src/HOL/IMP/Abs_Int_Den/Abs_Int_den0_fun.thy
changeset 45963 054a9ac0d7ef
parent 45962 305f83b6da54
child 46083 e87feee00a4c
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/IMP/Abs_Int_Den/Abs_Int_den0_fun.thy	Wed Sep 28 09:55:11 2011 +0200
     1.3 @@ -0,0 +1,187 @@
     1.4 +(* Author: Tobias Nipkow *)
     1.5 +
     1.6 +header "Denotational Abstract Interpretation"
     1.7 +
     1.8 +theory Abs_Int_den0_fun
     1.9 +imports "~~/src/HOL/ex/Interpretation_with_Defs" Big_Step
    1.10 +begin
    1.11 +
    1.12 +subsection "Orderings"
    1.13 +
    1.14 +class preord =
    1.15 +fixes le :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50)
    1.16 +assumes le_refl[simp]: "x \<sqsubseteq> x"
    1.17 +and le_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"
    1.18 +
    1.19 +text{* Note: no antisymmetry. Allows implementations where some abstract
    1.20 +element is implemented by two different values @{prop "x \<noteq> y"}
    1.21 +such that @{prop"x \<sqsubseteq> y"} and @{prop"y \<sqsubseteq> x"}. Antisymmetry is not
    1.22 +needed because we never compare elements for equality but only for @{text"\<sqsubseteq>"}.
    1.23 +*}
    1.24 +
    1.25 +class SL_top = preord +
    1.26 +fixes join :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)
    1.27 +fixes Top :: "'a"
    1.28 +assumes join_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y"
    1.29 +and join_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y"
    1.30 +and join_least: "x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<squnion> y \<sqsubseteq> z"
    1.31 +and top[simp]: "x \<sqsubseteq> Top"
    1.32 +begin
    1.33 +
    1.34 +lemma join_le_iff[simp]: "x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z"
    1.35 +by (metis join_ge1 join_ge2 join_least le_trans)
    1.36 +
    1.37 +fun iter :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
    1.38 +"iter 0 f _ = Top" |
    1.39 +"iter (Suc n) f x = (if f x \<sqsubseteq> x then x else iter n f (f x))"
    1.40 +
    1.41 +lemma iter_pfp: "f(iter n f x) \<sqsubseteq> iter n f x"
    1.42 +apply (induction n arbitrary: x)
    1.43 + apply (simp)
    1.44 +apply (simp)
    1.45 +done
    1.46 +
    1.47 +abbreviation iter' :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
    1.48 +"iter' n f x0 == iter n (\<lambda>x. x0 \<squnion> f x) x0"
    1.49 +
    1.50 +lemma iter'_pfp_above:
    1.51 +  "f(iter' n f x0) \<sqsubseteq> iter' n f x0"  "x0 \<sqsubseteq> iter' n f x0"
    1.52 +using iter_pfp[of "\<lambda>x. x0 \<squnion> f x"] by auto
    1.53 +
    1.54 +text{* So much for soundness. But how good an approximation of the post-fixed
    1.55 +point does @{const iter} yield? *}
    1.56 +
    1.57 +lemma iter_funpow: "iter n f x \<noteq> Top \<Longrightarrow> \<exists>k. iter n f x = (f^^k) x"
    1.58 +apply(induction n arbitrary: x)
    1.59 + apply simp
    1.60 +apply (auto)
    1.61 + apply(metis funpow.simps(1) id_def)
    1.62 +by (metis funpow.simps(2) funpow_swap1 o_apply)
    1.63 +
    1.64 +text{* For monotone @{text f}, @{term "iter f n x0"} yields the least
    1.65 +post-fixed point above @{text x0}, unless it yields @{text Top}. *}
    1.66 +
    1.67 +lemma iter_least_pfp:
    1.68 +assumes mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" and "iter n f x0 \<noteq> Top"
    1.69 +and "f p \<sqsubseteq> p" and "x0 \<sqsubseteq> p" shows "iter n f x0 \<sqsubseteq> p"
    1.70 +proof-
    1.71 +  obtain k where "iter n f x0 = (f^^k) x0"
    1.72 +    using iter_funpow[OF `iter n f x0 \<noteq> Top`] by blast
    1.73 +  moreover
    1.74 +  { fix n have "(f^^n) x0 \<sqsubseteq> p"
    1.75 +    proof(induction n)
    1.76 +      case 0 show ?case by(simp add: `x0 \<sqsubseteq> p`)
    1.77 +    next
    1.78 +      case (Suc n) thus ?case
    1.79 +        by (simp add: `x0 \<sqsubseteq> p`)(metis Suc assms(3) le_trans mono)
    1.80 +    qed
    1.81 +  } ultimately show ?thesis by simp
    1.82 +qed
    1.83 +
    1.84 +end
    1.85 +
    1.86 +text{* The interface of abstract values: *}
    1.87 +
    1.88 +locale Rep =
    1.89 +fixes rep :: "'a::SL_top \<Rightarrow> 'b set"
    1.90 +assumes le_rep: "a \<sqsubseteq> b \<Longrightarrow> rep a \<subseteq> rep b"
    1.91 +begin
    1.92 +
    1.93 +abbreviation in_rep (infix "<:" 50) where "x <: a == x : rep a"
    1.94 +
    1.95 +lemma in_rep_join: "x <: a1 \<or> x <: a2 \<Longrightarrow> x <: a1 \<squnion> a2"
    1.96 +by (metis SL_top_class.join_ge1 SL_top_class.join_ge2 le_rep subsetD)
    1.97 +
    1.98 +end
    1.99 +
   1.100 +locale Val_abs = Rep rep
   1.101 +  for rep :: "'a::SL_top \<Rightarrow> val set" +
   1.102 +fixes num' :: "val \<Rightarrow> 'a"
   1.103 +and plus' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
   1.104 +assumes rep_num': "rep(num' n) = {n}"
   1.105 +and rep_plus': "n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1+n2 <: plus' a1 a2"
   1.106 +
   1.107 +
   1.108 +instantiation "fun" :: (type, SL_top) SL_top
   1.109 +begin
   1.110 +
   1.111 +definition "f \<sqsubseteq> g = (ALL x. f x \<sqsubseteq> g x)"
   1.112 +definition "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)"
   1.113 +definition "Top = (\<lambda>x. Top)"
   1.114 +
   1.115 +lemma join_apply[simp]:
   1.116 +  "(f \<squnion> g) x = f x \<squnion> g x"
   1.117 +by (simp add: join_fun_def)
   1.118 +
   1.119 +instance
   1.120 +proof
   1.121 +  case goal2 thus ?case by (metis le_fun_def preord_class.le_trans)
   1.122 +qed (simp_all add: le_fun_def Top_fun_def)
   1.123 +
   1.124 +end
   1.125 +
   1.126 +subsection "Abstract Interpretation Abstractly"
   1.127 +
   1.128 +text{* Abstract interpretation over abstract values. Abstract states are
   1.129 +simply functions. The post-fixed point finder is parameterized over. *}
   1.130 +
   1.131 +type_synonym 'a st = "name \<Rightarrow> 'a"
   1.132 +
   1.133 +locale Abs_Int_Fun = Val_abs +
   1.134 +fixes pfp :: "('a st \<Rightarrow> 'a st) \<Rightarrow> 'a st \<Rightarrow> 'a st"
   1.135 +assumes pfp: "f(pfp f x) \<sqsubseteq> pfp f x"
   1.136 +assumes above: "x \<sqsubseteq> pfp f x"
   1.137 +begin
   1.138 +
   1.139 +fun aval' :: "aexp \<Rightarrow> (name \<Rightarrow> 'a) \<Rightarrow> 'a" where
   1.140 +"aval' (N n) _ = num' n" |
   1.141 +"aval' (V x) S = S x" |
   1.142 +"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"
   1.143 +
   1.144 +abbreviation fun_in_rep (infix "<:" 50) where
   1.145 +"f <: F == \<forall>x. f x <: F x"
   1.146 +
   1.147 +lemma fun_in_rep_le: "(s::state) <: S \<Longrightarrow> S \<sqsubseteq> T \<Longrightarrow> s <: T"
   1.148 +by (metis le_fun_def le_rep subsetD)
   1.149 +
   1.150 +lemma aval'_sound: "s <: S \<Longrightarrow> aval a s <: aval' a S"
   1.151 +by (induct a) (auto simp: rep_num' rep_plus')
   1.152 +
   1.153 +fun AI :: "com \<Rightarrow> (name \<Rightarrow> 'a) \<Rightarrow> (name \<Rightarrow> 'a)" where
   1.154 +"AI SKIP S = S" |
   1.155 +"AI (x ::= a) S = S(x := aval' a S)" |
   1.156 +"AI (c1;c2) S = AI c2 (AI c1 S)" |
   1.157 +"AI (IF b THEN c1 ELSE c2) S = (AI c1 S) \<squnion> (AI c2 S)" |
   1.158 +"AI (WHILE b DO c) S = pfp (AI c) S"
   1.159 +
   1.160 +lemma AI_sound: "(c,s) \<Rightarrow> t \<Longrightarrow> s <: S0 \<Longrightarrow> t <: AI c S0"
   1.161 +proof(induction c arbitrary: s t S0)
   1.162 +  case SKIP thus ?case by fastforce
   1.163 +next
   1.164 +  case Assign thus ?case by (auto simp: aval'_sound)
   1.165 +next
   1.166 +  case Semi thus ?case by auto
   1.167 +next
   1.168 +  case If thus ?case by(auto simp: in_rep_join)
   1.169 +next
   1.170 +  case (While b c)
   1.171 +  let ?P = "pfp (AI c) S0"
   1.172 +  { fix s t have "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> s <: ?P \<Longrightarrow> t <: ?P"
   1.173 +    proof(induction "WHILE b DO c" s t rule: big_step_induct)
   1.174 +      case WhileFalse thus ?case by simp
   1.175 +    next
   1.176 +      case WhileTrue thus ?case by(metis While.IH pfp fun_in_rep_le)
   1.177 +    qed
   1.178 +  }
   1.179 +  with fun_in_rep_le[OF `s <: S0` above]
   1.180 +  show ?case by (metis While(2) AI.simps(5))
   1.181 +qed
   1.182 +
   1.183 +end
   1.184 +
   1.185 +
   1.186 +text{* Problem: not executable because of the comparison of abstract states,
   1.187 +i.e. functions, in the post-fixedpoint computation. Need to implement
   1.188 +abstract states concretely. *}
   1.189 +
   1.190 +end