src/HOL/HOLCF/ex/Hoare.thy
changeset 41022 0437dbc127b3
parent 40656 5f37c3964866
child 43022 4da4fc77664b
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/HOLCF/ex/Hoare.thy	Sat Nov 27 16:08:10 2010 -0800
     1.3 @@ -0,0 +1,425 @@
     1.4 +(*  Title:      HOLCF/ex/hoare.thy
     1.5 +    Author:     Franz Regensburger
     1.6 +
     1.7 +Theory for an example by C.A.R. Hoare
     1.8 +
     1.9 +p x = if b1 x
    1.10 +         then p (g x)
    1.11 +         else x fi
    1.12 +
    1.13 +q x = if b1 x orelse b2 x
    1.14 +         then q (g x)
    1.15 +         else x fi
    1.16 +
    1.17 +Prove: for all b1 b2 g .
    1.18 +            q o p  = q
    1.19 +
    1.20 +In order to get a nice notation we fix the functions b1,b2 and g in the
    1.21 +signature of this example
    1.22 +
    1.23 +*)
    1.24 +
    1.25 +theory Hoare
    1.26 +imports HOLCF
    1.27 +begin
    1.28 +
    1.29 +axiomatization
    1.30 +  b1 :: "'a -> tr" and
    1.31 +  b2 :: "'a -> tr" and
    1.32 +  g :: "'a -> 'a"
    1.33 +
    1.34 +definition
    1.35 +  p :: "'a -> 'a" where
    1.36 +  "p = fix$(LAM f. LAM x. If b1$x then f$(g$x) else x)"
    1.37 +
    1.38 +definition
    1.39 +  q :: "'a -> 'a" where
    1.40 +  "q = fix$(LAM f. LAM x. If b1$x orelse b2$x then f$(g$x) else x)"
    1.41 +
    1.42 +
    1.43 +(* --------- pure HOLCF logic, some little lemmas ------ *)
    1.44 +
    1.45 +lemma hoare_lemma2: "b~=TT ==> b=FF | b=UU"
    1.46 +apply (rule Exh_tr [THEN disjE])
    1.47 +apply blast+
    1.48 +done
    1.49 +
    1.50 +lemma hoare_lemma3: " (ALL k. b1$(iterate k$g$x) = TT) | (EX k. b1$(iterate k$g$x)~=TT)"
    1.51 +apply blast
    1.52 +done
    1.53 +
    1.54 +lemma hoare_lemma4: "(EX k. b1$(iterate k$g$x) ~= TT) ==>  
    1.55 +  EX k. b1$(iterate k$g$x) = FF | b1$(iterate k$g$x) = UU"
    1.56 +apply (erule exE)
    1.57 +apply (rule exI)
    1.58 +apply (rule hoare_lemma2)
    1.59 +apply assumption
    1.60 +done
    1.61 +
    1.62 +lemma hoare_lemma5: "[|(EX k. b1$(iterate k$g$x) ~= TT); 
    1.63 +    k=Least(%n. b1$(iterate n$g$x) ~= TT)|] ==>  
    1.64 +  b1$(iterate k$g$x)=FF | b1$(iterate k$g$x)=UU"
    1.65 +apply hypsubst
    1.66 +apply (rule hoare_lemma2)
    1.67 +apply (erule exE)
    1.68 +apply (erule LeastI)
    1.69 +done
    1.70 +
    1.71 +lemma hoare_lemma6: "b=UU ==> b~=TT"
    1.72 +apply hypsubst
    1.73 +apply (rule dist_eq_tr)
    1.74 +done
    1.75 +
    1.76 +lemma hoare_lemma7: "b=FF ==> b~=TT"
    1.77 +apply hypsubst
    1.78 +apply (rule dist_eq_tr)
    1.79 +done
    1.80 +
    1.81 +lemma hoare_lemma8: "[|(EX k. b1$(iterate k$g$x) ~= TT); 
    1.82 +    k=Least(%n. b1$(iterate n$g$x) ~= TT)|] ==>  
    1.83 +  ALL m. m < k --> b1$(iterate m$g$x)=TT"
    1.84 +apply hypsubst
    1.85 +apply (erule exE)
    1.86 +apply (intro strip)
    1.87 +apply (rule_tac p = "b1$ (iterate m$g$x) " in trE)
    1.88 +prefer 2 apply (assumption)
    1.89 +apply (rule le_less_trans [THEN less_irrefl [THEN notE]])
    1.90 +prefer 2 apply (assumption)
    1.91 +apply (rule Least_le)
    1.92 +apply (erule hoare_lemma6)
    1.93 +apply (rule le_less_trans [THEN less_irrefl [THEN notE]])
    1.94 +prefer 2 apply (assumption)
    1.95 +apply (rule Least_le)
    1.96 +apply (erule hoare_lemma7)
    1.97 +done
    1.98 +
    1.99 +
   1.100 +lemma hoare_lemma28: "f$(y::'a)=(UU::tr) ==> f$UU = UU"
   1.101 +by (rule strictI)
   1.102 +
   1.103 +
   1.104 +(* ----- access to definitions ----- *)
   1.105 +
   1.106 +lemma p_def3: "p$x = If b1$x then p$(g$x) else x"
   1.107 +apply (rule trans)
   1.108 +apply (rule p_def [THEN eq_reflection, THEN fix_eq3])
   1.109 +apply simp
   1.110 +done
   1.111 +
   1.112 +lemma q_def3: "q$x = If b1$x orelse b2$x then q$(g$x) else x"
   1.113 +apply (rule trans)
   1.114 +apply (rule q_def [THEN eq_reflection, THEN fix_eq3])
   1.115 +apply simp
   1.116 +done
   1.117 +
   1.118 +(** --------- proofs about iterations of p and q ---------- **)
   1.119 +
   1.120 +lemma hoare_lemma9: "(ALL m. m< Suc k --> b1$(iterate m$g$x)=TT) --> 
   1.121 +   p$(iterate k$g$x)=p$x"
   1.122 +apply (induct_tac k)
   1.123 +apply (simp (no_asm))
   1.124 +apply (simp (no_asm))
   1.125 +apply (intro strip)
   1.126 +apply (rule_tac s = "p$ (iterate n$g$x) " in trans)
   1.127 +apply (rule trans)
   1.128 +apply (rule_tac [2] p_def3 [symmetric])
   1.129 +apply (rule_tac s = "TT" and t = "b1$ (iterate n$g$x) " in ssubst)
   1.130 +apply (rule mp)
   1.131 +apply (erule spec)
   1.132 +apply (simp (no_asm) add: less_Suc_eq)
   1.133 +apply simp
   1.134 +apply (erule mp)
   1.135 +apply (intro strip)
   1.136 +apply (rule mp)
   1.137 +apply (erule spec)
   1.138 +apply (erule less_trans)
   1.139 +apply simp
   1.140 +done
   1.141 +
   1.142 +lemma hoare_lemma24: "(ALL m. m< Suc k --> b1$(iterate m$g$x)=TT) -->  
   1.143 +  q$(iterate k$g$x)=q$x"
   1.144 +apply (induct_tac k)
   1.145 +apply (simp (no_asm))
   1.146 +apply (simp (no_asm) add: less_Suc_eq)
   1.147 +apply (intro strip)
   1.148 +apply (rule_tac s = "q$ (iterate n$g$x) " in trans)
   1.149 +apply (rule trans)
   1.150 +apply (rule_tac [2] q_def3 [symmetric])
   1.151 +apply (rule_tac s = "TT" and t = "b1$ (iterate n$g$x) " in ssubst)
   1.152 +apply blast
   1.153 +apply simp
   1.154 +apply (erule mp)
   1.155 +apply (intro strip)
   1.156 +apply (fast dest!: less_Suc_eq [THEN iffD1])
   1.157 +done
   1.158 +
   1.159 +(* -------- results about p for case (EX k. b1$(iterate k$g$x)~=TT) ------- *)
   1.160 +
   1.161 +thm hoare_lemma8 [THEN hoare_lemma9 [THEN mp], standard]
   1.162 +
   1.163 +lemma hoare_lemma10:
   1.164 +  "EX k. b1$(iterate k$g$x) ~= TT
   1.165 +    ==> Suc k = (LEAST n. b1$(iterate n$g$x) ~= TT) ==> p$(iterate k$g$x) = p$x"
   1.166 +  by (rule hoare_lemma8 [THEN hoare_lemma9 [THEN mp]])
   1.167 +
   1.168 +lemma hoare_lemma11: "(EX n. b1$(iterate n$g$x) ~= TT) ==> 
   1.169 +  k=(LEAST n. b1$(iterate n$g$x) ~= TT) & b1$(iterate k$g$x)=FF  
   1.170 +  --> p$x = iterate k$g$x"
   1.171 +apply (case_tac "k")
   1.172 +apply hypsubst
   1.173 +apply (simp (no_asm))
   1.174 +apply (intro strip)
   1.175 +apply (erule conjE)
   1.176 +apply (rule trans)
   1.177 +apply (rule p_def3)
   1.178 +apply simp
   1.179 +apply hypsubst
   1.180 +apply (intro strip)
   1.181 +apply (erule conjE)
   1.182 +apply (rule trans)
   1.183 +apply (erule hoare_lemma10 [symmetric])
   1.184 +apply assumption
   1.185 +apply (rule trans)
   1.186 +apply (rule p_def3)
   1.187 +apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.188 +apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.189 +apply assumption
   1.190 +apply assumption
   1.191 +apply (simp (no_asm))
   1.192 +apply (simp (no_asm))
   1.193 +apply (rule trans)
   1.194 +apply (rule p_def3)
   1.195 +apply (simp (no_asm) del: iterate_Suc add: iterate_Suc [symmetric])
   1.196 +apply (erule_tac s = "FF" in ssubst)
   1.197 +apply simp
   1.198 +done
   1.199 +
   1.200 +lemma hoare_lemma12: "(EX n. b1$(iterate n$g$x) ~= TT) ==> 
   1.201 +  k=Least(%n. b1$(iterate n$g$x)~=TT) & b1$(iterate k$g$x)=UU  
   1.202 +  --> p$x = UU"
   1.203 +apply (case_tac "k")
   1.204 +apply hypsubst
   1.205 +apply (simp (no_asm))
   1.206 +apply (intro strip)
   1.207 +apply (erule conjE)
   1.208 +apply (rule trans)
   1.209 +apply (rule p_def3)
   1.210 +apply simp
   1.211 +apply hypsubst
   1.212 +apply (simp (no_asm))
   1.213 +apply (intro strip)
   1.214 +apply (erule conjE)
   1.215 +apply (rule trans)
   1.216 +apply (rule hoare_lemma10 [symmetric])
   1.217 +apply assumption
   1.218 +apply assumption
   1.219 +apply (rule trans)
   1.220 +apply (rule p_def3)
   1.221 +apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.222 +apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.223 +apply assumption
   1.224 +apply assumption
   1.225 +apply (simp (no_asm))
   1.226 +apply (simp)
   1.227 +apply (rule trans)
   1.228 +apply (rule p_def3)
   1.229 +apply simp
   1.230 +done
   1.231 +
   1.232 +(* -------- results about p for case  (ALL k. b1$(iterate k$g$x)=TT) ------- *)
   1.233 +
   1.234 +lemma fernpass_lemma: "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. p$(iterate k$g$x) = UU"
   1.235 +apply (rule p_def [THEN eq_reflection, THEN def_fix_ind])
   1.236 +apply simp
   1.237 +apply simp
   1.238 +apply (simp (no_asm))
   1.239 +apply (rule allI)
   1.240 +apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$x) " in ssubst)
   1.241 +apply (erule spec)
   1.242 +apply (simp)
   1.243 +apply (rule iterate_Suc [THEN subst])
   1.244 +apply (erule spec)
   1.245 +done
   1.246 +
   1.247 +lemma hoare_lemma16: "(ALL k. b1$(iterate k$g$x)=TT) ==> p$x = UU"
   1.248 +apply (rule_tac F1 = "g" and t = "x" in iterate_0 [THEN subst])
   1.249 +apply (erule fernpass_lemma [THEN spec])
   1.250 +done
   1.251 +
   1.252 +(* -------- results about q for case  (ALL k. b1$(iterate k$g$x)=TT) ------- *)
   1.253 +
   1.254 +lemma hoare_lemma17: "(ALL k. b1$(iterate k$g$x)=TT) ==> ALL k. q$(iterate k$g$x) = UU"
   1.255 +apply (rule q_def [THEN eq_reflection, THEN def_fix_ind])
   1.256 +apply simp
   1.257 +apply simp
   1.258 +apply (rule allI)
   1.259 +apply (simp (no_asm))
   1.260 +apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$x) " in ssubst)
   1.261 +apply (erule spec)
   1.262 +apply (simp)
   1.263 +apply (rule iterate_Suc [THEN subst])
   1.264 +apply (erule spec)
   1.265 +done
   1.266 +
   1.267 +lemma hoare_lemma18: "(ALL k. b1$(iterate k$g$x)=TT) ==> q$x = UU"
   1.268 +apply (rule_tac F1 = "g" and t = "x" in iterate_0 [THEN subst])
   1.269 +apply (erule hoare_lemma17 [THEN spec])
   1.270 +done
   1.271 +
   1.272 +lemma hoare_lemma19:
   1.273 +  "(ALL k. (b1::'a->tr)$(iterate k$g$x)=TT) ==> b1$(UU::'a) = UU | (ALL y. b1$(y::'a)=TT)"
   1.274 +apply (rule flat_codom)
   1.275 +apply (rule_tac t = "x1" in iterate_0 [THEN subst])
   1.276 +apply (erule spec)
   1.277 +done
   1.278 +
   1.279 +lemma hoare_lemma20: "(ALL y. b1$(y::'a)=TT) ==> ALL k. q$(iterate k$g$(x::'a)) = UU"
   1.280 +apply (rule q_def [THEN eq_reflection, THEN def_fix_ind])
   1.281 +apply simp
   1.282 +apply simp
   1.283 +apply (rule allI)
   1.284 +apply (simp (no_asm))
   1.285 +apply (rule_tac s = "TT" and t = "b1$ (iterate k$g$ (x::'a))" in ssubst)
   1.286 +apply (erule spec)
   1.287 +apply (simp)
   1.288 +apply (rule iterate_Suc [THEN subst])
   1.289 +apply (erule spec)
   1.290 +done
   1.291 +
   1.292 +lemma hoare_lemma21: "(ALL y. b1$(y::'a)=TT) ==> q$(x::'a) = UU"
   1.293 +apply (rule_tac F1 = "g" and t = "x" in iterate_0 [THEN subst])
   1.294 +apply (erule hoare_lemma20 [THEN spec])
   1.295 +done
   1.296 +
   1.297 +lemma hoare_lemma22: "b1$(UU::'a)=UU ==> q$(UU::'a) = UU"
   1.298 +apply (subst q_def3)
   1.299 +apply simp
   1.300 +done
   1.301 +
   1.302 +(* -------- results about q for case (EX k. b1$(iterate k$g$x) ~= TT) ------- *)
   1.303 +
   1.304 +lemma hoare_lemma25: "EX k. b1$(iterate k$g$x) ~= TT
   1.305 +  ==> Suc k = (LEAST n. b1$(iterate n$g$x) ~= TT) ==> q$(iterate k$g$x) = q$x"
   1.306 +  by (rule hoare_lemma8 [THEN hoare_lemma24 [THEN mp]])
   1.307 +
   1.308 +lemma hoare_lemma26: "(EX n. b1$(iterate n$g$x)~=TT) ==> 
   1.309 +  k=Least(%n. b1$(iterate n$g$x) ~= TT) & b1$(iterate k$g$x) =FF  
   1.310 +  --> q$x = q$(iterate k$g$x)"
   1.311 +apply (case_tac "k")
   1.312 +apply hypsubst
   1.313 +apply (intro strip)
   1.314 +apply (simp (no_asm))
   1.315 +apply hypsubst
   1.316 +apply (intro strip)
   1.317 +apply (erule conjE)
   1.318 +apply (rule trans)
   1.319 +apply (rule hoare_lemma25 [symmetric])
   1.320 +apply assumption
   1.321 +apply assumption
   1.322 +apply (rule trans)
   1.323 +apply (rule q_def3)
   1.324 +apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.325 +apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.326 +apply assumption
   1.327 +apply assumption
   1.328 +apply (simp (no_asm))
   1.329 +apply (simp (no_asm))
   1.330 +done
   1.331 +
   1.332 +
   1.333 +lemma hoare_lemma27: "(EX n. b1$(iterate n$g$x) ~= TT) ==> 
   1.334 +  k=Least(%n. b1$(iterate n$g$x)~=TT) & b1$(iterate k$g$x)=UU  
   1.335 +  --> q$x = UU"
   1.336 +apply (case_tac "k")
   1.337 +apply hypsubst
   1.338 +apply (simp (no_asm))
   1.339 +apply (intro strip)
   1.340 +apply (erule conjE)
   1.341 +apply (subst q_def3)
   1.342 +apply (simp)
   1.343 +apply hypsubst
   1.344 +apply (simp (no_asm))
   1.345 +apply (intro strip)
   1.346 +apply (erule conjE)
   1.347 +apply (rule trans)
   1.348 +apply (rule hoare_lemma25 [symmetric])
   1.349 +apply assumption
   1.350 +apply assumption
   1.351 +apply (rule trans)
   1.352 +apply (rule q_def3)
   1.353 +apply (rule_tac s = "TT" and t = "b1$ (iterate nat$g$x) " in ssubst)
   1.354 +apply (rule hoare_lemma8 [THEN spec, THEN mp])
   1.355 +apply assumption
   1.356 +apply assumption
   1.357 +apply (simp (no_asm))
   1.358 +apply (simp)
   1.359 +apply (rule trans)
   1.360 +apply (rule q_def3)
   1.361 +apply (simp)
   1.362 +done
   1.363 +
   1.364 +(* ------- (ALL k. b1$(iterate k$g$x)=TT) ==> q o p = q   ----- *)
   1.365 +
   1.366 +lemma hoare_lemma23: "(ALL k. b1$(iterate k$g$x)=TT) ==> q$(p$x) = q$x"
   1.367 +apply (subst hoare_lemma16)
   1.368 +apply assumption
   1.369 +apply (rule hoare_lemma19 [THEN disjE])
   1.370 +apply assumption
   1.371 +apply (simplesubst hoare_lemma18)
   1.372 +apply assumption
   1.373 +apply (simplesubst hoare_lemma22)
   1.374 +apply assumption
   1.375 +apply (rule refl)
   1.376 +apply (simplesubst hoare_lemma21)
   1.377 +apply assumption
   1.378 +apply (simplesubst hoare_lemma21)
   1.379 +apply assumption
   1.380 +apply (rule refl)
   1.381 +done
   1.382 +
   1.383 +(* ------------  EX k. b1~(iterate k$g$x) ~= TT ==> q o p = q   ----- *)
   1.384 +
   1.385 +lemma hoare_lemma29: "EX k. b1$(iterate k$g$x) ~= TT ==> q$(p$x) = q$x"
   1.386 +apply (rule hoare_lemma5 [THEN disjE])
   1.387 +apply assumption
   1.388 +apply (rule refl)
   1.389 +apply (subst hoare_lemma11 [THEN mp])
   1.390 +apply assumption
   1.391 +apply (rule conjI)
   1.392 +apply (rule refl)
   1.393 +apply assumption
   1.394 +apply (rule hoare_lemma26 [THEN mp, THEN subst])
   1.395 +apply assumption
   1.396 +apply (rule conjI)
   1.397 +apply (rule refl)
   1.398 +apply assumption
   1.399 +apply (rule refl)
   1.400 +apply (subst hoare_lemma12 [THEN mp])
   1.401 +apply assumption
   1.402 +apply (rule conjI)
   1.403 +apply (rule refl)
   1.404 +apply assumption
   1.405 +apply (subst hoare_lemma22)
   1.406 +apply (subst hoare_lemma28)
   1.407 +apply assumption
   1.408 +apply (rule refl)
   1.409 +apply (rule sym)
   1.410 +apply (subst hoare_lemma27 [THEN mp])
   1.411 +apply assumption
   1.412 +apply (rule conjI)
   1.413 +apply (rule refl)
   1.414 +apply assumption
   1.415 +apply (rule refl)
   1.416 +done
   1.417 +
   1.418 +(* ------ the main proof q o p = q ------ *)
   1.419 +
   1.420 +theorem hoare_main: "q oo p = q"
   1.421 +apply (rule cfun_eqI)
   1.422 +apply (subst cfcomp2)
   1.423 +apply (rule hoare_lemma3 [THEN disjE])
   1.424 +apply (erule hoare_lemma23)
   1.425 +apply (erule hoare_lemma29)
   1.426 +done
   1.427 +
   1.428 +end