right_comp_inverse}:   f \isasymin surj(A,B) ==> f O converse(f) = id(B)
   1.251 +\tdx{inj_converse_inj}: f\isasymin{}inj(A,B) ==> converse(f) \isasymin inj(range(f),A)
   1.252 +\tdx{bij_converse_bij}: f\isasymin{}bij(A,B) ==> converse(f) \isasymin bij(B,A)
   1.253 +
   1.254 +\tdx{comp_type}:     [| s \isasymsubseteq A*B;  r \isasymsubseteq B*C |] ==> (r O s) \isasymsubseteq A*C
   1.255 +\tdx{comp_assoc}:    (r O s) O t = r O (s O t)
   1.256 +
   1.257 +\tdx{left_comp_id}:  r \isasymsubseteq A*B ==> id(B) O r = r
   1.258 +\tdx{right_comp_id}: r \isasymsubseteq A*B ==> r O id(A) = r
   1.259 +
   1.260 +\tdx{comp_func}:     [| g\isasymin{}A->B; f\isasymin{}B->C |] ==> (f O g) \isasymin A->C
   1.261 +\tdx{comp_func_apply}: [| g\isasymin{}A->B; f\isasymin{}B->C; a\isasymin{}A |] ==> (f O g)`a = f`(g`a)
   1.262 +
   1.263 +\tdx{comp_inj}:      [| g\isasymin{}inj(A,B);  f\isasymin{}inj(B,C)  |] ==> (f O g)\isasymin{}inj(A,C)
   1.264 +\tdx{comp_surj}:     [| g\isasymin{}surj(A,B); f\isasymin{}surj(B,C) |] ==> (f O g)\isasymin{}surj(A,C)
   1.265 +\tdx{comp_bij}:      [| g\isasymin{}bij(A,B); f\isasymin{}bij(B,C) |] ==> (f O g)\isasymin{}bij(A,C)
   1.266 +
   1.267 +\tdx{left_comp_inverse}:    f\isasymin{}inj(A,B) ==> converse(f) O f = id(A)
   1.268 +\tdx{right_comp_inverse}:   f\isasymin{}surj(A,B) ==> f O converse(f) = id(B)
   1.269  
   1.270  \tdx{bij_disjoint_Un}:  
   1.271 -    [| f \isasymin bij(A,B);  g \isasymin bij(C,D);  A Int C = 0;  B Int D = 0 |] ==> 
   1.272 -    (f \isasymunion g) \isasymin bij(A \isasymunion C, B \isasymunion D)
   1.273 -
   1.274 -\tdx{restrict_bij}: [| f \isasymin inj(A,B);  C \isasymsubseteq A |] ==> restrict(f,C) \isasymin bij(C, f``C)
   1.275 +    [| f\isasymin{}bij(A,B);  g\isasymin{}bij(C,D);  A \isasyminter C = 0;  B \isasyminter D = 0 |] ==> 
   1.276 +    (f \isasymunion g)\isasymin{}bij(A \isasymunion C, B \isasymunion D)
   1.277 +
   1.278 +\tdx{restrict_bij}: [| f\isasymin{}inj(A,B); C\isasymsubseteq{}A |] ==> restrict(f,C)\isasymin{}bij(C, f``C)
   1.279  \end{alltt*}
   1.280  \caption{Permutations} \label{zf-perm}
   1.281  \end{figure}
   1.282 @@ -1371,7 +1371,8 @@
   1.283  essentially type-checking.  Such proofs are built by applying rules such as
   1.284  these:
   1.285  \begin{ttbox}\isastyleminor
   1.286 -[| ?P ==> ?a \isasymin ?A; ~?P ==> ?b \isasymin ?A |] ==> (if ?P then ?a else ?b) \isasymin ?A
   1.287 +[| ?P ==> ?a \isasymin ?A; ~?P ==> ?b \isasymin ?A |] 
   1.288 +==> (if ?P then ?a else ?b) \isasymin ?A
   1.289  
   1.290  [| ?m \isasymin nat; ?n \isasymin nat |] ==> ?m #+ ?n \isasymin nat
   1.291  
   1.292 @@ -1394,7 +1395,7 @@
   1.293  break down all subgoals using type-checking rules. You can add new
   1.294  type-checking rules temporarily like this:
   1.295  \begin{isabelle}
   1.296 -\isacommand{apply}\ (typecheck add: inj_is_fun)
   1.297 +\isacommand{apply}\ (typecheck add:\ inj_is_fun)
   1.298  \end{isabelle}
   1.299  
   1.300  
   1.301 @@ -1460,33 +1461,33 @@
   1.302    \tt \#-       & $[i,i]\To i$  &  Left 65      & subtraction
   1.303  \end{constants}
   1.304  
   1.305 -\begin{ttbox}\isastyleminor
   1.306 +\begin{alltt*}\isastyleminor
   1.307  \tdx{nat_def}: nat == lfp(lam r \isasymin Pow(Inf). {\ttlbrace}0{\ttrbrace} \isasymunion {\ttlbrace}succ(x). x \isasymin r{\ttrbrace}
   1.308  
   1.309 -\tdx{nat_case_def}: nat_case(a,b,k) == 
   1.310 +\tdx{nat_case_def}:  nat_case(a,b,k) == 
   1.311                THE y. k=0 & y=a | ({\isasymexists}x. k=succ(x) & y=b(x))
   1.312  
   1.313 -\tdx{nat_0I}:          0 \isasymin nat
   1.314 -\tdx{nat_succI}:       n \isasymin nat ==> succ(n) \isasymin nat
   1.315 -
   1.316 -\tdx{nat_induct}:       
   1.317 +\tdx{nat_0I}:           0 \isasymin nat
   1.318 +\tdx{nat_succI}:        n \isasymin nat ==> succ(n) \isasymin nat
   1.319 +
   1.320 +\tdx{nat_induct}:        
   1.321      [| n \isasymin nat;  P(0);  !!x. [| x \isasymin nat;  P(x) |] ==> P(succ(x)) 
   1.322      |] ==> P(n)
   1.323  
   1.324 -\tdx{nat_case_0}:     nat_case(a,b,0) = a
   1.325 -\tdx{nat_case_succ}:  nat_case(a,b,succ(m)) = b(m)
   1.326 -
   1.327 -\tdx{add_0_natify}:    0 #+ n = natify(n)
   1.328 -\tdx{add_succ}:        succ(m) #+ n = succ(m #+ n)
   1.329 -
   1.330 -\tdx{mult_type}:       m #* n \isasymin nat
   1.331 -\tdx{mult_0}:          0 #* n = 0
   1.332 -\tdx{mult_succ}:       succ(m) #* n = n #+ (m #* n)
   1.333 -\tdx{mult_commute}:    m #* n = n #* m
   1.334 -\tdx{add_mult_dist}:   (m #+ n) #* k = (m #* k) #+ (n #* k)
   1.335 -\tdx{mult_assoc}:      (m #* n) #* k = m #* (n #* k)
   1.336 -\tdx{mod_div_equality} m \isasymin nat ==> (m div n)#*n #+ m mod n = m
   1.337 -\end{ttbox}
   1.338 +\tdx{nat_case_0}:       nat_case(a,b,0) = a
   1.339 +\tdx{nat_case_succ}:    nat_case(a,b,succ(m)) = b(m)
   1.340 +
   1.341 +\tdx{add_0_natify}:     0 #+ n = natify(n)
   1.342 +\tdx{add_succ}:         succ(m) #+ n = succ(m #+ n)
   1.343 +
   1.344 +\tdx{mult_type}:        m #* n \isasymin nat
   1.345 +\tdx{mult_0}:           0 #* n = 0
   1.346 +\tdx{mult_succ}:        succ(m) #* n = n #+ (m #* n)
   1.347 +\tdx{mult_commute}:     m #* n = n #* m
   1.348 +\tdx{add_mult_dist}:    (m #+ n) #* k = (m #* k) #+ (n #* k)
   1.349 +\tdx{mult_assoc}:       (m #* n) #* k = m #* (n #* k)
   1.350 +\tdx{mod_div_equality}: m \isasymin nat ==> (m div n)#*n #+ m mod n = m
   1.351 +\end{alltt*}
   1.352  \caption{The natural numbers} \label{zf-nat}
   1.353  \end{figure}
   1.354  
   1.355 @@ -1543,7 +1544,7 @@
   1.356    \tt \$<=      & $[i,i]\To o$  &  Left 50      & $\le$ on integers
   1.357  \end{constants}
   1.358  
   1.359 -\begin{ttbox}\isastyleminor
   1.360 +\begin{alltt*}\isastyleminor
   1.361  \tdx{zadd_0_intify}:    0 $+ n = intify(n)
   1.362  
   1.363  \tdx{zmult_type}:       m $* n \isasymin int
   1.364 @@ -1551,7 +1552,7 @@
   1.365  \tdx{zmult_commute}:    m $* n = n $* m
   1.366  \tdx{zadd_zmult_dist}:   (m $+ n) $* k = (m $* k) $+ (n $* k)
   1.367  \tdx{zmult_assoc}:      (m $* n) $* k = m $* (n $* k)
   1.368 -\end{ttbox}
   1.369 +\end{alltt*}
   1.370  \caption{The integers} \label{zf-int}
   1.371  \end{figure}
   1.372  
   1.373 @@ -1637,34 +1638,34 @@
   1.374  
   1.375  A simple example of a datatype is \isa{list}, which is built-in, and is
   1.376  defined by
   1.377 -\begin{ttbox}\isastyleminor
   1.378 +\begin{alltt*}\isastyleminor
   1.379  consts     list :: "i=>i"
   1.380  datatype  "list(A)" = Nil | Cons ("a \isasymin A", "l \isasymin list(A)")
   1.381 -\end{ttbox}
   1.382 +\end{alltt*}
   1.383  Note that the datatype operator must be declared as a constant first.
   1.384  However, the package declares the constructors.  Here, \isa{Nil} gets type
   1.385  $i$ and \isa{Cons} gets type $[i,i]\To i$.
   1.386  
   1.387  Trees and forests can be modelled by the mutually recursive datatype
   1.388  definition
   1.389 -\begin{ttbox}\isastyleminor
   1.390 +\begin{alltt*}\isastyleminor
   1.391  consts   
   1.392    tree :: "i=>i"
   1.393    forest :: "i=>i"
   1.394    tree_forest :: "i=>i"
   1.395  datatype  "tree(A)"   = Tcons ("a{\isasymin}A",  "f{\isasymin}forest(A)")
   1.396  and "forest(A)" = Fnil | Fcons ("t{\isasymin}tree(A)",  "f{\isasymin}forest(A)")
   1.397 -\end{ttbox}
   1.398 +\end{alltt*}
   1.399  Here $\isa{tree}(A)$ is the set of trees over $A$, $\isa{forest}(A)$ is
   1.400  the set of forests over $A$, and  $\isa{tree_forest}(A)$ is the union of
   1.401  the previous two sets.  All three operators must be declared first.
   1.402  
   1.403  The datatype \isa{term}, which is defined by
   1.404 -\begin{ttbox}\isastyleminor
   1.405 +\begin{alltt*}\isastyleminor
   1.406  consts     term :: "i=>i"
   1.407  datatype  "term(A)" = Apply ("a \isasymin A", "l \isasymin list(term(A))")
   1.408    monos list_mono
   1.409 -\end{ttbox}
   1.410 +\end{alltt*}
   1.411  is an example of nested recursion.  (The theorem \isa{list_mono} is proved
   1.412  in theory \isa{List}, and the \isa{term} example is developed in
   1.413  theory
   1.414 @@ -1698,17 +1699,17 @@
   1.415  \isa{TF}.  The rule \isa{tree_forest.induct} performs induction over a
   1.416  single predicate~\isa{P}, which is presumed to be defined for both trees
   1.417  and forests:
   1.418 -\begin{ttbox}\isastyleminor
   1.419 +\begin{alltt*}\isastyleminor
   1.420  [| x \isasymin tree_forest(A);
   1.421     !!a f. [| a \isasymin A; f \isasymin forest(A); P(f) |] ==> P(Tcons(a, f)); 
   1.422     P(Fnil);
   1.423     !!f t. [| t \isasymin tree(A); P(t); f \isasymin forest(A); P(f) |]
   1.424            ==> P(Fcons(t, f)) 
   1.425  |] ==> P(x)
   1.426 -\end{ttbox}
   1.427 +\end{alltt*}
   1.428  The rule \isa{tree_forest.mutual_induct} performs induction over two
   1.429  distinct predicates, \isa{P_tree} and \isa{P_forest}.
   1.430 -\begin{ttbox}\isastyleminor
   1.431 +\begin{alltt*}\isastyleminor
   1.432  [| !!a f.
   1.433        [| a{\isasymin}A; f{\isasymin}forest(A); P_forest(f) |] ==> P_tree(Tcons(a,f));
   1.434     P_forest(Fnil);
   1.435 @@ -1716,24 +1717,24 @@
   1.436            ==> P_forest(Fcons(t, f)) 
   1.437  |] ==> ({\isasymforall}za. za \isasymin tree(A) --> P_tree(za)) &
   1.438      ({\isasymforall}za. za \isasymin forest(A) --> P_forest(za))
   1.439 -\end{ttbox}
   1.440 +\end{alltt*}
   1.441  
   1.442  For datatypes with nested recursion, such as the \isa{term} example from
   1.443  above, things are a bit more complicated.  The rule \isa{term.induct}
   1.444  refers to the monotonic operator, \isa{list}:
   1.445 -\begin{ttbox}\isastyleminor
   1.446 +\begin{alltt*}\isastyleminor
   1.447  [| x \isasymin term(A);
   1.448 -   !!a l. [| a \isasymin A; l \isasymin list(Collect(term(A), P)) |] ==> P(Apply(a, l)) 
   1.449 +   !!a l. [| a\isasymin{}A; l\isasymin{}list(Collect(term(A), P)) |] ==> P(Apply(a,l)) 
   1.450  |] ==> P(x)
   1.451 -\end{ttbox}
   1.452 +\end{alltt*}
   1.453  The theory \isa{Induct/Term.thy} derives two higher-level induction rules,
   1.454  one of which is particularly useful for proving equations:
   1.455 -\begin{ttbox}\isastyleminor
   1.456 +\begin{alltt*}\isastyleminor
   1.457  [| t \isasymin term(A);
   1.458     !!x zs. [| x \isasymin A; zs \isasymin list(term(A)); map(f, zs) = map(g, zs) |]
   1.459             ==> f(Apply(x, zs)) = g(Apply(x, zs)) 
   1.460  |] ==> f(t) = g(t)  
   1.461 -\end{ttbox}
   1.462 +\end{alltt*}
   1.463  How this can be generalized to other nested datatypes is a matter for future
   1.464  research.
   1.465  
   1.466 @@ -1863,10 +1864,10 @@
   1.467  
   1.468  Let us define the set $\isa{bt}(A)$ of binary trees over~$A$.  The theory
   1.469  must contain these lines:
   1.470 -\begin{ttbox}\isastyleminor
   1.471 +\begin{alltt*}\isastyleminor
   1.472  consts   bt :: "i=>i"
   1.473  datatype "bt(A)" = Lf | Br ("a\isasymin{}A", "t1\isasymin{}bt(A)", "t2\isasymin{}bt(A)")
   1.474 -\end{ttbox}
   1.475 +\end{alltt*}
   1.476  After loading the theory, we can prove some theorem.  
   1.477  We begin by declaring the constructor's typechecking rules
   1.478  as simplification rules:
   1.479 @@ -1880,8 +1881,7 @@
   1.480  the \isa{rule\_format} attribute will remove the quantifiers 
   1.481  before the theorem is stored.
   1.482  \begin{isabelle}
   1.483 -\isacommand{lemma}\ Br\_neq\_left\ [rule\_format]:\ "l\ \isasymin \
   1.484 -bt(A)\ ==>\ \isasymforall x\ r.\ Br(x,l,r)\isasymnoteq{}l"\isanewline
   1.485 +\isacommand{lemma}\ Br\_neq\_left\ [rule\_format]:\ "l\isasymin bt(A)\ ==>\ \isasymforall x\ r.\ Br(x,l,r)\isasymnoteq{}l"\isanewline
   1.486  \ 1.\ l\ \isasymin \ bt(A)\ \isasymLongrightarrow \ \isasymforall x\ r.\ Br(x,\ l,\ r)\ \isasymnoteq \ l%
   1.487  \end{isabelle}
   1.488  This can be proved by the structural induction tactic:
   1.489 @@ -1944,12 +1944,12 @@
   1.490  
   1.491  Mixfix syntax is sometimes convenient.  The theory \isa{Induct/PropLog} makes a
   1.492  deep embedding of propositional logic:
   1.493 -\begin{ttbox}\isastyleminor
   1.494 +\begin{alltt*}\isastyleminor
   1.495  consts     prop :: i
   1.496  datatype  "prop" = Fls
   1.497                   | Var ("n \isasymin nat")                ("#_" [100] 100)
   1.498                   | "=>" ("p \isasymin prop", "q \isasymin prop")   (infixr 90)
   1.499 -\end{ttbox}
   1.500 +\end{alltt*}
   1.501  The second constructor has a special $\#n$ syntax, while the third constructor
   1.502  is an infixed arrow.
   1.503  
   1.504 @@ -1957,7 +1957,7 @@
   1.505  \subsubsection{A giant enumeration type}
   1.506  
   1.507  This example shows a datatype that consists of 60 constructors:
   1.508 -\begin{ttbox}\isastyleminor
   1.509 +\begin{alltt*}\isastyleminor
   1.510  consts  enum :: i
   1.511  datatype
   1.512    "enum" = C00 | C01 | C02 | C03 | C04 | C05 | C06 | C07 | C08 | C09
   1.513 @@ -1967,7 +1967,7 @@
   1.514           | C40 | C41 | C42 | C43 | C44 | C45 | C46 | C47 | C48 | C49
   1.515           | C50 | C51 | C52 | C53 | C54 | C55 | C56 | C57 | C58 | C59
   1.516  end
   1.517 -\end{ttbox}
   1.518 +\end{alltt*}
   1.519  The datatype package scales well.  Even though all properties are proved
   1.520  rather than assumed, full processing of this definition takes around two seconds
   1.521  (on a 1.8GHz machine).  The constructors have a balanced representation,
   1.522 @@ -2220,11 +2220,11 @@
   1.523  Here is the output that results (with the flag set) when the
   1.524  \isa{type_intros} and \isa{type_elims} are omitted from the inductive
   1.525  definition above:
   1.526 -\begin{ttbox}\isastyleminor
   1.527 +\begin{alltt*}\isastyleminor
   1.528  Inductive definition Finite.Fin
   1.529  Fin(A) ==
   1.530  lfp(Pow(A),
   1.531 -    \%X. {z \isasymin Pow(A) . z = 0 | ({\isasymexists}a b. z = cons(a, b) & a \isasymin A & b \isasymin X)})
   1.532 +    \%X. {z\isasymin{}Pow(A) . z = 0 | ({\isasymexists}a b. z = cons(a,b) & a\isasymin{}A & b\isasymin{}X)})
   1.533    Proving monotonicity...
   1.534  \ttbreak
   1.535    Proving the introduction rules...
   1.536 @@ -2236,11 +2236,11 @@
   1.537  0 \isasymin Fin(A)
   1.538   1. 0 \isasymin Pow(A)
   1.539  *** prove_goal: tactic failed
   1.540 -\end{ttbox}
   1.541 +\end{alltt*}
   1.542  We see the need to supply theorems to let the package prove
   1.543  $\emptyset\in\isa{Pow}(A)$.  Restoring the \isa{type_intros} but not the
   1.544  \isa{type_elims}, we again get an error message:
   1.545 -\begin{ttbox}\isastyleminor
   1.546 +\begin{alltt*}\isastyleminor
   1.547  The type-checking subgoal:
   1.548  0 \isasymin Fin(A)
   1.549   1. 0 \isasymin Pow(A)
   1.550 @@ -2257,7 +2257,7 @@
   1.551  cons(a, b) \isasymin Fin(A)
   1.552   1. [| a \isasymin A; b \isasymin Pow(A) |] ==> cons(a, b) \isasymin Pow(A)
   1.553  *** prove_goal: tactic failed
   1.554 -\end{ttbox}
   1.555 +\end{alltt*}
   1.556  The first rule has been type-checked, but the second one has failed.  The
   1.557  simplest solution to such problems is to prove the failed subgoal separately
   1.558  and to supply it under \isa{type_intros}.  The solution actually used is
   1.559 @@ -2341,12 +2341,12 @@
   1.560  elsewhere~\cite{paulson-generic}.  The theory first defines the
   1.561  datatype
   1.562  \isa{comb} of combinators:
   1.563 -\begin{ttbox}\isastyleminor
   1.564 +\begin{alltt*}\isastyleminor
   1.565  consts comb :: i
   1.566  datatype  "comb" = K
   1.567                   | S
   1.568                   | "#" ("p \isasymin comb", "q \isasymin comb")   (infixl 90)
   1.569 -\end{ttbox}
   1.570 +\end{alltt*}
   1.571  The theory goes on to define contraction and parallel contraction
   1.572  inductively.  Then the theory \isa{Induct/Comb.thy} defines special
   1.573  cases of contraction, such as this one:
   1.574 @@ -2396,7 +2396,7 @@
   1.575  not yet been written up anywhere.  Here is a summary:
   1.576  \begin{itemize}
   1.577  \item Theory \isa{Rel} defines the basic properties of relations, such as
   1.578 -  (ir)reflexivity, (a)symmetry, and transitivity.
   1.579 +  reflexivity, symmetry and transitivity.
   1.580  
   1.581  \item Theory \isa{EquivClass} develops a theory of equivalence
   1.582    classes, not using the Axiom of Choice.