src/HOLCF/ex/Hoare.thy
changeset 41022 0437dbc127b3
parent 41021 6c12f5e24e34
child 41023 ed7a4eadb2f6
     1.1 --- a/src/HOLCF/ex/Hoare.thy	Sat Nov 27 14:34:54 2010 -0800
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,425 +0,0 @@
     1.4 -(*  Title:      HOLCF/ex/hoare.thy
     1.5 -    Author:     Franz Regensburger
     1.6 -
     1.7 -Theory for an example by C.A.R. Hoare
     1.8 -
     1.9 -p x = if b1 x
    1.10 -         then p (g x)
    1.11 -         else x fi
    1.12 -
    1.13 -q x = if b1 x orelse b2 x
    1.14 -         then q (g x)
    1.15 -         else x fi
    1.16 -
    1.17 -Prove: for all b1 b2 g .
    1.18 -            q o p  = q
    1.19 -
    1.20 -In order to get a nice notation we fix the functions b1,b2 and g in the
    1.21 -signature of this example
    1.22 -
    1.23 -*)
    1.24 -
    1.25 -theory Hoare
    1.26 -imports HOLCF
    1.27 -begin
    1.28 -
    1.29 -axiomatization
    1.30 -  b1 :: "'a -> tr" and
    1.31 -  b2 :: "'a -> tr" and
    1.32 -  g :: "'a -> 'a"
    1.33 -
    1.34 -definition
    1.35 -  p :: "'a -> 'a" where
    1.36 -  "p = fix$(LAM f. LAM x. If b1$x then f$(g$x) else x)"
    1.37 -
    1.38 -definition
    1.39 -  q :: "'a -> 'a" where
    1.40 -  "q = fix$(LAM f. LAM x. If b1$x orelse b2$x then f$(g$x) else x)"
    1.41 -
    1.42 -
    1.43 -(* --------- pure HOLCF logic, some little lemmas ------ *)
    1.44 -
    1.45 -lemma hoare_lemma2: "b~=TT ==> b=FF | b=UU"
    1.46 -apply (rule Exh_tr [THEN disjE])
    1.47 -apply blast+
    1.48 -done
    1.49 -
    1.50 -lemma hoare_lemma3: " (ALL k. b1$(iterate k$g$x) = TT) | (EX k. b1$(iterate k$g$x)~=TT)"
    1.51 -apply blast
    1.52 -done
    1.53 -
    1.54 -lemma hoare_lemma4: "(EX k. b1$(iterate k$g$x) ~= TT) ==>  
    1.55 -  EX k. b1$(iterate k$g$x) = FF | b1$(iterate k$g$x) = UU"
    1.56 -apply (erule exE)
    1.57 -apply (rule exI)
    1.58 -apply (rule hoare_lemma2)
    1.59 -apply assumption
    1.60 -done
    1.61 -
    1.62 -lemma hoare_lemma5: "[|(EX k. b1$(iterate k$g$x) ~= TT); 
    1.63 -    k=Least(%n. b1$(iterate n$g$x) ~= TT)|] ==>  
    1.64 -  b1$(iterate k$g$x)=FF | b1$(iterate k$g$x)=UU"
    1.65 -apply hypsubst
    1.66 -apply (rule hoare_lemma2)
    1.67 -apply (erule exE)
    1.68 -apply (erule LeastI)
    1.69 -done
    1.70 -
    1.71 -lemma hoare_lemma6: "b=UU ==> b~=TT"
    1.72 -apply hypsubst
    1.73 -apply (rule dist_eq_tr)
    1.74 -done
    1.75 -
    1.76 -lemma hoare_lemma7: "b=FF ==> b~=TT"
    1.77 -apply hypsubst
    1.78 -apply (rule dist_eq_tr)
    1.79 -done
    1.80 -
    1.81 -lemma hoare_lemma8: "[|(EX k. b1$(iterate k$g$x) ~= TT); 
    1.82 -    k=Least(%n. b1$(iterate n$g$x) ~= TT)|] ==>  
    1.83 -  ALL m. m < k --> b1$(iterate m$g$x)=TT"
    1.84 -apply hypsubst
    1.85 -apply (erule exE)
    1.86 -apply (intro strip)
    1.87 -apply (rule_tac p = "b1$ (iterate m$g$x) " in trE)
    1.88 -prefer 2 apply (assumption)
    1.89 -apply (rule le_less_trans [THEN less_irrefl [THEN notE]])
    1.90 -prefer 2 apply (assumption)
    1.91 -apply (rule Least_le)
    1.92 -apply (erule hoare_lemma6)
    1.93 -apply (rule le_less_trans [THEN less_irrefl [THEN notE]])
    1.94 -prefer 2 apply (assumption)
    1.95 -apply (rule Least_le)
    1.96 -apply (erule hoare_lemma7)
    1.97 -done
    1.98 -
    1.99 -
   1.100 -lemma hoare_lemma28: "f$(y::'a)=(UU::tr) ==> f$UU = UU"
   1.101 -by (rule strictI)
   1.102 -
   1.103 -
   1.104 -(* ----- access to definitions ----- *)
   1.105 -
   1.106 -lemma p_def3: "p$x = If b1$x then p$(g$x) else x"
   1.107 -apply (rule trans)
   1.108 -apply (rule p_def [THEN eq_reflection, THEN fix_eq3])
   1.109 -apply simp
   1.110 -done
   1.111 -
   1.112 -lemma q_def3: "q$x = If b1$x orelse b2$x then q$(g$x) else x"
   1.113 -apply (rule trans)
   1.114 -apply (rule q_def [THEN eq_reflection, THEN fix_eq3])
   1.115 -apply simp
   1.116 -done
   1.117 -
   1.118 -(** --------- proofs about iterations of p and q ---------- **)
   1.119 -
   1.120 -lemma hoare_lemma9: "(ALL m. m< Suc k --> b1$(iterate m$g$x)=TT) --> 
   1.121 -   p$(iterate k$g$x)=p$x"
   1.122 -apply (induct_tac k)
   1.123 -apply (simp (no_asm))
   1.124 -apply (simp (no_asm))
   1.125 -apply (intro strip)
   1.126 -apply (rule_tac s = "p$ (iterate n$g$x) " in trans)
   1.127 -apply (rule trans)
   1.128 -apply (rule_tac [2] p_def3 [symmetric])
   1.129 -apply (rule_tac s = "TT" and t = "b1$ (iterate n$g$x) " in ssubst)
   1.130 -apply (rule mp)
   1.131 -apply (erule spec)
   1.132 -apply (simp (no_asm) add: less_Suc_eq)
   1.133 -apply simp
   1.134 -apply (erule mp)
   1.135 -apply (intro strip)
   1.136 -apply (rule mp)
   1.137 -apply (erule spec)
   1.138 -apply (erule less_trans)
   1.139 -apply simp
   1.140 -done
   1.141 -
   1.142 -lemma hoare_lemma24: "(ALL m. m< Suc k --> b1$(iterate m$g$x)=TT) -->  
   1.143 -  q$(iterate k$g$x)=q$x"
   1.144 -apply (induct_tac k)
   1.145 -apply (simp (no_asm))
   1.146 -apply (simp (no_asm) add: less_Suc_eq)
   1.147 -apply (intro strip)
   1.148 -apply (rule_tac s = "q$ (iterate n$g$x) " in trans)
   1.149 -apply (rule trans)
   1.150 -apply (rule_tac [2] q_def3 [symmetric])
   1.151 -apply (rule_tac s = "TT" and t = "b1$ (iterate n$g$x) " in ssubst)
   1.152 -apply blast
   1.153 -apply simp
   1.154 -apply (erule mp)
   1.155 -apply (intro strip)
   1.156 -apply (fast dest!: less_Suc_eq [THEN iffD1])
   1.157 -done
   1.158 -
   1.159 -(* -------- results about p for case (EX k. b1$(iterate k$g$x)~=TT) ------- *)
   1.160 -
   1.161 -thm hoare_lemma8 [THEN hoare_lemma9 [THEN mp], standard]
   1.162 -
   1.163 -lemma hoare_lemma10:
   1.164 -  "EX k. b1$(iterate k$g$x) ~= TT
   1.165 -    ==> Suc k = (LEAST n. b1$(iterate n$g$x) ~= TT) ==> p$(iterate k$g$x) = p$x"
   1.166 -  by (rule hoare_lemma8 [THEN hoare_lemma9 [THEN mp]])
   1.167 -
   1.168 -lemma hoare_lemma11: "(EX n. b1$(iterate n$g$x) ~= TT) ==> 
   1.169 -  k=(LEAST n. b1$(iterate n$g$x) ~= TT) & b1$(iterate k$g$x)=FF  
   1.170 -  --> p$x = iterate k$g$x"
   1.171 -apply (case_tac "k")
   1.172 -apply hypsubst
   1.173 -apply (simp (no_asm))
   1.174 -apply (intro strip)
   1.175 -apply (erule conjE)
   1.176 -apply (rule trans)
   1.177 -apply (rule p_def3)
   1.178 -apply simp
   1.179 -apply hypsubst
   1.180 -apply (intro strip)
   1.181 -apply (erule conjE)
   1.182 -apply (rule trans)
   1.183 -apply (erule hoare_lemma10 [symmetric])
   1.184 -apply assumption
   1.185 -apply (rule trans)
   1.186 -apply (rule p_def3)
   1.187 -apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.188 -apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.189 -apply assumption
   1.190 -apply assumption
   1.191 -apply (simp (no_asm))
   1.192 -apply (simp (no_asm))
   1.193 -apply (rule trans)
   1.194 -apply (rule p_def3)
   1.195 -apply (simp (no_asm) del: iterate_Suc add: iterate_Suc [symmetric])
   1.196 -apply (erule_tac s = "FF" in ssubst)
   1.197 -apply simp
   1.198 -done
   1.199 -
   1.200 -lemma hoare_lemma12: "(EX n. b1$(iterate n$g$x) ~= TT) ==> 
   1.201 -  k=Least(%n. b1$(iterate n$g$x)~=TT) & b1$(iterate k$g$x)=UU  
   1.202 -  --> p$x = UU"
   1.203 -apply (case_tac "k")
   1.204 -apply hypsubst
   1.205 -apply (simp (no_asm))
   1.206 -apply (intro strip)
   1.207 -apply (erule conjE)
   1.208 -apply (rule trans)
   1.209 -apply (rule p_def3)
   1.210 -apply simp
   1.211 -apply hypsubst
   1.212 -apply (simp (no_asm))
   1.213 -apply (intro strip)
   1.214 -apply (erule conjE)
   1.215 -apply (rule trans)
   1.216 -apply (rule hoare_lemma10 [symmetric])
   1.217 -apply assumption
   1.218 -apply assumption
   1.219 -apply (rule trans)
   1.220 -apply (rule p_def3)
   1.221 -apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.222 -apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.223 -apply assumption
   1.224 -apply assumption
   1.225 -apply (simp (no_asm))
   1.226 -apply (simp)
   1.227 -apply (rule trans)
   1.228 -apply (rule p_def3)
   1.229 -apply simp
   1.230 -done
   1.231 -
   1.232 -(* -------- results about p for case  (ALL k. b1$(iterate k$g$x)=TT) ------- *)
   1.233 -
   1.234 -lemma fernpass_lemma: "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. p$(iterate k$g$x) = UU"
   1.235 -apply (rule p_def [THEN eq_reflection, THEN def_fix_ind])
   1.236 -apply simp
   1.237 -apply simp
   1.238 -apply (simp (no_asm))
   1.239 -apply (rule allI)
   1.240 -apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$x) " in ssubst)
   1.241 -apply (erule spec)
   1.242 -apply (simp)
   1.243 -apply (rule iterate_Suc [THEN subst])
   1.244 -apply (erule spec)
   1.245 -done
   1.246 -
   1.247 -lemma hoare_lemma16: "(ALL k. b1$(iterate k$g$x)=TT) ==> p$x = UU"
   1.248 -apply (rule_tac F1 = "g" and t = "x" in iterate_0 [THEN subst])
   1.249 -apply (erule fernpass_lemma [THEN spec])
   1.250 -done
   1.251 -
   1.252 -(* -------- results about q for case  (ALL k. b1$(iterate k$g$x)=TT) ------- *)
   1.253 -
   1.254 -lemma hoare_lemma17: "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. q$(iterate k$g$x) = UU"
   1.255 -apply (rule q_def [THEN eq_reflection, THEN def_fix_ind])
   1.256 -apply simp
   1.257 -apply simp
   1.258 -apply (rule allI)
   1.259 -apply (simp (no_asm))
   1.260 -apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$x) " in ssubst)
   1.261 -apply (erule spec)
   1.262 -apply (simp)
   1.263 -apply (rule iterate_Suc [THEN subst])
   1.264 -apply (erule spec)
   1.265 -done
   1.266 -
   1.267 -lemma hoare_lemma18: "(ALL k. b1$(iterate k$g$x)=TT) ==> q$x = UU"
   1.268 -apply (rule_tac F1 = "g" and t = "x" in iterate_0 [THEN subst])
   1.269 -apply (erule hoare_lemma17 [THEN spec])
   1.270 -done
   1.271 -
   1.272 -lemma hoare_lemma19:
   1.273 -  "(ALL k. (b1::'a->tr)$(iterate k$g$x)=TT) ==> b1$(UU::'a) = UU | (ALL y. b1$(y::'a)=TT)"
   1.274 -apply (rule flat_codom)
   1.275 -apply (rule_tac t = "x1" in iterate_0 [THEN subst])
   1.276 -apply (erule spec)
   1.277 -done
   1.278 -
   1.279 -lemma hoare_lemma20: "(ALL y. b1$(y::'a)=TT) ==> ALL k. q$(iterate k$g$(x::'a)) = UU"
   1.280 -apply (rule q_def [THEN eq_reflection, THEN def_fix_ind])
   1.281 -apply simp
   1.282 -apply simp
   1.283 -apply (rule allI)
   1.284 -apply (simp (no_asm))
   1.285 -apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$ (x::'a))" in ssubst)
   1.286 -apply (erule spec)
   1.287 -apply (simp)
   1.288 -apply (rule iterate_Suc [THEN subst])
   1.289 -apply (erule spec)
   1.290 -done
   1.291 -
   1.292 -lemma hoare_lemma21: "(ALL y. b1$(y::'a)=TT) ==> q$(x::'a) = UU"
   1.293 -apply (rule_tac F1 = "g" and t = "x" in iterate_0 [THEN subst])
   1.294 -apply (erule hoare_lemma20 [THEN spec])
   1.295 -done
   1.296 -
   1.297 -lemma hoare_lemma22: "b1$(UU::'a)=UU ==> q$(UU::'a) = UU"
   1.298 -apply (subst q_def3)
   1.299 -apply simp
   1.300 -done
   1.301 -
   1.302 -(* -------- results about q for case (EX k. b1$(iterate k$g$x) ~= TT) ------- *)
   1.303 -
   1.304 -lemma hoare_lemma25: "EX k. b1$(iterate k$g$x) ~= TT
   1.305 -  ==> Suc k = (LEAST n. b1$(iterate n$g$x) ~= TT) ==> q$(iterate k$g$x) = q$x"
   1.306 -  by (rule hoare_lemma8 [THEN hoare_lemma24 [THEN mp]])
   1.307 -
   1.308 -lemma hoare_lemma26: "(EX n. b1$(iterate n$g$x)~=TT) ==> 
   1.309 -  k=Least(%n. b1$(iterate n$g$x) ~= TT) & b1$(iterate k$g$x) =FF  
   1.310 -  --> q$x = q$(iterate k$g$x)"
   1.311 -apply (case_tac "k")
   1.312 -apply hypsubst
   1.313 -apply (intro strip)
   1.314 -apply (simp (no_asm))
   1.315 -apply hypsubst
   1.316 -apply (intro strip)
   1.317 -apply (erule conjE)
   1.318 -apply (rule trans)
   1.319 -apply (rule hoare_lemma25 [symmetric])
   1.320 -apply assumption
   1.321 -apply assumption
   1.322 -apply (rule trans)
   1.323 -apply (rule q_def3)
   1.324 -apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.325 -apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.326 -apply assumption
   1.327 -apply assumption
   1.328 -apply (simp (no_asm))
   1.329 -apply (simp (no_asm))
   1.330 -done
   1.331 -
   1.332 -
   1.333 -lemma hoare_lemma27: "(EX n. b1$(iterate n$g$x) ~= TT) ==> 
   1.334 -  k=Least(%n. b1$(iterate n$g$x)~=TT) & b1$(iterate k$g$x)=UU  
   1.335 -  --> q$x = UU"
   1.336 -apply (case_tac "k")
   1.337 -apply hypsubst
   1.338 -apply (simp (no_asm))
   1.339 -apply (intro strip)
   1.340 -apply (erule conjE)
   1.341 -apply (subst q_def3)
   1.342 -apply (simp)
   1.343 -apply hypsubst
   1.344 -apply (simp (no_asm))
   1.345 -apply (intro strip)
   1.346 -apply (erule conjE)
   1.347 -apply (rule trans)
   1.348 -apply (rule hoare_lemma25 [symmetric])
   1.349 -apply assumption
   1.350 -apply assumption
   1.351 -apply (rule trans)
   1.352 -apply (rule q_def3)
   1.353 -apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.354 -apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.355 -apply assumption
   1.356 -apply assumption
   1.357 -apply (simp (no_asm))
   1.358 -apply (simp)
   1.359 -apply (rule trans)
   1.360 -apply (rule q_def3)
   1.361 -apply (simp)
   1.362 -done
   1.363 -
   1.364 -(* ------- (ALL k. b1$(iterate k$g$x)=TT) ==> q o p = q   ----- *)
   1.365 -
   1.366 -lemma hoare_lemma23: "(ALL k. b1$(iterate k$g$x)=TT) ==> q$(p$x) = q$x"
   1.367 -apply (subst hoare_lemma16)
   1.368 -apply assumption
   1.369 -apply (rule hoare_lemma19 [THEN disjE])
   1.370 -apply assumption
   1.371 -apply (simplesubst hoare_lemma18)
   1.372 -apply assumption
   1.373 -apply (simplesubst hoare_lemma22)
   1.374 -apply assumption
   1.375 -apply (rule refl)
   1.376 -apply (simplesubst hoare_lemma21)
   1.377 -apply assumption
   1.378 -apply (simplesubst hoare_lemma21)
   1.379 -apply assumption
   1.380 -apply (rule refl)
   1.381 -done
   1.382 -
   1.383 -(* ------------  EX k. b1~(iterate k$g$x) ~= TT ==> q o p = q   ----- *)
   1.384 -
   1.385 -lemma hoare_lemma29: "EX k. b1$(iterate k$g$x) ~= TT ==> q$(p$x) = q$x"
   1.386 -apply (rule hoare_lemma5 [THEN disjE])
   1.387 -apply assumption
   1.388 -apply (rule refl)
   1.389 -apply (subst hoare_lemma11 [THEN mp])
   1.390 -apply assumption
   1.391 -apply (rule conjI)
   1.392 -apply (rule refl)
   1.393 -apply assumption
   1.394 -apply (rule hoare_lemma26 [THEN mp, THEN subst])
   1.395 -apply assumption
   1.396 -apply (rule conjI)
   1.397 -apply (rule refl)
   1.398 -apply assumption
   1.399 -apply (rule refl)
   1.400 -apply (subst hoare_lemma12 [THEN mp])
   1.401 -apply assumption
   1.402 -apply (rule conjI)
   1.403 -apply (rule refl)
   1.404 -apply assumption
   1.405 -apply (subst hoare_lemma22)
   1.406 -apply (subst hoare_lemma28)
   1.407 -apply assumption
   1.408 -apply (rule refl)
   1.409 -apply (rule sym)
   1.410 -apply (subst hoare_lemma27 [THEN mp])
   1.411 -apply assumption
   1.412 -apply (rule conjI)
   1.413 -apply (rule refl)
   1.414 -apply assumption
   1.415 -apply (rule refl)
   1.416 -done
   1.417 -
   1.418 -(* ------ the main proof q o p = q ------ *)
   1.419 -
   1.420 -theorem hoare_main: "q oo p = q"
   1.421 -apply (rule cfun_eqI)
   1.422 -apply (subst cfcomp2)
   1.423 -apply (rule hoare_lemma3 [THEN disjE])
   1.424 -apply (erule hoare_lemma23)
   1.425 -apply (erule hoare_lemma29)
   1.426 -done
   1.427 -
   1.428 -end