src/HOLCF/Domain.thy
changeset 41022 0437dbc127b3
parent 41021 6c12f5e24e34
child 41023 ed7a4eadb2f6
     1.1 --- a/src/HOLCF/Domain.thy	Sat Nov 27 14:34:54 2010 -0800
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,352 +0,0 @@
     1.4 -(*  Title:      HOLCF/Domain.thy
     1.5 -    Author:     Brian Huffman
     1.6 -*)
     1.7 -
     1.8 -header {* Domain package *}
     1.9 -
    1.10 -theory Domain
    1.11 -imports Bifinite Domain_Aux
    1.12 -uses
    1.13 -  ("Tools/domaindef.ML")
    1.14 -  ("Tools/Domain/domain_isomorphism.ML")
    1.15 -  ("Tools/Domain/domain_axioms.ML")
    1.16 -  ("Tools/Domain/domain.ML")
    1.17 -begin
    1.18 -
    1.19 -default_sort "domain"
    1.20 -
    1.21 -subsection {* Representations of types *}
    1.22 -
    1.23 -lemma emb_prj: "emb\<cdot>((prj\<cdot>x)::'a) = cast\<cdot>DEFL('a)\<cdot>x"
    1.24 -by (simp add: cast_DEFL)
    1.25 -
    1.26 -lemma emb_prj_emb:
    1.27 -  fixes x :: "'a"
    1.28 -  assumes "DEFL('a) \<sqsubseteq> DEFL('b)"
    1.29 -  shows "emb\<cdot>(prj\<cdot>(emb\<cdot>x) :: 'b) = emb\<cdot>x"
    1.30 -unfolding emb_prj
    1.31 -apply (rule cast.belowD)
    1.32 -apply (rule monofun_cfun_arg [OF assms])
    1.33 -apply (simp add: cast_DEFL)
    1.34 -done
    1.35 -
    1.36 -lemma prj_emb_prj:
    1.37 -  assumes "DEFL('a) \<sqsubseteq> DEFL('b)"
    1.38 -  shows "prj\<cdot>(emb\<cdot>(prj\<cdot>x :: 'b)) = (prj\<cdot>x :: 'a)"
    1.39 - apply (rule emb_eq_iff [THEN iffD1])
    1.40 - apply (simp only: emb_prj)
    1.41 - apply (rule deflation_below_comp1)
    1.42 -   apply (rule deflation_cast)
    1.43 -  apply (rule deflation_cast)
    1.44 - apply (rule monofun_cfun_arg [OF assms])
    1.45 -done
    1.46 -
    1.47 -text {* Isomorphism lemmas used internally by the domain package: *}
    1.48 -
    1.49 -lemma domain_abs_iso:
    1.50 -  fixes abs and rep
    1.51 -  assumes DEFL: "DEFL('b) = DEFL('a)"
    1.52 -  assumes abs_def: "(abs :: 'a \<rightarrow> 'b) \<equiv> prj oo emb"
    1.53 -  assumes rep_def: "(rep :: 'b \<rightarrow> 'a) \<equiv> prj oo emb"
    1.54 -  shows "rep\<cdot>(abs\<cdot>x) = x"
    1.55 -unfolding abs_def rep_def
    1.56 -by (simp add: emb_prj_emb DEFL)
    1.57 -
    1.58 -lemma domain_rep_iso:
    1.59 -  fixes abs and rep
    1.60 -  assumes DEFL: "DEFL('b) = DEFL('a)"
    1.61 -  assumes abs_def: "(abs :: 'a \<rightarrow> 'b) \<equiv> prj oo emb"
    1.62 -  assumes rep_def: "(rep :: 'b \<rightarrow> 'a) \<equiv> prj oo emb"
    1.63 -  shows "abs\<cdot>(rep\<cdot>x) = x"
    1.64 -unfolding abs_def rep_def
    1.65 -by (simp add: emb_prj_emb DEFL)
    1.66 -
    1.67 -subsection {* Deflations as sets *}
    1.68 -
    1.69 -definition defl_set :: "defl \<Rightarrow> udom set"
    1.70 -where "defl_set A = {x. cast\<cdot>A\<cdot>x = x}"
    1.71 -
    1.72 -lemma adm_defl_set: "adm (\<lambda>x. x \<in> defl_set A)"
    1.73 -unfolding defl_set_def by simp
    1.74 -
    1.75 -lemma defl_set_bottom: "\<bottom> \<in> defl_set A"
    1.76 -unfolding defl_set_def by simp
    1.77 -
    1.78 -lemma defl_set_cast [simp]: "cast\<cdot>A\<cdot>x \<in> defl_set A"
    1.79 -unfolding defl_set_def by simp
    1.80 -
    1.81 -lemma defl_set_subset_iff: "defl_set A \<subseteq> defl_set B \<longleftrightarrow> A \<sqsubseteq> B"
    1.82 -apply (simp add: defl_set_def subset_eq cast_below_cast [symmetric])
    1.83 -apply (auto simp add: cast.belowI cast.belowD)
    1.84 -done
    1.85 -
    1.86 -subsection {* Proving a subtype is representable *}
    1.87 -
    1.88 -text {* Temporarily relax type constraints. *}
    1.89 -
    1.90 -setup {*
    1.91 -  fold Sign.add_const_constraint
    1.92 -  [ (@{const_name defl}, SOME @{typ "'a::pcpo itself \<Rightarrow> defl"})
    1.93 -  , (@{const_name emb}, SOME @{typ "'a::pcpo \<rightarrow> udom"})
    1.94 -  , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::pcpo"})
    1.95 -  , (@{const_name liftdefl}, SOME @{typ "'a::pcpo itself \<Rightarrow> defl"})
    1.96 -  , (@{const_name liftemb}, SOME @{typ "'a::pcpo u \<rightarrow> udom"})
    1.97 -  , (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::pcpo u"}) ]
    1.98 -*}
    1.99 -
   1.100 -lemma typedef_liftdomain_class:
   1.101 -  fixes Rep :: "'a::pcpo \<Rightarrow> udom"
   1.102 -  fixes Abs :: "udom \<Rightarrow> 'a::pcpo"
   1.103 -  fixes t :: defl
   1.104 -  assumes type: "type_definition Rep Abs (defl_set t)"
   1.105 -  assumes below: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y"
   1.106 -  assumes emb: "emb \<equiv> (\<Lambda> x. Rep x)"
   1.107 -  assumes prj: "prj \<equiv> (\<Lambda> x. Abs (cast\<cdot>t\<cdot>x))"
   1.108 -  assumes defl: "defl \<equiv> (\<lambda> a::'a itself. t)"
   1.109 -  assumes liftemb: "(liftemb :: 'a u \<rightarrow> udom) \<equiv> udom_emb u_approx oo u_map\<cdot>emb"
   1.110 -  assumes liftprj: "(liftprj :: udom \<rightarrow> 'a u) \<equiv> u_map\<cdot>prj oo udom_prj u_approx"
   1.111 -  assumes liftdefl: "(liftdefl :: 'a itself \<Rightarrow> defl) \<equiv> (\<lambda>t. u_defl\<cdot>DEFL('a))"
   1.112 -  shows "OFCLASS('a, liftdomain_class)"
   1.113 -using liftemb [THEN meta_eq_to_obj_eq]
   1.114 -using liftprj [THEN meta_eq_to_obj_eq]
   1.115 -proof (rule liftdomain_class_intro)
   1.116 -  have emb_beta: "\<And>x. emb\<cdot>x = Rep x"
   1.117 -    unfolding emb
   1.118 -    apply (rule beta_cfun)
   1.119 -    apply (rule typedef_cont_Rep [OF type below adm_defl_set])
   1.120 -    done
   1.121 -  have prj_beta: "\<And>y. prj\<cdot>y = Abs (cast\<cdot>t\<cdot>y)"
   1.122 -    unfolding prj
   1.123 -    apply (rule beta_cfun)
   1.124 -    apply (rule typedef_cont_Abs [OF type below adm_defl_set])
   1.125 -    apply simp_all
   1.126 -    done
   1.127 -  have prj_emb: "\<And>x::'a. prj\<cdot>(emb\<cdot>x) = x"
   1.128 -    using type_definition.Rep [OF type]
   1.129 -    unfolding prj_beta emb_beta defl_set_def
   1.130 -    by (simp add: type_definition.Rep_inverse [OF type])
   1.131 -  have emb_prj: "\<And>y. emb\<cdot>(prj\<cdot>y :: 'a) = cast\<cdot>t\<cdot>y"
   1.132 -    unfolding prj_beta emb_beta
   1.133 -    by (simp add: type_definition.Abs_inverse [OF type])
   1.134 -  show "ep_pair (emb :: 'a \<rightarrow> udom) prj"
   1.135 -    apply default
   1.136 -    apply (simp add: prj_emb)
   1.137 -    apply (simp add: emb_prj cast.below)
   1.138 -    done
   1.139 -  show "cast\<cdot>DEFL('a) = emb oo (prj :: udom \<rightarrow> 'a)"
   1.140 -    by (rule cfun_eqI, simp add: defl emb_prj)
   1.141 -  show "LIFTDEFL('a) = u_defl\<cdot>DEFL('a)"
   1.142 -    unfolding liftdefl ..
   1.143 -qed
   1.144 -
   1.145 -lemma typedef_DEFL:
   1.146 -  assumes "defl \<equiv> (\<lambda>a::'a::pcpo itself. t)"
   1.147 -  shows "DEFL('a::pcpo) = t"
   1.148 -unfolding assms ..
   1.149 -
   1.150 -text {* Restore original typing constraints. *}
   1.151 -
   1.152 -setup {*
   1.153 -  fold Sign.add_const_constraint
   1.154 -  [ (@{const_name defl}, SOME @{typ "'a::domain itself \<Rightarrow> defl"})
   1.155 -  , (@{const_name emb}, SOME @{typ "'a::domain \<rightarrow> udom"})
   1.156 -  , (@{const_name prj}, SOME @{typ "udom \<rightarrow> 'a::domain"})
   1.157 -  , (@{const_name liftdefl}, SOME @{typ "'a::predomain itself \<Rightarrow> defl"})
   1.158 -  , (@{const_name liftemb}, SOME @{typ "'a::predomain u \<rightarrow> udom"})
   1.159 -  , (@{const_name liftprj}, SOME @{typ "udom \<rightarrow> 'a::predomain u"}) ]
   1.160 -*}
   1.161 -
   1.162 -use "Tools/domaindef.ML"
   1.163 -
   1.164 -subsection {* Isomorphic deflations *}
   1.165 -
   1.166 -definition
   1.167 -  isodefl :: "('a \<rightarrow> 'a) \<Rightarrow> defl \<Rightarrow> bool"
   1.168 -where
   1.169 -  "isodefl d t \<longleftrightarrow> cast\<cdot>t = emb oo d oo prj"
   1.170 -
   1.171 -lemma isodeflI: "(\<And>x. cast\<cdot>t\<cdot>x = emb\<cdot>(d\<cdot>(prj\<cdot>x))) \<Longrightarrow> isodefl d t"
   1.172 -unfolding isodefl_def by (simp add: cfun_eqI)
   1.173 -
   1.174 -lemma cast_isodefl: "isodefl d t \<Longrightarrow> cast\<cdot>t = (\<Lambda> x. emb\<cdot>(d\<cdot>(prj\<cdot>x)))"
   1.175 -unfolding isodefl_def by (simp add: cfun_eqI)
   1.176 -
   1.177 -lemma isodefl_strict: "isodefl d t \<Longrightarrow> d\<cdot>\<bottom> = \<bottom>"
   1.178 -unfolding isodefl_def
   1.179 -by (drule cfun_fun_cong [where x="\<bottom>"], simp)
   1.180 -
   1.181 -lemma isodefl_imp_deflation:
   1.182 -  fixes d :: "'a \<rightarrow> 'a"
   1.183 -  assumes "isodefl d t" shows "deflation d"
   1.184 -proof
   1.185 -  note assms [unfolded isodefl_def, simp]
   1.186 -  fix x :: 'a
   1.187 -  show "d\<cdot>(d\<cdot>x) = d\<cdot>x"
   1.188 -    using cast.idem [of t "emb\<cdot>x"] by simp
   1.189 -  show "d\<cdot>x \<sqsubseteq> x"
   1.190 -    using cast.below [of t "emb\<cdot>x"] by simp
   1.191 -qed
   1.192 -
   1.193 -lemma isodefl_ID_DEFL: "isodefl (ID :: 'a \<rightarrow> 'a) DEFL('a)"
   1.194 -unfolding isodefl_def by (simp add: cast_DEFL)
   1.195 -
   1.196 -lemma isodefl_LIFTDEFL:
   1.197 -  "isodefl (u_map\<cdot>(ID :: 'a \<rightarrow> 'a)) LIFTDEFL('a::predomain)"
   1.198 -unfolding u_map_ID DEFL_u [symmetric]
   1.199 -by (rule isodefl_ID_DEFL)
   1.200 -
   1.201 -lemma isodefl_DEFL_imp_ID: "isodefl (d :: 'a \<rightarrow> 'a) DEFL('a) \<Longrightarrow> d = ID"
   1.202 -unfolding isodefl_def
   1.203 -apply (simp add: cast_DEFL)
   1.204 -apply (simp add: cfun_eq_iff)
   1.205 -apply (rule allI)
   1.206 -apply (drule_tac x="emb\<cdot>x" in spec)
   1.207 -apply simp
   1.208 -done
   1.209 -
   1.210 -lemma isodefl_bottom: "isodefl \<bottom> \<bottom>"
   1.211 -unfolding isodefl_def by (simp add: cfun_eq_iff)
   1.212 -
   1.213 -lemma adm_isodefl:
   1.214 -  "cont f \<Longrightarrow> cont g \<Longrightarrow> adm (\<lambda>x. isodefl (f x) (g x))"
   1.215 -unfolding isodefl_def by simp
   1.216 -
   1.217 -lemma isodefl_lub:
   1.218 -  assumes "chain d" and "chain t"
   1.219 -  assumes "\<And>i. isodefl (d i) (t i)"
   1.220 -  shows "isodefl (\<Squnion>i. d i) (\<Squnion>i. t i)"
   1.221 -using prems unfolding isodefl_def
   1.222 -by (simp add: contlub_cfun_arg contlub_cfun_fun)
   1.223 -
   1.224 -lemma isodefl_fix:
   1.225 -  assumes "\<And>d t. isodefl d t \<Longrightarrow> isodefl (f\<cdot>d) (g\<cdot>t)"
   1.226 -  shows "isodefl (fix\<cdot>f) (fix\<cdot>g)"
   1.227 -unfolding fix_def2
   1.228 -apply (rule isodefl_lub, simp, simp)
   1.229 -apply (induct_tac i)
   1.230 -apply (simp add: isodefl_bottom)
   1.231 -apply (simp add: assms)
   1.232 -done
   1.233 -
   1.234 -lemma isodefl_abs_rep:
   1.235 -  fixes abs and rep and d
   1.236 -  assumes DEFL: "DEFL('b) = DEFL('a)"
   1.237 -  assumes abs_def: "(abs :: 'a \<rightarrow> 'b) \<equiv> prj oo emb"
   1.238 -  assumes rep_def: "(rep :: 'b \<rightarrow> 'a) \<equiv> prj oo emb"
   1.239 -  shows "isodefl d t \<Longrightarrow> isodefl (abs oo d oo rep) t"
   1.240 -unfolding isodefl_def
   1.241 -by (simp add: cfun_eq_iff assms prj_emb_prj emb_prj_emb)
   1.242 -
   1.243 -lemma isodefl_sfun:
   1.244 -  "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow>
   1.245 -    isodefl (sfun_map\<cdot>d1\<cdot>d2) (sfun_defl\<cdot>t1\<cdot>t2)"
   1.246 -apply (rule isodeflI)
   1.247 -apply (simp add: cast_sfun_defl cast_isodefl)
   1.248 -apply (simp add: emb_sfun_def prj_sfun_def)
   1.249 -apply (simp add: sfun_map_map isodefl_strict)
   1.250 -done
   1.251 -
   1.252 -lemma isodefl_ssum:
   1.253 -  "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow>
   1.254 -    isodefl (ssum_map\<cdot>d1\<cdot>d2) (ssum_defl\<cdot>t1\<cdot>t2)"
   1.255 -apply (rule isodeflI)
   1.256 -apply (simp add: cast_ssum_defl cast_isodefl)
   1.257 -apply (simp add: emb_ssum_def prj_ssum_def)
   1.258 -apply (simp add: ssum_map_map isodefl_strict)
   1.259 -done
   1.260 -
   1.261 -lemma isodefl_sprod:
   1.262 -  "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow>
   1.263 -    isodefl (sprod_map\<cdot>d1\<cdot>d2) (sprod_defl\<cdot>t1\<cdot>t2)"
   1.264 -apply (rule isodeflI)
   1.265 -apply (simp add: cast_sprod_defl cast_isodefl)
   1.266 -apply (simp add: emb_sprod_def prj_sprod_def)
   1.267 -apply (simp add: sprod_map_map isodefl_strict)
   1.268 -done
   1.269 -
   1.270 -lemma isodefl_cprod:
   1.271 -  "isodefl d1 t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow>
   1.272 -    isodefl (cprod_map\<cdot>d1\<cdot>d2) (prod_defl\<cdot>t1\<cdot>t2)"
   1.273 -apply (rule isodeflI)
   1.274 -apply (simp add: cast_prod_defl cast_isodefl)
   1.275 -apply (simp add: emb_prod_def prj_prod_def)
   1.276 -apply (simp add: cprod_map_map cfcomp1)
   1.277 -done
   1.278 -
   1.279 -lemma isodefl_u:
   1.280 -  fixes d :: "'a::liftdomain \<rightarrow> 'a"
   1.281 -  shows "isodefl (d :: 'a \<rightarrow> 'a) t \<Longrightarrow> isodefl (u_map\<cdot>d) (u_defl\<cdot>t)"
   1.282 -apply (rule isodeflI)
   1.283 -apply (simp add: cast_u_defl cast_isodefl)
   1.284 -apply (simp add: emb_u_def prj_u_def liftemb_eq liftprj_eq)
   1.285 -apply (simp add: u_map_map)
   1.286 -done
   1.287 -
   1.288 -lemma encode_prod_u_map:
   1.289 -  "encode_prod_u\<cdot>(u_map\<cdot>(cprod_map\<cdot>f\<cdot>g)\<cdot>(decode_prod_u\<cdot>x))
   1.290 -    = sprod_map\<cdot>(u_map\<cdot>f)\<cdot>(u_map\<cdot>g)\<cdot>x"
   1.291 -unfolding encode_prod_u_def decode_prod_u_def
   1.292 -apply (case_tac x, simp, rename_tac a b)
   1.293 -apply (case_tac a, simp, case_tac b, simp, simp)
   1.294 -done
   1.295 -
   1.296 -lemma isodefl_cprod_u:
   1.297 -  assumes "isodefl (u_map\<cdot>d1) t1" and "isodefl (u_map\<cdot>d2) t2"
   1.298 -  shows "isodefl (u_map\<cdot>(cprod_map\<cdot>d1\<cdot>d2)) (sprod_defl\<cdot>t1\<cdot>t2)"
   1.299 -using assms unfolding isodefl_def
   1.300 -apply (simp add: emb_u_def prj_u_def liftemb_prod_def liftprj_prod_def)
   1.301 -apply (simp add: emb_u_def [symmetric] prj_u_def [symmetric])
   1.302 -apply (simp add: cfcomp1 encode_prod_u_map cast_sprod_defl sprod_map_map)
   1.303 -done
   1.304 -
   1.305 -lemma encode_cfun_map:
   1.306 -  "encode_cfun\<cdot>(cfun_map\<cdot>f\<cdot>g\<cdot>(decode_cfun\<cdot>x))
   1.307 -    = sfun_map\<cdot>(u_map\<cdot>f)\<cdot>g\<cdot>x"
   1.308 -unfolding encode_cfun_def decode_cfun_def
   1.309 -apply (simp add: sfun_eq_iff cfun_map_def sfun_map_def)
   1.310 -apply (rule cfun_eqI, rename_tac y, case_tac y, simp_all)
   1.311 -done
   1.312 -
   1.313 -lemma isodefl_cfun:
   1.314 -  "isodefl (u_map\<cdot>d1) t1 \<Longrightarrow> isodefl d2 t2 \<Longrightarrow>
   1.315 -    isodefl (cfun_map\<cdot>d1\<cdot>d2) (sfun_defl\<cdot>t1\<cdot>t2)"
   1.316 -apply (rule isodeflI)
   1.317 -apply (simp add: cast_sfun_defl cast_isodefl)
   1.318 -apply (simp add: emb_cfun_def prj_cfun_def encode_cfun_map)
   1.319 -apply (simp add: sfun_map_map isodefl_strict)
   1.320 -done
   1.321 -
   1.322 -subsection {* Setting up the domain package *}
   1.323 -
   1.324 -use "Tools/Domain/domain_isomorphism.ML"
   1.325 -use "Tools/Domain/domain_axioms.ML"
   1.326 -use "Tools/Domain/domain.ML"
   1.327 -
   1.328 -setup Domain_Isomorphism.setup
   1.329 -
   1.330 -lemmas [domain_defl_simps] =
   1.331 -  DEFL_cfun DEFL_sfun DEFL_ssum DEFL_sprod DEFL_prod DEFL_u
   1.332 -  liftdefl_eq LIFTDEFL_prod
   1.333 -
   1.334 -lemmas [domain_map_ID] =
   1.335 -  cfun_map_ID sfun_map_ID ssum_map_ID sprod_map_ID cprod_map_ID u_map_ID
   1.336 -
   1.337 -lemmas [domain_isodefl] =
   1.338 -  isodefl_u isodefl_sfun isodefl_ssum isodefl_sprod
   1.339 -  isodefl_cfun isodefl_cprod isodefl_cprod_u
   1.340 -
   1.341 -lemmas [domain_deflation] =
   1.342 -  deflation_cfun_map deflation_sfun_map deflation_ssum_map
   1.343 -  deflation_sprod_map deflation_cprod_map deflation_u_map
   1.344 -
   1.345 -setup {*
   1.346 -  fold Domain_Take_Proofs.add_rec_type
   1.347 -    [(@{type_name cfun}, [true, true]),
   1.348 -     (@{type_name "sfun"}, [true, true]),
   1.349 -     (@{type_name ssum}, [true, true]),
   1.350 -     (@{type_name sprod}, [true, true]),
   1.351 -     (@{type_name prod}, [true, true]),
   1.352 -     (@{type_name "u"}, [true])]
   1.353 -*}
   1.354 -
   1.355 -end