src/HOL/Probability/Measure_Space.thy
changeset 48565 05663f75964c
child 48632 dfe747e72fa8
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Probability/Measure_Space.thy	Mon Apr 23 12:14:35 2012 +0200
     1.3 @@ -0,0 +1,1457 @@
     1.4 +(*  Title:      HOL/Probability/Measure_Space.thy
     1.5 +    Author:     Lawrence C Paulson
     1.6 +    Author:     Johannes Hölzl, TU München
     1.7 +    Author:     Armin Heller, TU München
     1.8 +*)
     1.9 +
    1.10 +header {* Measure spaces and their properties *}
    1.11 +
    1.12 +theory Measure_Space
    1.13 +imports
    1.14 +  Sigma_Algebra
    1.15 +  "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits"
    1.16 +begin
    1.17 +
    1.18 +lemma suminf_eq_setsum:
    1.19 +  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, t2_space}"
    1.20 +  assumes "finite {i. f i \<noteq> 0}" (is "finite ?P")
    1.21 +  shows "(\<Sum>i. f i) = (\<Sum>i | f i \<noteq> 0. f i)"
    1.22 +proof cases
    1.23 +  assume "?P \<noteq> {}"
    1.24 +  have [dest!]: "\<And>i. Suc (Max ?P) \<le> i \<Longrightarrow> f i = 0"
    1.25 +    using `finite ?P` `?P \<noteq> {}` by (auto simp: Suc_le_eq) 
    1.26 +  have "(\<Sum>i. f i) = (\<Sum>i<Suc (Max ?P). f i)"
    1.27 +    by (rule suminf_finite) auto
    1.28 +  also have "\<dots> = (\<Sum>i | f i \<noteq> 0. f i)"
    1.29 +    using `finite ?P` `?P \<noteq> {}`
    1.30 +    by (intro setsum_mono_zero_right) (auto simp: less_Suc_eq_le)
    1.31 +  finally show ?thesis .
    1.32 +qed simp
    1.33 +
    1.34 +lemma suminf_cmult_indicator:
    1.35 +  fixes f :: "nat \<Rightarrow> ereal"
    1.36 +  assumes "disjoint_family A" "x \<in> A i" "\<And>i. 0 \<le> f i"
    1.37 +  shows "(\<Sum>n. f n * indicator (A n) x) = f i"
    1.38 +proof -
    1.39 +  have **: "\<And>n. f n * indicator (A n) x = (if n = i then f n else 0 :: ereal)"
    1.40 +    using `x \<in> A i` assms unfolding disjoint_family_on_def indicator_def by auto
    1.41 +  then have "\<And>n. (\<Sum>j<n. f j * indicator (A j) x) = (if i < n then f i else 0 :: ereal)"
    1.42 +    by (auto simp: setsum_cases)
    1.43 +  moreover have "(SUP n. if i < n then f i else 0) = (f i :: ereal)"
    1.44 +  proof (rule ereal_SUPI)
    1.45 +    fix y :: ereal assume "\<And>n. n \<in> UNIV \<Longrightarrow> (if i < n then f i else 0) \<le> y"
    1.46 +    from this[of "Suc i"] show "f i \<le> y" by auto
    1.47 +  qed (insert assms, simp)
    1.48 +  ultimately show ?thesis using assms
    1.49 +    by (subst suminf_ereal_eq_SUPR) (auto simp: indicator_def)
    1.50 +qed
    1.51 +
    1.52 +lemma suminf_indicator:
    1.53 +  assumes "disjoint_family A"
    1.54 +  shows "(\<Sum>n. indicator (A n) x :: ereal) = indicator (\<Union>i. A i) x"
    1.55 +proof cases
    1.56 +  assume *: "x \<in> (\<Union>i. A i)"
    1.57 +  then obtain i where "x \<in> A i" by auto
    1.58 +  from suminf_cmult_indicator[OF assms(1), OF `x \<in> A i`, of "\<lambda>k. 1"]
    1.59 +  show ?thesis using * by simp
    1.60 +qed simp
    1.61 +
    1.62 +text {*
    1.63 +  The type for emeasure spaces is already defined in @{theory Sigma_Algebra}, as it is also used to
    1.64 +  represent sigma algebras (with an arbitrary emeasure).
    1.65 +*}
    1.66 +
    1.67 +section "Extend binary sets"
    1.68 +
    1.69 +lemma LIMSEQ_binaryset:
    1.70 +  assumes f: "f {} = 0"
    1.71 +  shows  "(\<lambda>n. \<Sum>i<n. f (binaryset A B i)) ----> f A + f B"
    1.72 +proof -
    1.73 +  have "(\<lambda>n. \<Sum>i < Suc (Suc n). f (binaryset A B i)) = (\<lambda>n. f A + f B)"
    1.74 +    proof
    1.75 +      fix n
    1.76 +      show "(\<Sum>i < Suc (Suc n). f (binaryset A B i)) = f A + f B"
    1.77 +        by (induct n)  (auto simp add: binaryset_def f)
    1.78 +    qed
    1.79 +  moreover
    1.80 +  have "... ----> f A + f B" by (rule tendsto_const)
    1.81 +  ultimately
    1.82 +  have "(\<lambda>n. \<Sum>i< Suc (Suc n). f (binaryset A B i)) ----> f A + f B"
    1.83 +    by metis
    1.84 +  hence "(\<lambda>n. \<Sum>i< n+2. f (binaryset A B i)) ----> f A + f B"
    1.85 +    by simp
    1.86 +  thus ?thesis by (rule LIMSEQ_offset [where k=2])
    1.87 +qed
    1.88 +
    1.89 +lemma binaryset_sums:
    1.90 +  assumes f: "f {} = 0"
    1.91 +  shows  "(\<lambda>n. f (binaryset A B n)) sums (f A + f B)"
    1.92 +    by (simp add: sums_def LIMSEQ_binaryset [where f=f, OF f] atLeast0LessThan)
    1.93 +
    1.94 +lemma suminf_binaryset_eq:
    1.95 +  fixes f :: "'a set \<Rightarrow> 'b::{comm_monoid_add, t2_space}"
    1.96 +  shows "f {} = 0 \<Longrightarrow> (\<Sum>n. f (binaryset A B n)) = f A + f B"
    1.97 +  by (metis binaryset_sums sums_unique)
    1.98 +
    1.99 +section {* Properties of a premeasure @{term \<mu>} *}
   1.100 +
   1.101 +text {*
   1.102 +  The definitions for @{const positive} and @{const countably_additive} should be here, by they are
   1.103 +  necessary to define @{typ "'a measure"} in @{theory Sigma_Algebra}.
   1.104 +*}
   1.105 +
   1.106 +definition additive where
   1.107 +  "additive M \<mu> \<longleftrightarrow> (\<forall>x\<in>M. \<forall>y\<in>M. x \<inter> y = {} \<longrightarrow> \<mu> (x \<union> y) = \<mu> x + \<mu> y)"
   1.108 +
   1.109 +definition increasing where
   1.110 +  "increasing M \<mu> \<longleftrightarrow> (\<forall>x\<in>M. \<forall>y\<in>M. x \<subseteq> y \<longrightarrow> \<mu> x \<le> \<mu> y)"
   1.111 +
   1.112 +lemma positiveD_empty:
   1.113 +  "positive M f \<Longrightarrow> f {} = 0"
   1.114 +  by (auto simp add: positive_def)
   1.115 +
   1.116 +lemma additiveD:
   1.117 +  "additive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> M \<Longrightarrow> y \<in> M \<Longrightarrow> f (x \<union> y) = f x + f y"
   1.118 +  by (auto simp add: additive_def)
   1.119 +
   1.120 +lemma increasingD:
   1.121 +  "increasing M f \<Longrightarrow> x \<subseteq> y \<Longrightarrow> x\<in>M \<Longrightarrow> y\<in>M \<Longrightarrow> f x \<le> f y"
   1.122 +  by (auto simp add: increasing_def)
   1.123 +
   1.124 +lemma countably_additiveI:
   1.125 +  "(\<And>A. range A \<subseteq> M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i. A i) \<in> M \<Longrightarrow> (\<Sum>i. f (A i)) = f (\<Union>i. A i))
   1.126 +  \<Longrightarrow> countably_additive M f"
   1.127 +  by (simp add: countably_additive_def)
   1.128 +
   1.129 +lemma (in ring_of_sets) disjointed_additive:
   1.130 +  assumes f: "positive M f" "additive M f" and A: "range A \<subseteq> M" "incseq A"
   1.131 +  shows "(\<Sum>i\<le>n. f (disjointed A i)) = f (A n)"
   1.132 +proof (induct n)
   1.133 +  case (Suc n)
   1.134 +  then have "(\<Sum>i\<le>Suc n. f (disjointed A i)) = f (A n) + f (disjointed A (Suc n))"
   1.135 +    by simp
   1.136 +  also have "\<dots> = f (A n \<union> disjointed A (Suc n))"
   1.137 +    using A by (subst f(2)[THEN additiveD]) (auto simp: disjointed_incseq)
   1.138 +  also have "A n \<union> disjointed A (Suc n) = A (Suc n)"
   1.139 +    using `incseq A` by (auto dest: incseq_SucD simp: disjointed_incseq)
   1.140 +  finally show ?case .
   1.141 +qed simp
   1.142 +
   1.143 +lemma (in ring_of_sets) additive_sum:
   1.144 +  fixes A:: "'i \<Rightarrow> 'a set"
   1.145 +  assumes f: "positive M f" and ad: "additive M f" and "finite S"
   1.146 +      and A: "A`S \<subseteq> M"
   1.147 +      and disj: "disjoint_family_on A S"
   1.148 +  shows  "(\<Sum>i\<in>S. f (A i)) = f (\<Union>i\<in>S. A i)"
   1.149 +using `finite S` disj A proof induct
   1.150 +  case empty show ?case using f by (simp add: positive_def)
   1.151 +next
   1.152 +  case (insert s S)
   1.153 +  then have "A s \<inter> (\<Union>i\<in>S. A i) = {}"
   1.154 +    by (auto simp add: disjoint_family_on_def neq_iff)
   1.155 +  moreover
   1.156 +  have "A s \<in> M" using insert by blast
   1.157 +  moreover have "(\<Union>i\<in>S. A i) \<in> M"
   1.158 +    using insert `finite S` by auto
   1.159 +  moreover
   1.160 +  ultimately have "f (A s \<union> (\<Union>i\<in>S. A i)) = f (A s) + f(\<Union>i\<in>S. A i)"
   1.161 +    using ad UNION_in_sets A by (auto simp add: additive_def)
   1.162 +  with insert show ?case using ad disjoint_family_on_mono[of S "insert s S" A]
   1.163 +    by (auto simp add: additive_def subset_insertI)
   1.164 +qed
   1.165 +
   1.166 +lemma (in ring_of_sets) additive_increasing:
   1.167 +  assumes posf: "positive M f" and addf: "additive M f"
   1.168 +  shows "increasing M f"
   1.169 +proof (auto simp add: increasing_def)
   1.170 +  fix x y
   1.171 +  assume xy: "x \<in> M" "y \<in> M" "x \<subseteq> y"
   1.172 +  then have "y - x \<in> M" by auto
   1.173 +  then have "0 \<le> f (y-x)" using posf[unfolded positive_def] by auto
   1.174 +  then have "f x + 0 \<le> f x + f (y-x)" by (intro add_left_mono) auto
   1.175 +  also have "... = f (x \<union> (y-x))" using addf
   1.176 +    by (auto simp add: additive_def) (metis Diff_disjoint Un_Diff_cancel Diff xy(1,2))
   1.177 +  also have "... = f y"
   1.178 +    by (metis Un_Diff_cancel Un_absorb1 xy(3))
   1.179 +  finally show "f x \<le> f y" by simp
   1.180 +qed
   1.181 +
   1.182 +lemma (in ring_of_sets) countably_additive_additive:
   1.183 +  assumes posf: "positive M f" and ca: "countably_additive M f"
   1.184 +  shows "additive M f"
   1.185 +proof (auto simp add: additive_def)
   1.186 +  fix x y
   1.187 +  assume x: "x \<in> M" and y: "y \<in> M" and "x \<inter> y = {}"
   1.188 +  hence "disjoint_family (binaryset x y)"
   1.189 +    by (auto simp add: disjoint_family_on_def binaryset_def)
   1.190 +  hence "range (binaryset x y) \<subseteq> M \<longrightarrow>
   1.191 +         (\<Union>i. binaryset x y i) \<in> M \<longrightarrow>
   1.192 +         f (\<Union>i. binaryset x y i) = (\<Sum> n. f (binaryset x y n))"
   1.193 +    using ca
   1.194 +    by (simp add: countably_additive_def)
   1.195 +  hence "{x,y,{}} \<subseteq> M \<longrightarrow> x \<union> y \<in> M \<longrightarrow>
   1.196 +         f (x \<union> y) = (\<Sum>n. f (binaryset x y n))"
   1.197 +    by (simp add: range_binaryset_eq UN_binaryset_eq)
   1.198 +  thus "f (x \<union> y) = f x + f y" using posf x y
   1.199 +    by (auto simp add: Un suminf_binaryset_eq positive_def)
   1.200 +qed
   1.201 +
   1.202 +lemma (in algebra) increasing_additive_bound:
   1.203 +  fixes A:: "nat \<Rightarrow> 'a set" and  f :: "'a set \<Rightarrow> ereal"
   1.204 +  assumes f: "positive M f" and ad: "additive M f"
   1.205 +      and inc: "increasing M f"
   1.206 +      and A: "range A \<subseteq> M"
   1.207 +      and disj: "disjoint_family A"
   1.208 +  shows  "(\<Sum>i. f (A i)) \<le> f \<Omega>"
   1.209 +proof (safe intro!: suminf_bound)
   1.210 +  fix N
   1.211 +  note disj_N = disjoint_family_on_mono[OF _ disj, of "{..<N}"]
   1.212 +  have "(\<Sum>i<N. f (A i)) = f (\<Union>i\<in>{..<N}. A i)"
   1.213 +    using A by (intro additive_sum [OF f ad _ _]) (auto simp: disj_N)
   1.214 +  also have "... \<le> f \<Omega>" using space_closed A
   1.215 +    by (intro increasingD[OF inc] finite_UN) auto
   1.216 +  finally show "(\<Sum>i<N. f (A i)) \<le> f \<Omega>" by simp
   1.217 +qed (insert f A, auto simp: positive_def)
   1.218 +
   1.219 +lemma (in ring_of_sets) countably_additiveI_finite:
   1.220 +  assumes "finite \<Omega>" "positive M \<mu>" "additive M \<mu>"
   1.221 +  shows "countably_additive M \<mu>"
   1.222 +proof (rule countably_additiveI)
   1.223 +  fix F :: "nat \<Rightarrow> 'a set" assume F: "range F \<subseteq> M" "(\<Union>i. F i) \<in> M" and disj: "disjoint_family F"
   1.224 +
   1.225 +  have "\<forall>i\<in>{i. F i \<noteq> {}}. \<exists>x. x \<in> F i" by auto
   1.226 +  from bchoice[OF this] obtain f where f: "\<And>i. F i \<noteq> {} \<Longrightarrow> f i \<in> F i" by auto
   1.227 +
   1.228 +  have inj_f: "inj_on f {i. F i \<noteq> {}}"
   1.229 +  proof (rule inj_onI, simp)
   1.230 +    fix i j a b assume *: "f i = f j" "F i \<noteq> {}" "F j \<noteq> {}"
   1.231 +    then have "f i \<in> F i" "f j \<in> F j" using f by force+
   1.232 +    with disj * show "i = j" by (auto simp: disjoint_family_on_def)
   1.233 +  qed
   1.234 +  have "finite (\<Union>i. F i)"
   1.235 +    by (metis F(2) assms(1) infinite_super sets_into_space)
   1.236 +
   1.237 +  have F_subset: "{i. \<mu> (F i) \<noteq> 0} \<subseteq> {i. F i \<noteq> {}}"
   1.238 +    by (auto simp: positiveD_empty[OF `positive M \<mu>`])
   1.239 +  moreover have fin_not_empty: "finite {i. F i \<noteq> {}}"
   1.240 +  proof (rule finite_imageD)
   1.241 +    from f have "f`{i. F i \<noteq> {}} \<subseteq> (\<Union>i. F i)" by auto
   1.242 +    then show "finite (f`{i. F i \<noteq> {}})"
   1.243 +      by (rule finite_subset) fact
   1.244 +  qed fact
   1.245 +  ultimately have fin_not_0: "finite {i. \<mu> (F i) \<noteq> 0}"
   1.246 +    by (rule finite_subset)
   1.247 +
   1.248 +  have disj_not_empty: "disjoint_family_on F {i. F i \<noteq> {}}"
   1.249 +    using disj by (auto simp: disjoint_family_on_def)
   1.250 +
   1.251 +  from fin_not_0 have "(\<Sum>i. \<mu> (F i)) = (\<Sum>i | \<mu> (F i) \<noteq> 0. \<mu> (F i))"
   1.252 +    by (rule suminf_eq_setsum)
   1.253 +  also have "\<dots> = (\<Sum>i | F i \<noteq> {}. \<mu> (F i))"
   1.254 +    using fin_not_empty F_subset by (rule setsum_mono_zero_left) auto
   1.255 +  also have "\<dots> = \<mu> (\<Union>i\<in>{i. F i \<noteq> {}}. F i)"
   1.256 +    using `positive M \<mu>` `additive M \<mu>` fin_not_empty disj_not_empty F by (intro additive_sum) auto
   1.257 +  also have "\<dots> = \<mu> (\<Union>i. F i)"
   1.258 +    by (rule arg_cong[where f=\<mu>]) auto
   1.259 +  finally show "(\<Sum>i. \<mu> (F i)) = \<mu> (\<Union>i. F i)" .
   1.260 +qed
   1.261 +
   1.262 +section {* Properties of @{const emeasure} *}
   1.263 +
   1.264 +lemma emeasure_positive: "positive (sets M) (emeasure M)"
   1.265 +  by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
   1.266 +
   1.267 +lemma emeasure_empty[simp, intro]: "emeasure M {} = 0"
   1.268 +  using emeasure_positive[of M] by (simp add: positive_def)
   1.269 +
   1.270 +lemma emeasure_nonneg[intro!]: "0 \<le> emeasure M A"
   1.271 +  using emeasure_notin_sets[of A M] emeasure_positive[of M]
   1.272 +  by (cases "A \<in> sets M") (auto simp: positive_def)
   1.273 +
   1.274 +lemma emeasure_not_MInf[simp]: "emeasure M A \<noteq> - \<infinity>"
   1.275 +  using emeasure_nonneg[of M A] by auto
   1.276 +  
   1.277 +lemma emeasure_countably_additive: "countably_additive (sets M) (emeasure M)"
   1.278 +  by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
   1.279 +
   1.280 +lemma suminf_emeasure:
   1.281 +  "range A \<subseteq> sets M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Sum>i. emeasure M (A i)) = emeasure M (\<Union>i. A i)"
   1.282 +  using countable_UN[of A UNIV M] emeasure_countably_additive[of M]
   1.283 +  by (simp add: countably_additive_def)
   1.284 +
   1.285 +lemma emeasure_additive: "additive (sets M) (emeasure M)"
   1.286 +  by (metis countably_additive_additive emeasure_positive emeasure_countably_additive)
   1.287 +
   1.288 +lemma plus_emeasure:
   1.289 +  "a \<in> sets M \<Longrightarrow> b \<in> sets M \<Longrightarrow> a \<inter> b = {} \<Longrightarrow> emeasure M a + emeasure M b = emeasure M (a \<union> b)"
   1.290 +  using additiveD[OF emeasure_additive] ..
   1.291 +
   1.292 +lemma setsum_emeasure:
   1.293 +  "F`I \<subseteq> sets M \<Longrightarrow> disjoint_family_on F I \<Longrightarrow> finite I \<Longrightarrow>
   1.294 +    (\<Sum>i\<in>I. emeasure M (F i)) = emeasure M (\<Union>i\<in>I. F i)"
   1.295 +  by (metis additive_sum emeasure_positive emeasure_additive)
   1.296 +
   1.297 +lemma emeasure_mono:
   1.298 +  "a \<subseteq> b \<Longrightarrow> b \<in> sets M \<Longrightarrow> emeasure M a \<le> emeasure M b"
   1.299 +  by (metis additive_increasing emeasure_additive emeasure_nonneg emeasure_notin_sets
   1.300 +            emeasure_positive increasingD)
   1.301 +
   1.302 +lemma emeasure_space:
   1.303 +  "emeasure M A \<le> emeasure M (space M)"
   1.304 +  by (metis emeasure_mono emeasure_nonneg emeasure_notin_sets sets_into_space top)
   1.305 +
   1.306 +lemma emeasure_compl:
   1.307 +  assumes s: "s \<in> sets M" and fin: "emeasure M s \<noteq> \<infinity>"
   1.308 +  shows "emeasure M (space M - s) = emeasure M (space M) - emeasure M s"
   1.309 +proof -
   1.310 +  from s have "0 \<le> emeasure M s" by auto
   1.311 +  have "emeasure M (space M) = emeasure M (s \<union> (space M - s))" using s
   1.312 +    by (metis Un_Diff_cancel Un_absorb1 s sets_into_space)
   1.313 +  also have "... = emeasure M s + emeasure M (space M - s)"
   1.314 +    by (rule plus_emeasure[symmetric]) (auto simp add: s)
   1.315 +  finally have "emeasure M (space M) = emeasure M s + emeasure M (space M - s)" .
   1.316 +  then show ?thesis
   1.317 +    using fin `0 \<le> emeasure M s`
   1.318 +    unfolding ereal_eq_minus_iff by (auto simp: ac_simps)
   1.319 +qed
   1.320 +
   1.321 +lemma emeasure_Diff:
   1.322 +  assumes finite: "emeasure M B \<noteq> \<infinity>"
   1.323 +  and measurable: "A \<in> sets M" "B \<in> sets M" "B \<subseteq> A"
   1.324 +  shows "emeasure M (A - B) = emeasure M A - emeasure M B"
   1.325 +proof -
   1.326 +  have "0 \<le> emeasure M B" using assms by auto
   1.327 +  have "(A - B) \<union> B = A" using `B \<subseteq> A` by auto
   1.328 +  then have "emeasure M A = emeasure M ((A - B) \<union> B)" by simp
   1.329 +  also have "\<dots> = emeasure M (A - B) + emeasure M B"
   1.330 +    using measurable by (subst plus_emeasure[symmetric]) auto
   1.331 +  finally show "emeasure M (A - B) = emeasure M A - emeasure M B"
   1.332 +    unfolding ereal_eq_minus_iff
   1.333 +    using finite `0 \<le> emeasure M B` by auto
   1.334 +qed
   1.335 +
   1.336 +lemma emeasure_countable_increasing:
   1.337 +  assumes A: "range A \<subseteq> sets M"
   1.338 +      and A0: "A 0 = {}"
   1.339 +      and ASuc: "\<And>n. A n \<subseteq> A (Suc n)"
   1.340 +  shows "(SUP n. emeasure M (A n)) = emeasure M (\<Union>i. A i)"
   1.341 +proof -
   1.342 +  { fix n
   1.343 +    have "emeasure M (A n) = (\<Sum>i<n. emeasure M (A (Suc i) - A i))"
   1.344 +      proof (induct n)
   1.345 +        case 0 thus ?case by (auto simp add: A0)
   1.346 +      next
   1.347 +        case (Suc m)
   1.348 +        have "A (Suc m) = A m \<union> (A (Suc m) - A m)"
   1.349 +          by (metis ASuc Un_Diff_cancel Un_absorb1)
   1.350 +        hence "emeasure M (A (Suc m)) =
   1.351 +               emeasure M (A m) + emeasure M (A (Suc m) - A m)"
   1.352 +          by (subst plus_emeasure)
   1.353 +             (auto simp add: emeasure_additive range_subsetD [OF A])
   1.354 +        with Suc show ?case
   1.355 +          by simp
   1.356 +      qed }
   1.357 +  note Meq = this
   1.358 +  have Aeq: "(\<Union>i. A (Suc i) - A i) = (\<Union>i. A i)"
   1.359 +    proof (rule UN_finite2_eq [where k=1], simp)
   1.360 +      fix i
   1.361 +      show "(\<Union>i\<in>{0..<i}. A (Suc i) - A i) = (\<Union>i\<in>{0..<Suc i}. A i)"
   1.362 +        proof (induct i)
   1.363 +          case 0 thus ?case by (simp add: A0)
   1.364 +        next
   1.365 +          case (Suc i)
   1.366 +          thus ?case
   1.367 +            by (auto simp add: atLeastLessThanSuc intro: subsetD [OF ASuc])
   1.368 +        qed
   1.369 +    qed
   1.370 +  have A1: "\<And>i. A (Suc i) - A i \<in> sets M"
   1.371 +    by (metis A Diff range_subsetD)
   1.372 +  have A2: "(\<Union>i. A (Suc i) - A i) \<in> sets M"
   1.373 +    by (blast intro: range_subsetD [OF A])
   1.374 +  have "(SUP n. \<Sum>i<n. emeasure M (A (Suc i) - A i)) = (\<Sum>i. emeasure M (A (Suc i) - A i))"
   1.375 +    using A by (auto intro!: suminf_ereal_eq_SUPR[symmetric])
   1.376 +  also have "\<dots> = emeasure M (\<Union>i. A (Suc i) - A i)"
   1.377 +    by (rule suminf_emeasure)
   1.378 +       (auto simp add: disjoint_family_Suc ASuc A1 A2)
   1.379 +  also have "... =  emeasure M (\<Union>i. A i)"
   1.380 +    by (simp add: Aeq)
   1.381 +  finally have "(SUP n. \<Sum>i<n. emeasure M (A (Suc i) - A i)) = emeasure M (\<Union>i. A i)" .
   1.382 +  then show ?thesis by (auto simp add: Meq)
   1.383 +qed
   1.384 +
   1.385 +lemma SUP_emeasure_incseq:
   1.386 +  assumes A: "range A \<subseteq> sets M" and "incseq A"
   1.387 +  shows "(SUP n. emeasure M (A n)) = emeasure M (\<Union>i. A i)"
   1.388 +proof -
   1.389 +  have *: "(SUP n. emeasure M (nat_case {} A (Suc n))) = (SUP n. emeasure M (nat_case {} A n))"
   1.390 +    using A by (auto intro!: SUPR_eq exI split: nat.split)
   1.391 +  have ueq: "(\<Union>i. nat_case {} A i) = (\<Union>i. A i)"
   1.392 +    by (auto simp add: split: nat.splits)
   1.393 +  have meq: "\<And>n. emeasure M (A n) = (emeasure M \<circ> nat_case {} A) (Suc n)"
   1.394 +    by simp
   1.395 +  have "(SUP n. emeasure M (nat_case {} A n)) = emeasure M (\<Union>i. nat_case {} A i)"
   1.396 +    using range_subsetD[OF A] incseq_SucD[OF `incseq A`]
   1.397 +    by (force split: nat.splits intro!: emeasure_countable_increasing)
   1.398 +  also have "emeasure M (\<Union>i. nat_case {} A i) = emeasure M (\<Union>i. A i)"
   1.399 +    by (simp add: ueq)
   1.400 +  finally have "(SUP n. emeasure M (nat_case {} A n)) = emeasure M (\<Union>i. A i)" .
   1.401 +  thus ?thesis unfolding meq * comp_def .
   1.402 +qed
   1.403 +
   1.404 +lemma incseq_emeasure:
   1.405 +  assumes "range B \<subseteq> sets M" "incseq B"
   1.406 +  shows "incseq (\<lambda>i. emeasure M (B i))"
   1.407 +  using assms by (auto simp: incseq_def intro!: emeasure_mono)
   1.408 +
   1.409 +lemma Lim_emeasure_incseq:
   1.410 +  assumes A: "range A \<subseteq> sets M" "incseq A"
   1.411 +  shows "(\<lambda>i. (emeasure M (A i))) ----> emeasure M (\<Union>i. A i)"
   1.412 +  using LIMSEQ_ereal_SUPR[OF incseq_emeasure, OF A]
   1.413 +    SUP_emeasure_incseq[OF A] by simp
   1.414 +
   1.415 +lemma decseq_emeasure:
   1.416 +  assumes "range B \<subseteq> sets M" "decseq B"
   1.417 +  shows "decseq (\<lambda>i. emeasure M (B i))"
   1.418 +  using assms by (auto simp: decseq_def intro!: emeasure_mono)
   1.419 +
   1.420 +lemma INF_emeasure_decseq:
   1.421 +  assumes A: "range A \<subseteq> sets M" and "decseq A"
   1.422 +  and finite: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   1.423 +  shows "(INF n. emeasure M (A n)) = emeasure M (\<Inter>i. A i)"
   1.424 +proof -
   1.425 +  have le_MI: "emeasure M (\<Inter>i. A i) \<le> emeasure M (A 0)"
   1.426 +    using A by (auto intro!: emeasure_mono)
   1.427 +  hence *: "emeasure M (\<Inter>i. A i) \<noteq> \<infinity>" using finite[of 0] by auto
   1.428 +
   1.429 +  have A0: "0 \<le> emeasure M (A 0)" using A by auto
   1.430 +
   1.431 +  have "emeasure M (A 0) - (INF n. emeasure M (A n)) = emeasure M (A 0) + (SUP n. - emeasure M (A n))"
   1.432 +    by (simp add: ereal_SUPR_uminus minus_ereal_def)
   1.433 +  also have "\<dots> = (SUP n. emeasure M (A 0) - emeasure M (A n))"
   1.434 +    unfolding minus_ereal_def using A0 assms
   1.435 +    by (subst SUPR_ereal_add) (auto simp add: decseq_emeasure)
   1.436 +  also have "\<dots> = (SUP n. emeasure M (A 0 - A n))"
   1.437 +    using A finite `decseq A`[unfolded decseq_def] by (subst emeasure_Diff) auto
   1.438 +  also have "\<dots> = emeasure M (\<Union>i. A 0 - A i)"
   1.439 +  proof (rule SUP_emeasure_incseq)
   1.440 +    show "range (\<lambda>n. A 0 - A n) \<subseteq> sets M"
   1.441 +      using A by auto
   1.442 +    show "incseq (\<lambda>n. A 0 - A n)"
   1.443 +      using `decseq A` by (auto simp add: incseq_def decseq_def)
   1.444 +  qed
   1.445 +  also have "\<dots> = emeasure M (A 0) - emeasure M (\<Inter>i. A i)"
   1.446 +    using A finite * by (simp, subst emeasure_Diff) auto
   1.447 +  finally show ?thesis
   1.448 +    unfolding ereal_minus_eq_minus_iff using finite A0 by auto
   1.449 +qed
   1.450 +
   1.451 +lemma Lim_emeasure_decseq:
   1.452 +  assumes A: "range A \<subseteq> sets M" "decseq A" and fin: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   1.453 +  shows "(\<lambda>i. emeasure M (A i)) ----> emeasure M (\<Inter>i. A i)"
   1.454 +  using LIMSEQ_ereal_INFI[OF decseq_emeasure, OF A]
   1.455 +  using INF_emeasure_decseq[OF A fin] by simp
   1.456 +
   1.457 +lemma emeasure_subadditive:
   1.458 +  assumes measurable: "A \<in> sets M" "B \<in> sets M"
   1.459 +  shows "emeasure M (A \<union> B) \<le> emeasure M A + emeasure M B"
   1.460 +proof -
   1.461 +  from plus_emeasure[of A M "B - A"]
   1.462 +  have "emeasure M (A \<union> B) = emeasure M A + emeasure M (B - A)"
   1.463 +    using assms by (simp add: Diff)
   1.464 +  also have "\<dots> \<le> emeasure M A + emeasure M B"
   1.465 +    using assms by (auto intro!: add_left_mono emeasure_mono)
   1.466 +  finally show ?thesis .
   1.467 +qed
   1.468 +
   1.469 +lemma emeasure_subadditive_finite:
   1.470 +  assumes "finite I" "A ` I \<subseteq> sets M"
   1.471 +  shows "emeasure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. emeasure M (A i))"
   1.472 +using assms proof induct
   1.473 +  case (insert i I)
   1.474 +  then have "emeasure M (\<Union>i\<in>insert i I. A i) = emeasure M (A i \<union> (\<Union>i\<in>I. A i))"
   1.475 +    by simp
   1.476 +  also have "\<dots> \<le> emeasure M (A i) + emeasure M (\<Union>i\<in>I. A i)"
   1.477 +    using insert by (intro emeasure_subadditive finite_UN) auto
   1.478 +  also have "\<dots> \<le> emeasure M (A i) + (\<Sum>i\<in>I. emeasure M (A i))"
   1.479 +    using insert by (intro add_mono) auto
   1.480 +  also have "\<dots> = (\<Sum>i\<in>insert i I. emeasure M (A i))"
   1.481 +    using insert by auto
   1.482 +  finally show ?case .
   1.483 +qed simp
   1.484 +
   1.485 +lemma emeasure_subadditive_countably:
   1.486 +  assumes "range f \<subseteq> sets M"
   1.487 +  shows "emeasure M (\<Union>i. f i) \<le> (\<Sum>i. emeasure M (f i))"
   1.488 +proof -
   1.489 +  have "emeasure M (\<Union>i. f i) = emeasure M (\<Union>i. disjointed f i)"
   1.490 +    unfolding UN_disjointed_eq ..
   1.491 +  also have "\<dots> = (\<Sum>i. emeasure M (disjointed f i))"
   1.492 +    using range_disjointed_sets[OF assms] suminf_emeasure[of "disjointed f"]
   1.493 +    by (simp add:  disjoint_family_disjointed comp_def)
   1.494 +  also have "\<dots> \<le> (\<Sum>i. emeasure M (f i))"
   1.495 +    using range_disjointed_sets[OF assms] assms
   1.496 +    by (auto intro!: suminf_le_pos emeasure_mono disjointed_subset)
   1.497 +  finally show ?thesis .
   1.498 +qed
   1.499 +
   1.500 +lemma emeasure_insert:
   1.501 +  assumes sets: "{x} \<in> sets M" "A \<in> sets M" and "x \<notin> A"
   1.502 +  shows "emeasure M (insert x A) = emeasure M {x} + emeasure M A"
   1.503 +proof -
   1.504 +  have "{x} \<inter> A = {}" using `x \<notin> A` by auto
   1.505 +  from plus_emeasure[OF sets this] show ?thesis by simp
   1.506 +qed
   1.507 +
   1.508 +lemma emeasure_eq_setsum_singleton:
   1.509 +  assumes "finite S" "\<And>x. x \<in> S \<Longrightarrow> {x} \<in> sets M"
   1.510 +  shows "emeasure M S = (\<Sum>x\<in>S. emeasure M {x})"
   1.511 +  using setsum_emeasure[of "\<lambda>x. {x}" S M] assms
   1.512 +  by (auto simp: disjoint_family_on_def subset_eq)
   1.513 +
   1.514 +lemma setsum_emeasure_cover:
   1.515 +  assumes "finite S" and "A \<in> sets M" and br_in_M: "B ` S \<subseteq> sets M"
   1.516 +  assumes A: "A \<subseteq> (\<Union>i\<in>S. B i)"
   1.517 +  assumes disj: "disjoint_family_on B S"
   1.518 +  shows "emeasure M A = (\<Sum>i\<in>S. emeasure M (A \<inter> (B i)))"
   1.519 +proof -
   1.520 +  have "(\<Sum>i\<in>S. emeasure M (A \<inter> (B i))) = emeasure M (\<Union>i\<in>S. A \<inter> (B i))"
   1.521 +  proof (rule setsum_emeasure)
   1.522 +    show "disjoint_family_on (\<lambda>i. A \<inter> B i) S"
   1.523 +      using `disjoint_family_on B S`
   1.524 +      unfolding disjoint_family_on_def by auto
   1.525 +  qed (insert assms, auto)
   1.526 +  also have "(\<Union>i\<in>S. A \<inter> (B i)) = A"
   1.527 +    using A by auto
   1.528 +  finally show ?thesis by simp
   1.529 +qed
   1.530 +
   1.531 +lemma emeasure_eq_0:
   1.532 +  "N \<in> sets M \<Longrightarrow> emeasure M N = 0 \<Longrightarrow> K \<subseteq> N \<Longrightarrow> emeasure M K = 0"
   1.533 +  by (metis emeasure_mono emeasure_nonneg order_eq_iff)
   1.534 +
   1.535 +lemma emeasure_UN_eq_0:
   1.536 +  assumes "\<And>i::nat. emeasure M (N i) = 0" and "range N \<subseteq> sets M"
   1.537 +  shows "emeasure M (\<Union> i. N i) = 0"
   1.538 +proof -
   1.539 +  have "0 \<le> emeasure M (\<Union> i. N i)" using assms by auto
   1.540 +  moreover have "emeasure M (\<Union> i. N i) \<le> 0"
   1.541 +    using emeasure_subadditive_countably[OF assms(2)] assms(1) by simp
   1.542 +  ultimately show ?thesis by simp
   1.543 +qed
   1.544 +
   1.545 +lemma measure_eqI_finite:
   1.546 +  assumes [simp]: "sets M = Pow A" "sets N = Pow A" and "finite A"
   1.547 +  assumes eq: "\<And>a. a \<in> A \<Longrightarrow> emeasure M {a} = emeasure N {a}"
   1.548 +  shows "M = N"
   1.549 +proof (rule measure_eqI)
   1.550 +  fix X assume "X \<in> sets M"
   1.551 +  then have X: "X \<subseteq> A" by auto
   1.552 +  then have "emeasure M X = (\<Sum>a\<in>X. emeasure M {a})"
   1.553 +    using `finite A` by (subst emeasure_eq_setsum_singleton) (auto dest: finite_subset)
   1.554 +  also have "\<dots> = (\<Sum>a\<in>X. emeasure N {a})"
   1.555 +    using X eq by (auto intro!: setsum_cong)
   1.556 +  also have "\<dots> = emeasure N X"
   1.557 +    using X `finite A` by (subst emeasure_eq_setsum_singleton) (auto dest: finite_subset)
   1.558 +  finally show "emeasure M X = emeasure N X" .
   1.559 +qed simp
   1.560 +
   1.561 +lemma measure_eqI_generator_eq:
   1.562 +  fixes M N :: "'a measure" and E :: "'a set set" and A :: "nat \<Rightarrow> 'a set"
   1.563 +  assumes "Int_stable E" "E \<subseteq> Pow \<Omega>"
   1.564 +  and eq: "\<And>X. X \<in> E \<Longrightarrow> emeasure M X = emeasure N X"
   1.565 +  and M: "sets M = sigma_sets \<Omega> E"
   1.566 +  and N: "sets N = sigma_sets \<Omega> E"
   1.567 +  and A: "range A \<subseteq> E" "incseq A" "(\<Union>i. A i) = \<Omega>" "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   1.568 +  shows "M = N"
   1.569 +proof -
   1.570 +  let ?D = "\<lambda>F. {D. D \<in> sigma_sets \<Omega> E \<and> emeasure M (F \<inter> D) = emeasure N (F \<inter> D)}"
   1.571 +  interpret S: sigma_algebra \<Omega> "sigma_sets \<Omega> E" by (rule sigma_algebra_sigma_sets) fact
   1.572 +  { fix F assume "F \<in> E" and "emeasure M F \<noteq> \<infinity>"
   1.573 +    then have [intro]: "F \<in> sigma_sets \<Omega> E" by auto
   1.574 +    have "emeasure N F \<noteq> \<infinity>" using `emeasure M F \<noteq> \<infinity>` `F \<in> E` eq by simp
   1.575 +    interpret D: dynkin_system \<Omega> "?D F"
   1.576 +    proof (rule dynkin_systemI, simp_all)
   1.577 +      fix A assume "A \<in> sigma_sets \<Omega> E \<and> emeasure M (F \<inter> A) = emeasure N (F \<inter> A)"
   1.578 +      then show "A \<subseteq> \<Omega>" using S.sets_into_space by auto
   1.579 +    next
   1.580 +      have "F \<inter> \<Omega> = F" using `F \<in> E` `E \<subseteq> Pow \<Omega>` by auto
   1.581 +      then show "emeasure M (F \<inter> \<Omega>) = emeasure N (F \<inter> \<Omega>)"
   1.582 +        using `F \<in> E` eq by (auto intro: sigma_sets_top)
   1.583 +    next
   1.584 +      fix A assume *: "A \<in> sigma_sets \<Omega> E \<and> emeasure M (F \<inter> A) = emeasure N (F \<inter> A)"
   1.585 +      then have **: "F \<inter> (\<Omega> - A) = F - (F \<inter> A)"
   1.586 +        and [intro]: "F \<inter> A \<in> sigma_sets \<Omega> E"
   1.587 +        using `F \<in> E` S.sets_into_space by auto
   1.588 +      have "emeasure N (F \<inter> A) \<le> emeasure N F" by (auto intro!: emeasure_mono simp: M N)
   1.589 +      then have "emeasure N (F \<inter> A) \<noteq> \<infinity>" using `emeasure N F \<noteq> \<infinity>` by auto
   1.590 +      have "emeasure M (F \<inter> A) \<le> emeasure M F" by (auto intro!: emeasure_mono simp: M N)
   1.591 +      then have "emeasure M (F \<inter> A) \<noteq> \<infinity>" using `emeasure M F \<noteq> \<infinity>` by auto
   1.592 +      then have "emeasure M (F \<inter> (\<Omega> - A)) = emeasure M F - emeasure M (F \<inter> A)" unfolding **
   1.593 +        using `F \<inter> A \<in> sigma_sets \<Omega> E` by (auto intro!: emeasure_Diff simp: M N)
   1.594 +      also have "\<dots> = emeasure N F - emeasure N (F \<inter> A)" using eq `F \<in> E` * by simp
   1.595 +      also have "\<dots> = emeasure N (F \<inter> (\<Omega> - A))" unfolding **
   1.596 +        using `F \<inter> A \<in> sigma_sets \<Omega> E` `emeasure N (F \<inter> A) \<noteq> \<infinity>`
   1.597 +        by (auto intro!: emeasure_Diff[symmetric] simp: M N)
   1.598 +      finally show "\<Omega> - A \<in> sigma_sets \<Omega> E \<and> emeasure M (F \<inter> (\<Omega> - A)) = emeasure N (F \<inter> (\<Omega> - A))"
   1.599 +        using * by auto
   1.600 +    next
   1.601 +      fix A :: "nat \<Rightarrow> 'a set"
   1.602 +      assume "disjoint_family A" "range A \<subseteq> {X \<in> sigma_sets \<Omega> E. emeasure M (F \<inter> X) = emeasure N (F \<inter> X)}"
   1.603 +      then have A: "range (\<lambda>i. F \<inter> A i) \<subseteq> sigma_sets \<Omega> E" "F \<inter> (\<Union>x. A x) = (\<Union>x. F \<inter> A x)"
   1.604 +        "disjoint_family (\<lambda>i. F \<inter> A i)" "\<And>i. emeasure M (F \<inter> A i) = emeasure N (F \<inter> A i)" "range A \<subseteq> sigma_sets \<Omega> E"
   1.605 +        by (auto simp: disjoint_family_on_def subset_eq)
   1.606 +      then show "(\<Union>x. A x) \<in> sigma_sets \<Omega> E \<and> emeasure M (F \<inter> (\<Union>x. A x)) = emeasure N (F \<inter> (\<Union>x. A x))"
   1.607 +        by (auto simp: M N suminf_emeasure[symmetric] simp del: UN_simps)
   1.608 +    qed
   1.609 +    have *: "sigma_sets \<Omega> E = ?D F"
   1.610 +      using `F \<in> E` `Int_stable E`
   1.611 +      by (intro D.dynkin_lemma) (auto simp add: Int_stable_def eq)
   1.612 +    have "\<And>D. D \<in> sigma_sets \<Omega> E \<Longrightarrow> emeasure M (F \<inter> D) = emeasure N (F \<inter> D)"
   1.613 +      by (subst (asm) *) auto }
   1.614 +  note * = this
   1.615 +  show "M = N"
   1.616 +  proof (rule measure_eqI)
   1.617 +    show "sets M = sets N"
   1.618 +      using M N by simp
   1.619 +    fix X assume "X \<in> sets M"
   1.620 +    then have "X \<in> sigma_sets \<Omega> E"
   1.621 +      using M by simp
   1.622 +    let ?A = "\<lambda>i. A i \<inter> X"
   1.623 +    have "range ?A \<subseteq> sigma_sets \<Omega> E" "incseq ?A"
   1.624 +      using A(1,2) `X \<in> sigma_sets \<Omega> E` by (auto simp: incseq_def)
   1.625 +    moreover
   1.626 +    { fix i have "emeasure M (?A i) = emeasure N (?A i)"
   1.627 +        using *[of "A i" X] `X \<in> sigma_sets \<Omega> E` A finite by auto }
   1.628 +    ultimately show "emeasure M X = emeasure N X"
   1.629 +      using SUP_emeasure_incseq[of ?A M] SUP_emeasure_incseq[of ?A N] A(3) `X \<in> sigma_sets \<Omega> E`
   1.630 +      by (auto simp: M N SUP_emeasure_incseq)
   1.631 +  qed
   1.632 +qed
   1.633 +
   1.634 +lemma measure_of_of_measure: "measure_of (space M) (sets M) (emeasure M) = M"
   1.635 +proof (intro measure_eqI emeasure_measure_of_sigma)
   1.636 +  show "sigma_algebra (space M) (sets M)" ..
   1.637 +  show "positive (sets M) (emeasure M)"
   1.638 +    by (simp add: positive_def emeasure_nonneg)
   1.639 +  show "countably_additive (sets M) (emeasure M)"
   1.640 +    by (simp add: emeasure_countably_additive)
   1.641 +qed simp_all
   1.642 +
   1.643 +section "@{text \<mu>}-null sets"
   1.644 +
   1.645 +definition null_sets :: "'a measure \<Rightarrow> 'a set set" where
   1.646 +  "null_sets M = {N\<in>sets M. emeasure M N = 0}"
   1.647 +
   1.648 +lemma null_setsD1[dest]: "A \<in> null_sets M \<Longrightarrow> emeasure M A = 0"
   1.649 +  by (simp add: null_sets_def)
   1.650 +
   1.651 +lemma null_setsD2[dest]: "A \<in> null_sets M \<Longrightarrow> A \<in> sets M"
   1.652 +  unfolding null_sets_def by simp
   1.653 +
   1.654 +lemma null_setsI[intro]: "emeasure M A = 0 \<Longrightarrow> A \<in> sets M \<Longrightarrow> A \<in> null_sets M"
   1.655 +  unfolding null_sets_def by simp
   1.656 +
   1.657 +interpretation null_sets: ring_of_sets "space M" "null_sets M" for M
   1.658 +proof
   1.659 +  show "null_sets M \<subseteq> Pow (space M)"
   1.660 +    using sets_into_space by auto
   1.661 +  show "{} \<in> null_sets M"
   1.662 +    by auto
   1.663 +  fix A B assume sets: "A \<in> null_sets M" "B \<in> null_sets M"
   1.664 +  then have "A \<in> sets M" "B \<in> sets M"
   1.665 +    by auto
   1.666 +  moreover then have "emeasure M (A \<union> B) \<le> emeasure M A + emeasure M B"
   1.667 +    "emeasure M (A - B) \<le> emeasure M A"
   1.668 +    by (auto intro!: emeasure_subadditive emeasure_mono)
   1.669 +  moreover have "emeasure M B = 0" "emeasure M A = 0"
   1.670 +    using sets by auto
   1.671 +  ultimately show "A - B \<in> null_sets M" "A \<union> B \<in> null_sets M"
   1.672 +    by (auto intro!: antisym)
   1.673 +qed
   1.674 +
   1.675 +lemma UN_from_nat: "(\<Union>i. N i) = (\<Union>i. N (Countable.from_nat i))"
   1.676 +proof -
   1.677 +  have "(\<Union>i. N i) = (\<Union>i. (N \<circ> Countable.from_nat) i)"
   1.678 +    unfolding SUP_def image_compose
   1.679 +    unfolding surj_from_nat ..
   1.680 +  then show ?thesis by simp
   1.681 +qed
   1.682 +
   1.683 +lemma null_sets_UN[intro]:
   1.684 +  assumes "\<And>i::'i::countable. N i \<in> null_sets M"
   1.685 +  shows "(\<Union>i. N i) \<in> null_sets M"
   1.686 +proof (intro conjI CollectI null_setsI)
   1.687 +  show "(\<Union>i. N i) \<in> sets M" using assms by auto
   1.688 +  have "0 \<le> emeasure M (\<Union>i. N i)" by (rule emeasure_nonneg)
   1.689 +  moreover have "emeasure M (\<Union>i. N i) \<le> (\<Sum>n. emeasure M (N (Countable.from_nat n)))"
   1.690 +    unfolding UN_from_nat[of N]
   1.691 +    using assms by (intro emeasure_subadditive_countably) auto
   1.692 +  ultimately show "emeasure M (\<Union>i. N i) = 0"
   1.693 +    using assms by (auto simp: null_setsD1)
   1.694 +qed
   1.695 +
   1.696 +lemma null_set_Int1:
   1.697 +  assumes "B \<in> null_sets M" "A \<in> sets M" shows "A \<inter> B \<in> null_sets M"
   1.698 +proof (intro CollectI conjI null_setsI)
   1.699 +  show "emeasure M (A \<inter> B) = 0" using assms
   1.700 +    by (intro emeasure_eq_0[of B _ "A \<inter> B"]) auto
   1.701 +qed (insert assms, auto)
   1.702 +
   1.703 +lemma null_set_Int2:
   1.704 +  assumes "B \<in> null_sets M" "A \<in> sets M" shows "B \<inter> A \<in> null_sets M"
   1.705 +  using assms by (subst Int_commute) (rule null_set_Int1)
   1.706 +
   1.707 +lemma emeasure_Diff_null_set:
   1.708 +  assumes "B \<in> null_sets M" "A \<in> sets M"
   1.709 +  shows "emeasure M (A - B) = emeasure M A"
   1.710 +proof -
   1.711 +  have *: "A - B = (A - (A \<inter> B))" by auto
   1.712 +  have "A \<inter> B \<in> null_sets M" using assms by (rule null_set_Int1)
   1.713 +  then show ?thesis
   1.714 +    unfolding * using assms
   1.715 +    by (subst emeasure_Diff) auto
   1.716 +qed
   1.717 +
   1.718 +lemma null_set_Diff:
   1.719 +  assumes "B \<in> null_sets M" "A \<in> sets M" shows "B - A \<in> null_sets M"
   1.720 +proof (intro CollectI conjI null_setsI)
   1.721 +  show "emeasure M (B - A) = 0" using assms by (intro emeasure_eq_0[of B _ "B - A"]) auto
   1.722 +qed (insert assms, auto)
   1.723 +
   1.724 +lemma emeasure_Un_null_set:
   1.725 +  assumes "A \<in> sets M" "B \<in> null_sets M"
   1.726 +  shows "emeasure M (A \<union> B) = emeasure M A"
   1.727 +proof -
   1.728 +  have *: "A \<union> B = A \<union> (B - A)" by auto
   1.729 +  have "B - A \<in> null_sets M" using assms(2,1) by (rule null_set_Diff)
   1.730 +  then show ?thesis
   1.731 +    unfolding * using assms
   1.732 +    by (subst plus_emeasure[symmetric]) auto
   1.733 +qed
   1.734 +
   1.735 +section "Formalize almost everywhere"
   1.736 +
   1.737 +definition ae_filter :: "'a measure \<Rightarrow> 'a filter" where
   1.738 +  "ae_filter M = Abs_filter (\<lambda>P. \<exists>N\<in>null_sets M. {x \<in> space M. \<not> P x} \<subseteq> N)"
   1.739 +
   1.740 +abbreviation
   1.741 +  almost_everywhere :: "'a measure \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
   1.742 +  "almost_everywhere M P \<equiv> eventually P (ae_filter M)"
   1.743 +
   1.744 +syntax
   1.745 +  "_almost_everywhere" :: "pttrn \<Rightarrow> 'a \<Rightarrow> bool \<Rightarrow> bool" ("AE _ in _. _" [0,0,10] 10)
   1.746 +
   1.747 +translations
   1.748 +  "AE x in M. P" == "CONST almost_everywhere M (%x. P)"
   1.749 +
   1.750 +lemma eventually_ae_filter:
   1.751 +  fixes M P
   1.752 +  defines [simp]: "F \<equiv> \<lambda>P. \<exists>N\<in>null_sets M. {x \<in> space M. \<not> P x} \<subseteq> N" 
   1.753 +  shows "eventually P (ae_filter M) \<longleftrightarrow> F P"
   1.754 +  unfolding ae_filter_def F_def[symmetric]
   1.755 +proof (rule eventually_Abs_filter)
   1.756 +  show "is_filter F"
   1.757 +  proof
   1.758 +    fix P Q assume "F P" "F Q"
   1.759 +    then obtain N L where N: "N \<in> null_sets M" "{x \<in> space M. \<not> P x} \<subseteq> N"
   1.760 +      and L: "L \<in> null_sets M" "{x \<in> space M. \<not> Q x} \<subseteq> L"
   1.761 +      by auto
   1.762 +    then have "L \<union> N \<in> null_sets M" "{x \<in> space M. \<not> (P x \<and> Q x)} \<subseteq> L \<union> N" by auto
   1.763 +    then show "F (\<lambda>x. P x \<and> Q x)" by auto
   1.764 +  next
   1.765 +    fix P Q assume "F P"
   1.766 +    then obtain N where N: "N \<in> null_sets M" "{x \<in> space M. \<not> P x} \<subseteq> N" by auto
   1.767 +    moreover assume "\<forall>x. P x \<longrightarrow> Q x"
   1.768 +    ultimately have "N \<in> null_sets M" "{x \<in> space M. \<not> Q x} \<subseteq> N" by auto
   1.769 +    then show "F Q" by auto
   1.770 +  qed auto
   1.771 +qed
   1.772 +
   1.773 +lemma AE_I':
   1.774 +  "N \<in> null_sets M \<Longrightarrow> {x\<in>space M. \<not> P x} \<subseteq> N \<Longrightarrow> (AE x in M. P x)"
   1.775 +  unfolding eventually_ae_filter by auto
   1.776 +
   1.777 +lemma AE_iff_null:
   1.778 +  assumes "{x\<in>space M. \<not> P x} \<in> sets M" (is "?P \<in> sets M")
   1.779 +  shows "(AE x in M. P x) \<longleftrightarrow> {x\<in>space M. \<not> P x} \<in> null_sets M"
   1.780 +proof
   1.781 +  assume "AE x in M. P x" then obtain N where N: "N \<in> sets M" "?P \<subseteq> N" "emeasure M N = 0"
   1.782 +    unfolding eventually_ae_filter by auto
   1.783 +  have "0 \<le> emeasure M ?P" by auto
   1.784 +  moreover have "emeasure M ?P \<le> emeasure M N"
   1.785 +    using assms N(1,2) by (auto intro: emeasure_mono)
   1.786 +  ultimately have "emeasure M ?P = 0" unfolding `emeasure M N = 0` by auto
   1.787 +  then show "?P \<in> null_sets M" using assms by auto
   1.788 +next
   1.789 +  assume "?P \<in> null_sets M" with assms show "AE x in M. P x" by (auto intro: AE_I')
   1.790 +qed
   1.791 +
   1.792 +lemma AE_iff_null_sets:
   1.793 +  "N \<in> sets M \<Longrightarrow> N \<in> null_sets M \<longleftrightarrow> (AE x in M. x \<notin> N)"
   1.794 +  using Int_absorb1[OF sets_into_space, of N M]
   1.795 +  by (subst AE_iff_null) (auto simp: Int_def[symmetric])
   1.796 +
   1.797 +lemma AE_iff_measurable:
   1.798 +  "N \<in> sets M \<Longrightarrow> {x\<in>space M. \<not> P x} = N \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> emeasure M N = 0"
   1.799 +  using AE_iff_null[of _ P] by auto
   1.800 +
   1.801 +lemma AE_E[consumes 1]:
   1.802 +  assumes "AE x in M. P x"
   1.803 +  obtains N where "{x \<in> space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
   1.804 +  using assms unfolding eventually_ae_filter by auto
   1.805 +
   1.806 +lemma AE_E2:
   1.807 +  assumes "AE x in M. P x" "{x\<in>space M. P x} \<in> sets M"
   1.808 +  shows "emeasure M {x\<in>space M. \<not> P x} = 0" (is "emeasure M ?P = 0")
   1.809 +proof -
   1.810 +  have "{x\<in>space M. \<not> P x} = space M - {x\<in>space M. P x}" by auto
   1.811 +  with AE_iff_null[of M P] assms show ?thesis by auto
   1.812 +qed
   1.813 +
   1.814 +lemma AE_I:
   1.815 +  assumes "{x \<in> space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
   1.816 +  shows "AE x in M. P x"
   1.817 +  using assms unfolding eventually_ae_filter by auto
   1.818 +
   1.819 +lemma AE_mp[elim!]:
   1.820 +  assumes AE_P: "AE x in M. P x" and AE_imp: "AE x in M. P x \<longrightarrow> Q x"
   1.821 +  shows "AE x in M. Q x"
   1.822 +proof -
   1.823 +  from AE_P obtain A where P: "{x\<in>space M. \<not> P x} \<subseteq> A"
   1.824 +    and A: "A \<in> sets M" "emeasure M A = 0"
   1.825 +    by (auto elim!: AE_E)
   1.826 +
   1.827 +  from AE_imp obtain B where imp: "{x\<in>space M. P x \<and> \<not> Q x} \<subseteq> B"
   1.828 +    and B: "B \<in> sets M" "emeasure M B = 0"
   1.829 +    by (auto elim!: AE_E)
   1.830 +
   1.831 +  show ?thesis
   1.832 +  proof (intro AE_I)
   1.833 +    have "0 \<le> emeasure M (A \<union> B)" using A B by auto
   1.834 +    moreover have "emeasure M (A \<union> B) \<le> 0"
   1.835 +      using emeasure_subadditive[of A M B] A B by auto
   1.836 +    ultimately show "A \<union> B \<in> sets M" "emeasure M (A \<union> B) = 0" using A B by auto
   1.837 +    show "{x\<in>space M. \<not> Q x} \<subseteq> A \<union> B"
   1.838 +      using P imp by auto
   1.839 +  qed
   1.840 +qed
   1.841 +
   1.842 +(* depricated replace by laws about eventually *)
   1.843 +lemma
   1.844 +  shows AE_iffI: "AE x in M. P x \<Longrightarrow> AE x in M. P x \<longleftrightarrow> Q x \<Longrightarrow> AE x in M. Q x"
   1.845 +    and AE_disjI1: "AE x in M. P x \<Longrightarrow> AE x in M. P x \<or> Q x"
   1.846 +    and AE_disjI2: "AE x in M. Q x \<Longrightarrow> AE x in M. P x \<or> Q x"
   1.847 +    and AE_conjI: "AE x in M. P x \<Longrightarrow> AE x in M. Q x \<Longrightarrow> AE x in M. P x \<and> Q x"
   1.848 +    and AE_conj_iff[simp]: "(AE x in M. P x \<and> Q x) \<longleftrightarrow> (AE x in M. P x) \<and> (AE x in M. Q x)"
   1.849 +  by auto
   1.850 +
   1.851 +lemma AE_impI:
   1.852 +  "(P \<Longrightarrow> AE x in M. Q x) \<Longrightarrow> AE x in M. P \<longrightarrow> Q x"
   1.853 +  by (cases P) auto
   1.854 +
   1.855 +lemma AE_measure:
   1.856 +  assumes AE: "AE x in M. P x" and sets: "{x\<in>space M. P x} \<in> sets M" (is "?P \<in> sets M")
   1.857 +  shows "emeasure M {x\<in>space M. P x} = emeasure M (space M)"
   1.858 +proof -
   1.859 +  from AE_E[OF AE] guess N . note N = this
   1.860 +  with sets have "emeasure M (space M) \<le> emeasure M (?P \<union> N)"
   1.861 +    by (intro emeasure_mono) auto
   1.862 +  also have "\<dots> \<le> emeasure M ?P + emeasure M N"
   1.863 +    using sets N by (intro emeasure_subadditive) auto
   1.864 +  also have "\<dots> = emeasure M ?P" using N by simp
   1.865 +  finally show "emeasure M ?P = emeasure M (space M)"
   1.866 +    using emeasure_space[of M "?P"] by auto
   1.867 +qed
   1.868 +
   1.869 +lemma AE_space: "AE x in M. x \<in> space M"
   1.870 +  by (rule AE_I[where N="{}"]) auto
   1.871 +
   1.872 +lemma AE_I2[simp, intro]:
   1.873 +  "(\<And>x. x \<in> space M \<Longrightarrow> P x) \<Longrightarrow> AE x in M. P x"
   1.874 +  using AE_space by force
   1.875 +
   1.876 +lemma AE_Ball_mp:
   1.877 +  "\<forall>x\<in>space M. P x \<Longrightarrow> AE x in M. P x \<longrightarrow> Q x \<Longrightarrow> AE x in M. Q x"
   1.878 +  by auto
   1.879 +
   1.880 +lemma AE_cong[cong]:
   1.881 +  "(\<And>x. x \<in> space M \<Longrightarrow> P x \<longleftrightarrow> Q x) \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> (AE x in M. Q x)"
   1.882 +  by auto
   1.883 +
   1.884 +lemma AE_all_countable:
   1.885 +  "(AE x in M. \<forall>i. P i x) \<longleftrightarrow> (\<forall>i::'i::countable. AE x in M. P i x)"
   1.886 +proof
   1.887 +  assume "\<forall>i. AE x in M. P i x"
   1.888 +  from this[unfolded eventually_ae_filter Bex_def, THEN choice]
   1.889 +  obtain N where N: "\<And>i. N i \<in> null_sets M" "\<And>i. {x\<in>space M. \<not> P i x} \<subseteq> N i" by auto
   1.890 +  have "{x\<in>space M. \<not> (\<forall>i. P i x)} \<subseteq> (\<Union>i. {x\<in>space M. \<not> P i x})" by auto
   1.891 +  also have "\<dots> \<subseteq> (\<Union>i. N i)" using N by auto
   1.892 +  finally have "{x\<in>space M. \<not> (\<forall>i. P i x)} \<subseteq> (\<Union>i. N i)" .
   1.893 +  moreover from N have "(\<Union>i. N i) \<in> null_sets M"
   1.894 +    by (intro null_sets_UN) auto
   1.895 +  ultimately show "AE x in M. \<forall>i. P i x"
   1.896 +    unfolding eventually_ae_filter by auto
   1.897 +qed auto
   1.898 +
   1.899 +lemma AE_finite_all:
   1.900 +  assumes f: "finite S" shows "(AE x in M. \<forall>i\<in>S. P i x) \<longleftrightarrow> (\<forall>i\<in>S. AE x in M. P i x)"
   1.901 +  using f by induct auto
   1.902 +
   1.903 +lemma AE_finite_allI:
   1.904 +  assumes "finite S"
   1.905 +  shows "(\<And>s. s \<in> S \<Longrightarrow> AE x in M. Q s x) \<Longrightarrow> AE x in M. \<forall>s\<in>S. Q s x"
   1.906 +  using AE_finite_all[OF `finite S`] by auto
   1.907 +
   1.908 +lemma emeasure_mono_AE:
   1.909 +  assumes imp: "AE x in M. x \<in> A \<longrightarrow> x \<in> B"
   1.910 +    and B: "B \<in> sets M"
   1.911 +  shows "emeasure M A \<le> emeasure M B"
   1.912 +proof cases
   1.913 +  assume A: "A \<in> sets M"
   1.914 +  from imp obtain N where N: "{x\<in>space M. \<not> (x \<in> A \<longrightarrow> x \<in> B)} \<subseteq> N" "N \<in> null_sets M"
   1.915 +    by (auto simp: eventually_ae_filter)
   1.916 +  have "emeasure M A = emeasure M (A - N)"
   1.917 +    using N A by (subst emeasure_Diff_null_set) auto
   1.918 +  also have "emeasure M (A - N) \<le> emeasure M (B - N)"
   1.919 +    using N A B sets_into_space by (auto intro!: emeasure_mono)
   1.920 +  also have "emeasure M (B - N) = emeasure M B"
   1.921 +    using N B by (subst emeasure_Diff_null_set) auto
   1.922 +  finally show ?thesis .
   1.923 +qed (simp add: emeasure_nonneg emeasure_notin_sets)
   1.924 +
   1.925 +lemma emeasure_eq_AE:
   1.926 +  assumes iff: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B"
   1.927 +  assumes A: "A \<in> sets M" and B: "B \<in> sets M"
   1.928 +  shows "emeasure M A = emeasure M B"
   1.929 +  using assms by (safe intro!: antisym emeasure_mono_AE) auto
   1.930 +
   1.931 +section {* @{text \<sigma>}-finite Measures *}
   1.932 +
   1.933 +locale sigma_finite_measure =
   1.934 +  fixes M :: "'a measure"
   1.935 +  assumes sigma_finite: "\<exists>A::nat \<Rightarrow> 'a set.
   1.936 +    range A \<subseteq> sets M \<and> (\<Union>i. A i) = space M \<and> (\<forall>i. emeasure M (A i) \<noteq> \<infinity>)"
   1.937 +
   1.938 +lemma (in sigma_finite_measure) sigma_finite_disjoint:
   1.939 +  obtains A :: "nat \<Rightarrow> 'a set"
   1.940 +  where "range A \<subseteq> sets M" "(\<Union>i. A i) = space M" "\<And>i. emeasure M (A i) \<noteq> \<infinity>" "disjoint_family A"
   1.941 +proof atomize_elim
   1.942 +  case goal1
   1.943 +  obtain A :: "nat \<Rightarrow> 'a set" where
   1.944 +    range: "range A \<subseteq> sets M" and
   1.945 +    space: "(\<Union>i. A i) = space M" and
   1.946 +    measure: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   1.947 +    using sigma_finite by auto
   1.948 +  note range' = range_disjointed_sets[OF range] range
   1.949 +  { fix i
   1.950 +    have "emeasure M (disjointed A i) \<le> emeasure M (A i)"
   1.951 +      using range' disjointed_subset[of A i] by (auto intro!: emeasure_mono)
   1.952 +    then have "emeasure M (disjointed A i) \<noteq> \<infinity>"
   1.953 +      using measure[of i] by auto }
   1.954 +  with disjoint_family_disjointed UN_disjointed_eq[of A] space range'
   1.955 +  show ?case by (auto intro!: exI[of _ "disjointed A"])
   1.956 +qed
   1.957 +
   1.958 +lemma (in sigma_finite_measure) sigma_finite_incseq:
   1.959 +  obtains A :: "nat \<Rightarrow> 'a set"
   1.960 +  where "range A \<subseteq> sets M" "(\<Union>i. A i) = space M" "\<And>i. emeasure M (A i) \<noteq> \<infinity>" "incseq A"
   1.961 +proof atomize_elim
   1.962 +  case goal1
   1.963 +  obtain F :: "nat \<Rightarrow> 'a set" where
   1.964 +    F: "range F \<subseteq> sets M" "(\<Union>i. F i) = space M" "\<And>i. emeasure M (F i) \<noteq> \<infinity>"
   1.965 +    using sigma_finite by auto
   1.966 +  then show ?case
   1.967 +  proof (intro exI[of _ "\<lambda>n. \<Union>i\<le>n. F i"] conjI allI)
   1.968 +    from F have "\<And>x. x \<in> space M \<Longrightarrow> \<exists>i. x \<in> F i" by auto
   1.969 +    then show "(\<Union>n. \<Union> i\<le>n. F i) = space M"
   1.970 +      using F by fastforce
   1.971 +  next
   1.972 +    fix n
   1.973 +    have "emeasure M (\<Union> i\<le>n. F i) \<le> (\<Sum>i\<le>n. emeasure M (F i))" using F
   1.974 +      by (auto intro!: emeasure_subadditive_finite)
   1.975 +    also have "\<dots> < \<infinity>"
   1.976 +      using F by (auto simp: setsum_Pinfty)
   1.977 +    finally show "emeasure M (\<Union> i\<le>n. F i) \<noteq> \<infinity>" by simp
   1.978 +  qed (force simp: incseq_def)+
   1.979 +qed
   1.980 +
   1.981 +section {* Measure space induced by distribution of @{const measurable}-functions *}
   1.982 +
   1.983 +definition distr :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b measure" where
   1.984 +  "distr M N f = measure_of (space N) (sets N) (\<lambda>A. emeasure M (f -` A \<inter> space M))"
   1.985 +
   1.986 +lemma
   1.987 +  shows sets_distr[simp]: "sets (distr M N f) = sets N"
   1.988 +    and space_distr[simp]: "space (distr M N f) = space N"
   1.989 +  by (auto simp: distr_def)
   1.990 +
   1.991 +lemma
   1.992 +  shows measurable_distr_eq1[simp]: "measurable (distr Mf Nf f) Mf' = measurable Nf Mf'"
   1.993 +    and measurable_distr_eq2[simp]: "measurable Mg' (distr Mg Ng g) = measurable Mg' Ng"
   1.994 +  by (auto simp: measurable_def)
   1.995 +
   1.996 +lemma emeasure_distr:
   1.997 +  fixes f :: "'a \<Rightarrow> 'b"
   1.998 +  assumes f: "f \<in> measurable M N" and A: "A \<in> sets N"
   1.999 +  shows "emeasure (distr M N f) A = emeasure M (f -` A \<inter> space M)" (is "_ = ?\<mu> A")
  1.1000 +  unfolding distr_def
  1.1001 +proof (rule emeasure_measure_of_sigma)
  1.1002 +  show "positive (sets N) ?\<mu>"
  1.1003 +    by (auto simp: positive_def)
  1.1004 +
  1.1005 +  show "countably_additive (sets N) ?\<mu>"
  1.1006 +  proof (intro countably_additiveI)
  1.1007 +    fix A :: "nat \<Rightarrow> 'b set" assume "range A \<subseteq> sets N" "disjoint_family A"
  1.1008 +    then have A: "\<And>i. A i \<in> sets N" "(\<Union>i. A i) \<in> sets N" by auto
  1.1009 +    then have *: "range (\<lambda>i. f -` (A i) \<inter> space M) \<subseteq> sets M"
  1.1010 +      using f by (auto simp: measurable_def)
  1.1011 +    moreover have "(\<Union>i. f -`  A i \<inter> space M) \<in> sets M"
  1.1012 +      using * by blast
  1.1013 +    moreover have **: "disjoint_family (\<lambda>i. f -` A i \<inter> space M)"
  1.1014 +      using `disjoint_family A` by (auto simp: disjoint_family_on_def)
  1.1015 +    ultimately show "(\<Sum>i. ?\<mu> (A i)) = ?\<mu> (\<Union>i. A i)"
  1.1016 +      using suminf_emeasure[OF _ **] A f
  1.1017 +      by (auto simp: comp_def vimage_UN)
  1.1018 +  qed
  1.1019 +  show "sigma_algebra (space N) (sets N)" ..
  1.1020 +qed fact
  1.1021 +
  1.1022 +lemma AE_distrD:
  1.1023 +  assumes f: "f \<in> measurable M M'"
  1.1024 +    and AE: "AE x in distr M M' f. P x"
  1.1025 +  shows "AE x in M. P (f x)"
  1.1026 +proof -
  1.1027 +  from AE[THEN AE_E] guess N .
  1.1028 +  with f show ?thesis
  1.1029 +    unfolding eventually_ae_filter
  1.1030 +    by (intro bexI[of _ "f -` N \<inter> space M"])
  1.1031 +       (auto simp: emeasure_distr measurable_def)
  1.1032 +qed
  1.1033 +
  1.1034 +lemma null_sets_distr_iff:
  1.1035 +  "f \<in> measurable M N \<Longrightarrow> A \<in> null_sets (distr M N f) \<longleftrightarrow> f -` A \<inter> space M \<in> null_sets M \<and> A \<in> sets N"
  1.1036 +  by (auto simp add: null_sets_def emeasure_distr measurable_sets)
  1.1037 +
  1.1038 +lemma distr_distr:
  1.1039 +  assumes f: "g \<in> measurable N L" and g: "f \<in> measurable M N"
  1.1040 +  shows "distr (distr M N f) L g = distr M L (g \<circ> f)" (is "?L = ?R")
  1.1041 +  using measurable_comp[OF g f] f g
  1.1042 +  by (auto simp add: emeasure_distr measurable_sets measurable_space
  1.1043 +           intro!: arg_cong[where f="emeasure M"] measure_eqI)
  1.1044 +
  1.1045 +section {* Real measure values *}
  1.1046 +
  1.1047 +lemma measure_nonneg: "0 \<le> measure M A"
  1.1048 +  using emeasure_nonneg[of M A] unfolding measure_def by (auto intro: real_of_ereal_pos)
  1.1049 +
  1.1050 +lemma measure_empty[simp]: "measure M {} = 0"
  1.1051 +  unfolding measure_def by simp
  1.1052 +
  1.1053 +lemma emeasure_eq_ereal_measure:
  1.1054 +  "emeasure M A \<noteq> \<infinity> \<Longrightarrow> emeasure M A = ereal (measure M A)"
  1.1055 +  using emeasure_nonneg[of M A]
  1.1056 +  by (cases "emeasure M A") (auto simp: measure_def)
  1.1057 +
  1.1058 +lemma measure_Union:
  1.1059 +  assumes finite: "emeasure M A \<noteq> \<infinity>" "emeasure M B \<noteq> \<infinity>"
  1.1060 +  and measurable: "A \<in> sets M" "B \<in> sets M" "A \<inter> B = {}"
  1.1061 +  shows "measure M (A \<union> B) = measure M A + measure M B"
  1.1062 +  unfolding measure_def
  1.1063 +  using plus_emeasure[OF measurable, symmetric] finite
  1.1064 +  by (simp add: emeasure_eq_ereal_measure)
  1.1065 +
  1.1066 +lemma measure_finite_Union:
  1.1067 +  assumes measurable: "A`S \<subseteq> sets M" "disjoint_family_on A S" "finite S"
  1.1068 +  assumes finite: "\<And>i. i \<in> S \<Longrightarrow> emeasure M (A i) \<noteq> \<infinity>"
  1.1069 +  shows "measure M (\<Union>i\<in>S. A i) = (\<Sum>i\<in>S. measure M (A i))"
  1.1070 +  unfolding measure_def
  1.1071 +  using setsum_emeasure[OF measurable, symmetric] finite
  1.1072 +  by (simp add: emeasure_eq_ereal_measure)
  1.1073 +
  1.1074 +lemma measure_Diff:
  1.1075 +  assumes finite: "emeasure M A \<noteq> \<infinity>"
  1.1076 +  and measurable: "A \<in> sets M" "B \<in> sets M" "B \<subseteq> A"
  1.1077 +  shows "measure M (A - B) = measure M A - measure M B"
  1.1078 +proof -
  1.1079 +  have "emeasure M (A - B) \<le> emeasure M A" "emeasure M B \<le> emeasure M A"
  1.1080 +    using measurable by (auto intro!: emeasure_mono)
  1.1081 +  hence "measure M ((A - B) \<union> B) = measure M (A - B) + measure M B"
  1.1082 +    using measurable finite by (rule_tac measure_Union) auto
  1.1083 +  thus ?thesis using `B \<subseteq> A` by (auto simp: Un_absorb2)
  1.1084 +qed
  1.1085 +
  1.1086 +lemma measure_UNION:
  1.1087 +  assumes measurable: "range A \<subseteq> sets M" "disjoint_family A"
  1.1088 +  assumes finite: "emeasure M (\<Union>i. A i) \<noteq> \<infinity>"
  1.1089 +  shows "(\<lambda>i. measure M (A i)) sums (measure M (\<Union>i. A i))"
  1.1090 +proof -
  1.1091 +  from summable_sums[OF summable_ereal_pos, of "\<lambda>i. emeasure M (A i)"]
  1.1092 +       suminf_emeasure[OF measurable] emeasure_nonneg[of M]
  1.1093 +  have "(\<lambda>i. emeasure M (A i)) sums (emeasure M (\<Union>i. A i))" by simp
  1.1094 +  moreover
  1.1095 +  { fix i
  1.1096 +    have "emeasure M (A i) \<le> emeasure M (\<Union>i. A i)"
  1.1097 +      using measurable by (auto intro!: emeasure_mono)
  1.1098 +    then have "emeasure M (A i) = ereal ((measure M (A i)))"
  1.1099 +      using finite by (intro emeasure_eq_ereal_measure) auto }
  1.1100 +  ultimately show ?thesis using finite
  1.1101 +    unfolding sums_ereal[symmetric] by (simp add: emeasure_eq_ereal_measure)
  1.1102 +qed
  1.1103 +
  1.1104 +lemma measure_subadditive:
  1.1105 +  assumes measurable: "A \<in> sets M" "B \<in> sets M"
  1.1106 +  and fin: "emeasure M A \<noteq> \<infinity>" "emeasure M B \<noteq> \<infinity>"
  1.1107 +  shows "(measure M (A \<union> B)) \<le> (measure M A) + (measure M B)"
  1.1108 +proof -
  1.1109 +  have "emeasure M (A \<union> B) \<noteq> \<infinity>"
  1.1110 +    using emeasure_subadditive[OF measurable] fin by auto
  1.1111 +  then show "(measure M (A \<union> B)) \<le> (measure M A) + (measure M B)"
  1.1112 +    using emeasure_subadditive[OF measurable] fin
  1.1113 +    by (auto simp: emeasure_eq_ereal_measure)
  1.1114 +qed
  1.1115 +
  1.1116 +lemma measure_subadditive_finite:
  1.1117 +  assumes A: "finite I" "A`I \<subseteq> sets M" and fin: "\<And>i. i \<in> I \<Longrightarrow> emeasure M (A i) \<noteq> \<infinity>"
  1.1118 +  shows "measure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. measure M (A i))"
  1.1119 +proof -
  1.1120 +  { have "emeasure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. emeasure M (A i))"
  1.1121 +      using emeasure_subadditive_finite[OF A] .
  1.1122 +    also have "\<dots> < \<infinity>"
  1.1123 +      using fin by (simp add: setsum_Pinfty)
  1.1124 +    finally have "emeasure M (\<Union>i\<in>I. A i) \<noteq> \<infinity>" by simp }
  1.1125 +  then show ?thesis
  1.1126 +    using emeasure_subadditive_finite[OF A] fin
  1.1127 +    unfolding measure_def by (simp add: emeasure_eq_ereal_measure suminf_ereal measure_nonneg)
  1.1128 +qed
  1.1129 +
  1.1130 +lemma measure_subadditive_countably:
  1.1131 +  assumes A: "range A \<subseteq> sets M" and fin: "(\<Sum>i. emeasure M (A i)) \<noteq> \<infinity>"
  1.1132 +  shows "measure M (\<Union>i. A i) \<le> (\<Sum>i. measure M (A i))"
  1.1133 +proof -
  1.1134 +  from emeasure_nonneg fin have "\<And>i. emeasure M (A i) \<noteq> \<infinity>" by (rule suminf_PInfty)
  1.1135 +  moreover
  1.1136 +  { have "emeasure M (\<Union>i. A i) \<le> (\<Sum>i. emeasure M (A i))"
  1.1137 +      using emeasure_subadditive_countably[OF A] .
  1.1138 +    also have "\<dots> < \<infinity>"
  1.1139 +      using fin by simp
  1.1140 +    finally have "emeasure M (\<Union>i. A i) \<noteq> \<infinity>" by simp }
  1.1141 +  ultimately  show ?thesis
  1.1142 +    using emeasure_subadditive_countably[OF A] fin
  1.1143 +    unfolding measure_def by (simp add: emeasure_eq_ereal_measure suminf_ereal measure_nonneg)
  1.1144 +qed
  1.1145 +
  1.1146 +lemma measure_eq_setsum_singleton:
  1.1147 +  assumes S: "finite S" "\<And>x. x \<in> S \<Longrightarrow> {x} \<in> sets M"
  1.1148 +  and fin: "\<And>x. x \<in> S \<Longrightarrow> emeasure M {x} \<noteq> \<infinity>"
  1.1149 +  shows "(measure M S) = (\<Sum>x\<in>S. (measure M {x}))"
  1.1150 +  unfolding measure_def
  1.1151 +  using emeasure_eq_setsum_singleton[OF S] fin
  1.1152 +  by simp (simp add: emeasure_eq_ereal_measure)
  1.1153 +
  1.1154 +lemma Lim_measure_incseq:
  1.1155 +  assumes A: "range A \<subseteq> sets M" "incseq A" and fin: "emeasure M (\<Union>i. A i) \<noteq> \<infinity>"
  1.1156 +  shows "(\<lambda>i. (measure M (A i))) ----> (measure M (\<Union>i. A i))"
  1.1157 +proof -
  1.1158 +  have "ereal ((measure M (\<Union>i. A i))) = emeasure M (\<Union>i. A i)"
  1.1159 +    using fin by (auto simp: emeasure_eq_ereal_measure)
  1.1160 +  then show ?thesis
  1.1161 +    using Lim_emeasure_incseq[OF A]
  1.1162 +    unfolding measure_def
  1.1163 +    by (intro lim_real_of_ereal) simp
  1.1164 +qed
  1.1165 +
  1.1166 +lemma Lim_measure_decseq:
  1.1167 +  assumes A: "range A \<subseteq> sets M" "decseq A" and fin: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
  1.1168 +  shows "(\<lambda>n. measure M (A n)) ----> measure M (\<Inter>i. A i)"
  1.1169 +proof -
  1.1170 +  have "emeasure M (\<Inter>i. A i) \<le> emeasure M (A 0)"
  1.1171 +    using A by (auto intro!: emeasure_mono)
  1.1172 +  also have "\<dots> < \<infinity>"
  1.1173 +    using fin[of 0] by auto
  1.1174 +  finally have "ereal ((measure M (\<Inter>i. A i))) = emeasure M (\<Inter>i. A i)"
  1.1175 +    by (auto simp: emeasure_eq_ereal_measure)
  1.1176 +  then show ?thesis
  1.1177 +    unfolding measure_def
  1.1178 +    using Lim_emeasure_decseq[OF A fin]
  1.1179 +    by (intro lim_real_of_ereal) simp
  1.1180 +qed
  1.1181 +
  1.1182 +section {* Measure spaces with @{term "emeasure M (space M) < \<infinity>"} *}
  1.1183 +
  1.1184 +locale finite_measure = sigma_finite_measure M for M +
  1.1185 +  assumes finite_emeasure_space: "emeasure M (space M) \<noteq> \<infinity>"
  1.1186 +
  1.1187 +lemma finite_measureI[Pure.intro!]:
  1.1188 +  assumes *: "emeasure M (space M) \<noteq> \<infinity>"
  1.1189 +  shows "finite_measure M"
  1.1190 +proof
  1.1191 +  show "\<exists>A. range A \<subseteq> sets M \<and> (\<Union>i. A i) = space M \<and> (\<forall>i. emeasure M (A i) \<noteq> \<infinity>)"
  1.1192 +    using * by (auto intro!: exI[of _ "\<lambda>_. space M"])
  1.1193 +qed fact
  1.1194 +
  1.1195 +lemma (in finite_measure) emeasure_finite[simp, intro]: "emeasure M A \<noteq> \<infinity>"
  1.1196 +  using finite_emeasure_space emeasure_space[of M A] by auto
  1.1197 +
  1.1198 +lemma (in finite_measure) emeasure_eq_measure: "emeasure M A = ereal (measure M A)"
  1.1199 +  unfolding measure_def by (simp add: emeasure_eq_ereal_measure)
  1.1200 +
  1.1201 +lemma (in finite_measure) emeasure_real: "\<exists>r. 0 \<le> r \<and> emeasure M A = ereal r"
  1.1202 +  using emeasure_finite[of A] emeasure_nonneg[of M A] by (cases "emeasure M A") auto
  1.1203 +
  1.1204 +lemma (in finite_measure) bounded_measure: "measure M A \<le> measure M (space M)"
  1.1205 +  using emeasure_space[of M A] emeasure_real[of A] emeasure_real[of "space M"] by (auto simp: measure_def)
  1.1206 +
  1.1207 +lemma (in finite_measure) finite_measure_Diff:
  1.1208 +  assumes sets: "A \<in> sets M" "B \<in> sets M" and "B \<subseteq> A"
  1.1209 +  shows "measure M (A - B) = measure M A - measure M B"
  1.1210 +  using measure_Diff[OF _ assms] by simp
  1.1211 +
  1.1212 +lemma (in finite_measure) finite_measure_Union:
  1.1213 +  assumes sets: "A \<in> sets M" "B \<in> sets M" and "A \<inter> B = {}"
  1.1214 +  shows "measure M (A \<union> B) = measure M A + measure M B"
  1.1215 +  using measure_Union[OF _ _ assms] by simp
  1.1216 +
  1.1217 +lemma (in finite_measure) finite_measure_finite_Union:
  1.1218 +  assumes measurable: "A`S \<subseteq> sets M" "disjoint_family_on A S" "finite S"
  1.1219 +  shows "measure M (\<Union>i\<in>S. A i) = (\<Sum>i\<in>S. measure M (A i))"
  1.1220 +  using measure_finite_Union[OF assms] by simp
  1.1221 +
  1.1222 +lemma (in finite_measure) finite_measure_UNION:
  1.1223 +  assumes A: "range A \<subseteq> sets M" "disjoint_family A"
  1.1224 +  shows "(\<lambda>i. measure M (A i)) sums (measure M (\<Union>i. A i))"
  1.1225 +  using measure_UNION[OF A] by simp
  1.1226 +
  1.1227 +lemma (in finite_measure) finite_measure_mono:
  1.1228 +  assumes "A \<subseteq> B" "B \<in> sets M" shows "measure M A \<le> measure M B"
  1.1229 +  using emeasure_mono[OF assms] emeasure_real[of A] emeasure_real[of B] by (auto simp: measure_def)
  1.1230 +
  1.1231 +lemma (in finite_measure) finite_measure_subadditive:
  1.1232 +  assumes m: "A \<in> sets M" "B \<in> sets M"
  1.1233 +  shows "measure M (A \<union> B) \<le> measure M A + measure M B"
  1.1234 +  using measure_subadditive[OF m] by simp
  1.1235 +
  1.1236 +lemma (in finite_measure) finite_measure_subadditive_finite:
  1.1237 +  assumes "finite I" "A`I \<subseteq> sets M" shows "measure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. measure M (A i))"
  1.1238 +  using measure_subadditive_finite[OF assms] by simp
  1.1239 +
  1.1240 +lemma (in finite_measure) finite_measure_subadditive_countably:
  1.1241 +  assumes A: "range A \<subseteq> sets M" and sum: "summable (\<lambda>i. measure M (A i))"
  1.1242 +  shows "measure M (\<Union>i. A i) \<le> (\<Sum>i. measure M (A i))"
  1.1243 +proof -
  1.1244 +  from `summable (\<lambda>i. measure M (A i))`
  1.1245 +  have "(\<lambda>i. ereal (measure M (A i))) sums ereal (\<Sum>i. measure M (A i))"
  1.1246 +    by (simp add: sums_ereal) (rule summable_sums)
  1.1247 +  from sums_unique[OF this, symmetric]
  1.1248 +       measure_subadditive_countably[OF A]
  1.1249 +  show ?thesis by (simp add: emeasure_eq_measure)
  1.1250 +qed
  1.1251 +
  1.1252 +lemma (in finite_measure) finite_measure_eq_setsum_singleton:
  1.1253 +  assumes "finite S" and *: "\<And>x. x \<in> S \<Longrightarrow> {x} \<in> sets M"
  1.1254 +  shows "measure M S = (\<Sum>x\<in>S. measure M {x})"
  1.1255 +  using measure_eq_setsum_singleton[OF assms] by simp
  1.1256 +
  1.1257 +lemma (in finite_measure) finite_Lim_measure_incseq:
  1.1258 +  assumes A: "range A \<subseteq> sets M" "incseq A"
  1.1259 +  shows "(\<lambda>i. measure M (A i)) ----> measure M (\<Union>i. A i)"
  1.1260 +  using Lim_measure_incseq[OF A] by simp
  1.1261 +
  1.1262 +lemma (in finite_measure) finite_Lim_measure_decseq:
  1.1263 +  assumes A: "range A \<subseteq> sets M" "decseq A"
  1.1264 +  shows "(\<lambda>n. measure M (A n)) ----> measure M (\<Inter>i. A i)"
  1.1265 +  using Lim_measure_decseq[OF A] by simp
  1.1266 +
  1.1267 +lemma (in finite_measure) finite_measure_compl:
  1.1268 +  assumes S: "S \<in> sets M"
  1.1269 +  shows "measure M (space M - S) = measure M (space M) - measure M S"
  1.1270 +  using measure_Diff[OF _ top S sets_into_space] S by simp
  1.1271 +
  1.1272 +lemma (in finite_measure) finite_measure_mono_AE:
  1.1273 +  assumes imp: "AE x in M. x \<in> A \<longrightarrow> x \<in> B" and B: "B \<in> sets M"
  1.1274 +  shows "measure M A \<le> measure M B"
  1.1275 +  using assms emeasure_mono_AE[OF imp B]
  1.1276 +  by (simp add: emeasure_eq_measure)
  1.1277 +
  1.1278 +lemma (in finite_measure) finite_measure_eq_AE:
  1.1279 +  assumes iff: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B"
  1.1280 +  assumes A: "A \<in> sets M" and B: "B \<in> sets M"
  1.1281 +  shows "measure M A = measure M B"
  1.1282 +  using assms emeasure_eq_AE[OF assms] by (simp add: emeasure_eq_measure)
  1.1283 +
  1.1284 +section {* Counting space *}
  1.1285 +
  1.1286 +definition count_space :: "'a set \<Rightarrow> 'a measure" where
  1.1287 +  "count_space \<Omega> = measure_of \<Omega> (Pow \<Omega>) (\<lambda>A. if finite A then ereal (card A) else \<infinity>)"
  1.1288 +
  1.1289 +lemma 
  1.1290 +  shows space_count_space[simp]: "space (count_space \<Omega>) = \<Omega>"
  1.1291 +    and sets_count_space[simp]: "sets (count_space \<Omega>) = Pow \<Omega>"
  1.1292 +  using sigma_sets_into_sp[of "Pow \<Omega>" \<Omega>]
  1.1293 +  by (auto simp: count_space_def)
  1.1294 +
  1.1295 +lemma measurable_count_space_eq1[simp]:
  1.1296 +  "f \<in> measurable (count_space A) M \<longleftrightarrow> f \<in> A \<rightarrow> space M"
  1.1297 + unfolding measurable_def by simp
  1.1298 +
  1.1299 +lemma measurable_count_space_eq2[simp]:
  1.1300 +  assumes "finite A"
  1.1301 +  shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
  1.1302 +proof -
  1.1303 +  { fix X assume "X \<subseteq> A" "f \<in> space M \<rightarrow> A"
  1.1304 +    with `finite A` have "f -` X \<inter> space M = (\<Union>a\<in>X. f -` {a} \<inter> space M)" "finite X"
  1.1305 +      by (auto dest: finite_subset)
  1.1306 +    moreover assume "\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M"
  1.1307 +    ultimately have "f -` X \<inter> space M \<in> sets M"
  1.1308 +      using `X \<subseteq> A` by (auto intro!: finite_UN simp del: UN_simps) }
  1.1309 +  then show ?thesis
  1.1310 +    unfolding measurable_def by auto
  1.1311 +qed
  1.1312 +
  1.1313 +lemma emeasure_count_space:
  1.1314 +  assumes "X \<subseteq> A" shows "emeasure (count_space A) X = (if finite X then ereal (card X) else \<infinity>)"
  1.1315 +    (is "_ = ?M X")
  1.1316 +  unfolding count_space_def
  1.1317 +proof (rule emeasure_measure_of_sigma)
  1.1318 +  show "sigma_algebra A (Pow A)" by (rule sigma_algebra_Pow)
  1.1319 +
  1.1320 +  show "positive (Pow A) ?M"
  1.1321 +    by (auto simp: positive_def)
  1.1322 +
  1.1323 +  show "countably_additive (Pow A) ?M"
  1.1324 +  proof (unfold countably_additive_def, safe)
  1.1325 +      fix F :: "nat \<Rightarrow> 'a set" assume disj: "disjoint_family F"
  1.1326 +      show "(\<Sum>i. ?M (F i)) = ?M (\<Union>i. F i)"
  1.1327 +      proof cases
  1.1328 +        assume "\<forall>i. finite (F i)"
  1.1329 +        then have finite_F: "\<And>i. finite (F i)" by auto
  1.1330 +        have "\<forall>i\<in>{i. F i \<noteq> {}}. \<exists>x. x \<in> F i" by auto
  1.1331 +        from bchoice[OF this] obtain f where f: "\<And>i. F i \<noteq> {} \<Longrightarrow> f i \<in> F i" by auto
  1.1332 +
  1.1333 +        have inj_f: "inj_on f {i. F i \<noteq> {}}"
  1.1334 +        proof (rule inj_onI, simp)
  1.1335 +          fix i j a b assume *: "f i = f j" "F i \<noteq> {}" "F j \<noteq> {}"
  1.1336 +          then have "f i \<in> F i" "f j \<in> F j" using f by force+
  1.1337 +          with disj * show "i = j" by (auto simp: disjoint_family_on_def)
  1.1338 +        qed
  1.1339 +        have fin_eq: "finite (\<Union>i. F i) \<longleftrightarrow> finite {i. F i \<noteq> {}}"
  1.1340 +        proof
  1.1341 +          assume "finite (\<Union>i. F i)"
  1.1342 +          show "finite {i. F i \<noteq> {}}"
  1.1343 +          proof (rule finite_imageD)
  1.1344 +            from f have "f`{i. F i \<noteq> {}} \<subseteq> (\<Union>i. F i)" by auto
  1.1345 +            then show "finite (f`{i. F i \<noteq> {}})"
  1.1346 +              by (rule finite_subset) fact
  1.1347 +          qed fact
  1.1348 +        next
  1.1349 +          assume "finite {i. F i \<noteq> {}}"
  1.1350 +          with finite_F have "finite (\<Union>i\<in>{i. F i \<noteq> {}}. F i)"
  1.1351 +            by auto
  1.1352 +          also have "(\<Union>i\<in>{i. F i \<noteq> {}}. F i) = (\<Union>i. F i)"
  1.1353 +            by auto
  1.1354 +          finally show "finite (\<Union>i. F i)" .
  1.1355 +        qed
  1.1356 +        
  1.1357 +        show ?thesis
  1.1358 +        proof cases
  1.1359 +          assume *: "finite (\<Union>i. F i)"
  1.1360 +          with finite_F have "finite {i. ?M (F i) \<noteq> 0} "
  1.1361 +            by (simp add: fin_eq)
  1.1362 +          then have "(\<Sum>i. ?M (F i)) = (\<Sum>i | ?M (F i) \<noteq> 0. ?M (F i))"
  1.1363 +            by (rule suminf_eq_setsum)
  1.1364 +          also have "\<dots> = ereal (\<Sum>i | F i \<noteq> {}. card (F i))"
  1.1365 +            using finite_F by simp
  1.1366 +          also have "\<dots> = ereal (card (\<Union>i \<in> {i. F i \<noteq> {}}. F i))"
  1.1367 +            using * finite_F disj
  1.1368 +            by (subst card_UN_disjoint) (auto simp: disjoint_family_on_def fin_eq)
  1.1369 +          also have "\<dots> = ?M (\<Union>i. F i)"
  1.1370 +            using * by (auto intro!: arg_cong[where f=card])
  1.1371 +          finally show ?thesis .
  1.1372 +        next
  1.1373 +          assume inf: "infinite (\<Union>i. F i)"
  1.1374 +          { fix i
  1.1375 +            have "\<exists>N. i \<le> (\<Sum>i<N. card (F i))"
  1.1376 +            proof (induct i)
  1.1377 +              case (Suc j)
  1.1378 +              from Suc obtain N where N: "j \<le> (\<Sum>i<N. card (F i))" by auto
  1.1379 +              have "infinite ({i. F i \<noteq> {}} - {..< N})"
  1.1380 +                using inf by (auto simp: fin_eq)
  1.1381 +              then have "{i. F i \<noteq> {}} - {..< N} \<noteq> {}"
  1.1382 +                by (metis finite.emptyI)
  1.1383 +              then obtain i where i: "F i \<noteq> {}" "N \<le> i"
  1.1384 +                by (auto simp: not_less[symmetric])
  1.1385 +
  1.1386 +              note N
  1.1387 +              also have "(\<Sum>i<N. card (F i)) \<le> (\<Sum>i<i. card (F i))"
  1.1388 +                by (rule setsum_mono2) (auto simp: i)
  1.1389 +              also have "\<dots> < (\<Sum>i<i. card (F i)) + card (F i)"
  1.1390 +                using finite_F `F i \<noteq> {}` by (simp add: card_gt_0_iff)
  1.1391 +              finally have "j < (\<Sum>i<Suc i. card (F i))"
  1.1392 +                by simp
  1.1393 +              then show ?case unfolding Suc_le_eq by blast
  1.1394 +            qed simp }
  1.1395 +          with finite_F inf show ?thesis
  1.1396 +            by (auto simp del: real_of_nat_setsum intro!: SUP_PInfty
  1.1397 +                     simp add: suminf_ereal_eq_SUPR real_of_nat_setsum[symmetric])
  1.1398 +        qed
  1.1399 +      next
  1.1400 +        assume "\<not> (\<forall>i. finite (F i))"
  1.1401 +        then obtain j where j: "infinite (F j)" by auto
  1.1402 +        then have "infinite (\<Union>i. F i)"
  1.1403 +          using finite_subset[of "F j" "\<Union>i. F i"] by auto
  1.1404 +        moreover have "\<And>i. 0 \<le> ?M (F i)" by auto
  1.1405 +        ultimately show ?thesis
  1.1406 +          using suminf_PInfty[of "\<lambda>i. ?M (F i)" j] j by auto
  1.1407 +      qed
  1.1408 +  qed
  1.1409 +  show "X \<in> Pow A" using `X \<subseteq> A` by simp
  1.1410 +qed
  1.1411 +
  1.1412 +lemma emeasure_count_space_finite[simp]:
  1.1413 +  "X \<subseteq> A \<Longrightarrow> finite X \<Longrightarrow> emeasure (count_space A) X = ereal (card X)"
  1.1414 +  using emeasure_count_space[of X A] by simp
  1.1415 +
  1.1416 +lemma emeasure_count_space_infinite[simp]:
  1.1417 +  "X \<subseteq> A \<Longrightarrow> infinite X \<Longrightarrow> emeasure (count_space A) X = \<infinity>"
  1.1418 +  using emeasure_count_space[of X A] by simp
  1.1419 +
  1.1420 +lemma emeasure_count_space_eq_0:
  1.1421 +  "emeasure (count_space A) X = 0 \<longleftrightarrow> (X \<subseteq> A \<longrightarrow> X = {})"
  1.1422 +proof cases
  1.1423 +  assume X: "X \<subseteq> A"
  1.1424 +  then show ?thesis
  1.1425 +  proof (intro iffI impI)
  1.1426 +    assume "emeasure (count_space A) X = 0"
  1.1427 +    with X show "X = {}"
  1.1428 +      by (subst (asm) emeasure_count_space) (auto split: split_if_asm)
  1.1429 +  qed simp
  1.1430 +qed (simp add: emeasure_notin_sets)
  1.1431 +
  1.1432 +lemma null_sets_count_space: "null_sets (count_space A) = { {} }"
  1.1433 +  unfolding null_sets_def by (auto simp add: emeasure_count_space_eq_0)
  1.1434 +
  1.1435 +lemma AE_count_space: "(AE x in count_space A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x)"
  1.1436 +  unfolding eventually_ae_filter by (auto simp add: null_sets_count_space)
  1.1437 +
  1.1438 +lemma sigma_finite_measure_count_space:
  1.1439 +  fixes A :: "'a::countable set"
  1.1440 +  shows "sigma_finite_measure (count_space A)"
  1.1441 +proof
  1.1442 +  show "\<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> sets (count_space A) \<and> (\<Union>i. F i) = space (count_space A) \<and>
  1.1443 +     (\<forall>i. emeasure (count_space A) (F i) \<noteq> \<infinity>)"
  1.1444 +     using surj_from_nat by (intro exI[of _ "\<lambda>i. {from_nat i} \<inter> A"]) (auto simp del: surj_from_nat)
  1.1445 +qed
  1.1446 +
  1.1447 +lemma finite_measure_count_space:
  1.1448 +  assumes [simp]: "finite A"
  1.1449 +  shows "finite_measure (count_space A)"
  1.1450 +  by rule simp
  1.1451 +
  1.1452 +lemma sigma_finite_measure_count_space_finite:
  1.1453 +  assumes A: "finite A" shows "sigma_finite_measure (count_space A)"
  1.1454 +proof -
  1.1455 +  interpret finite_measure "count_space A" using A by (rule finite_measure_count_space)
  1.1456 +  show "sigma_finite_measure (count_space A)" ..
  1.1457 +qed
  1.1458 +
  1.1459 +end
  1.1460 +