src/HOL/Library/List_Set.thy
changeset 37016 e938a0b5286e
parent 34964 27ceb64d41ea
equal deleted inserted replaced
37015:efc202e1677e 37016:e938a0b5286e
     1 
       
     2 (* Author: Florian Haftmann, TU Muenchen *)
       
     3 
       
     4 header {* Relating (finite) sets and lists *}
       
     5 
       
     6 theory List_Set
       
     7 imports Main More_List
       
     8 begin
       
     9 
       
    10 subsection {* Various additional set functions *}
       
    11 
       
    12 definition is_empty :: "'a set \<Rightarrow> bool" where
       
    13   "is_empty A \<longleftrightarrow> A = {}"
       
    14 
       
    15 definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where
       
    16   "remove x A = A - {x}"
       
    17 
       
    18 lemma fun_left_comm_idem_remove:
       
    19   "fun_left_comm_idem remove"
       
    20 proof -
       
    21   have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: expand_fun_eq remove_def)
       
    22   show ?thesis by (simp only: fun_left_comm_idem_remove rem)
       
    23 qed
       
    24 
       
    25 lemma minus_fold_remove:
       
    26   assumes "finite A"
       
    27   shows "B - A = Finite_Set.fold remove B A"
       
    28 proof -
       
    29   have rem: "remove = (\<lambda>x A. A - {x})" by (simp add: expand_fun_eq remove_def)
       
    30   show ?thesis by (simp only: rem assms minus_fold_remove)
       
    31 qed
       
    32 
       
    33 definition project :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
       
    34   "project P A = {a\<in>A. P a}"
       
    35 
       
    36 
       
    37 subsection {* Basic set operations *}
       
    38 
       
    39 lemma is_empty_set:
       
    40   "is_empty (set xs) \<longleftrightarrow> null xs"
       
    41   by (simp add: is_empty_def null_empty)
       
    42 
       
    43 lemma ball_set:
       
    44   "(\<forall>x\<in>set xs. P x) \<longleftrightarrow> list_all P xs"
       
    45   by (rule list_ball_code)
       
    46 
       
    47 lemma bex_set:
       
    48   "(\<exists>x\<in>set xs. P x) \<longleftrightarrow> list_ex P xs"
       
    49   by (rule list_bex_code)
       
    50 
       
    51 lemma empty_set:
       
    52   "{} = set []"
       
    53   by simp
       
    54 
       
    55 lemma insert_set_compl:
       
    56   "insert x (- set xs) = - set (removeAll x xs)"
       
    57   by auto
       
    58 
       
    59 lemma remove_set_compl:
       
    60   "remove x (- set xs) = - set (List.insert x xs)"
       
    61   by (auto simp del: mem_def simp add: remove_def List.insert_def)
       
    62 
       
    63 lemma image_set:
       
    64   "image f (set xs) = set (map f xs)"
       
    65   by simp
       
    66 
       
    67 lemma project_set:
       
    68   "project P (set xs) = set (filter P xs)"
       
    69   by (auto simp add: project_def)
       
    70 
       
    71 
       
    72 subsection {* Functorial set operations *}
       
    73 
       
    74 lemma union_set:
       
    75   "set xs \<union> A = fold Set.insert xs A"
       
    76 proof -
       
    77   interpret fun_left_comm_idem Set.insert
       
    78     by (fact fun_left_comm_idem_insert)
       
    79   show ?thesis by (simp add: union_fold_insert fold_set)
       
    80 qed
       
    81 
       
    82 lemma union_set_foldr:
       
    83   "set xs \<union> A = foldr Set.insert xs A"
       
    84 proof -
       
    85   have "\<And>x y :: 'a. insert y \<circ> insert x = insert x \<circ> insert y"
       
    86     by (auto intro: ext)
       
    87   then show ?thesis by (simp add: union_set foldr_fold)
       
    88 qed
       
    89 
       
    90 lemma minus_set:
       
    91   "A - set xs = fold remove xs A"
       
    92 proof -
       
    93   interpret fun_left_comm_idem remove
       
    94     by (fact fun_left_comm_idem_remove)
       
    95   show ?thesis
       
    96     by (simp add: minus_fold_remove [of _ A] fold_set)
       
    97 qed
       
    98 
       
    99 lemma minus_set_foldr:
       
   100   "A - set xs = foldr remove xs A"
       
   101 proof -
       
   102   have "\<And>x y :: 'a. remove y \<circ> remove x = remove x \<circ> remove y"
       
   103     by (auto simp add: remove_def intro: ext)
       
   104   then show ?thesis by (simp add: minus_set foldr_fold)
       
   105 qed
       
   106 
       
   107 
       
   108 subsection {* Derived set operations *}
       
   109 
       
   110 lemma member:
       
   111   "a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. a = x)"
       
   112   by simp
       
   113 
       
   114 lemma subset_eq:
       
   115   "A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
       
   116   by (fact subset_eq)
       
   117 
       
   118 lemma subset:
       
   119   "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A"
       
   120   by (fact less_le_not_le)
       
   121 
       
   122 lemma set_eq:
       
   123   "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
       
   124   by (fact eq_iff)
       
   125 
       
   126 lemma inter:
       
   127   "A \<inter> B = project (\<lambda>x. x \<in> A) B"
       
   128   by (auto simp add: project_def)
       
   129 
       
   130 
       
   131 subsection {* Various lemmas *}
       
   132 
       
   133 lemma not_set_compl:
       
   134   "Not \<circ> set xs = - set xs"
       
   135   by (simp add: fun_Compl_def bool_Compl_def comp_def expand_fun_eq)
       
   136 
       
   137 end