doc-src/isac/jrocnik/Inverse_Z_Transform/Inverse_Z_Transform.thy
branchdecompose-isar
changeset 42252 e633bb41ea42
equal deleted inserted replaced
42251:e41d91e86fa9 42252:e633bb41ea42
       
     1 (* Title:  Test_Z_Transform
       
     2    Author: Jan Rocnik
       
     3    (c) copyright due to lincense terms.
       
     4 12345678901234567890123456789012345678901234567890123456789012345678901234567890
       
     5         10        20        30        40        50        60        70        80
       
     6 *)
       
     7 
       
     8 theory Inverse_Z_Transform imports Isac begin
       
     9 
       
    10 section {*trials towards Z transform *}
       
    11 text{*===============================*}
       
    12 subsection {*terms*}
       
    13 ML {*
       
    14 @{term "1 < || z ||"};
       
    15 @{term "z / (z - 1)"};
       
    16 @{term "-u -n - 1"};
       
    17 @{term "-u [-n - 1]"}; (*[ ] denotes lists !!!*)
       
    18 @{term "z /(z - 1) = -u [-n - 1]"};Isac
       
    19 @{term "1 < || z || ==> z / (z - 1) = -u [-n - 1]"};
       
    20 term2str @{term "1 < || z || ==> z / (z - 1) = -u [-n - 1]"};
       
    21 *}
       
    22 ML {*
       
    23 (*alpha -->  "</alpha>" *)
       
    24 
       
    25 @{term "\<alpha> "};
       
    26 @{term "\<delta> "};
       
    27 @{term "\<phi> "};
       
    28 @{term "\<rho> "};
       
    29 term2str @{term "\<rho> "};
       
    30 *}
       
    31 
       
    32 subsection {*rules*}
       
    33 (*axiomatization "z / (z - 1) = -u [-n - 1]" Illegal variable name: "z / (z - 1) = -u [-n - 1]" *)
       
    34 (*definition     "z / (z - 1) = -u [-n - 1]" Bad head of lhs: existing constant "op /"*)
       
    35 axiomatization where 
       
    36   rule1: "1 = \<delta>[n]" and
       
    37   rule2: "|| z || > 1 ==> z / (z - 1) = u [n]" and
       
    38   rule3: "|| z || < 1 ==> z / (z - 1) = -u [-n - 1]" and 
       
    39   rule4: "|| z || > || \<alpha> || ==> z / (z - \<alpha>) = \<alpha>^n * u [n]" and
       
    40   rule5: "|| z || < || \<alpha> || ==> z / (z - \<alpha>) = -(\<alpha>^n) * u [-n - 1]" and
       
    41   rule6: "|| z || > 1 ==> z/(z - 1)^2 = n * u [n]"
       
    42 ML {*
       
    43 @{thm rule1};
       
    44 @{thm rule2};
       
    45 @{thm rule3};
       
    46 @{thm rule4};
       
    47 *}
       
    48 
       
    49 subsection {*apply rules*}
       
    50 ML {*
       
    51 val inverse_Z = append_rls "inverse_Z" e_rls
       
    52   [ Thm  ("rule3",num_str @{thm rule3}),
       
    53     Thm  ("rule4",num_str @{thm rule4}),
       
    54     Thm  ("rule1",num_str @{thm rule1})   
       
    55   ];
       
    56 
       
    57 val t = str2term "z / (z - 1) + z / (z - \<alpha>) + 1";
       
    58 val SOME (t', asm) = rewrite_set_ thy true inverse_Z t;
       
    59 term2str t' = "z / (z - ?\<delta> [?n]) + z / (z - \<alpha>) + ?\<delta> [?n]"; (*attention rule1 !!!*)
       
    60 *}
       
    61 ML {*
       
    62 val (thy, ro, er) = (@{theory}, tless_true, eval_rls);
       
    63 *}
       
    64 ML {*
       
    65 val SOME (t, asm1) = rewrite_ thy ro er true (num_str @{thm rule3}) t;
       
    66 term2str t = "- ?u [- ?n - 1] + z / (z - \<alpha>) + 1"; (*- real *)
       
    67 term2str t;
       
    68 *}
       
    69 ML {*
       
    70 val SOME (t, asm2) = rewrite_ thy ro er true (num_str @{thm rule4}) t;
       
    71 term2str t = "- ?u [- ?n - 1] + \<alpha> ^ ?n * ?u [?n] + 1"; (*- real *)
       
    72 term2str t;
       
    73 *}
       
    74 ML {*
       
    75 val SOME (t, asm3) = rewrite_ thy ro er true (num_str @{thm rule1}) t;
       
    76 term2str t = "- ?u [- ?n - 1] + \<alpha> ^ ?n * ?u [?n] + ?\<delta> [?n]"; (*- real *)
       
    77 term2str t;
       
    78 *}
       
    79 ML {*
       
    80 terms2str (asm1 @ asm2 @ asm3);
       
    81 *}
       
    82 
       
    83 section {*Prepare steps in CTP-based programming language*}
       
    84 text{*===================================================*}
       
    85 subsection {*prepare expression*}
       
    86 ML {*
       
    87 val ctxt = ProofContext.init_global @{theory};
       
    88 val ctxt = declare_constraints' [@{term "z::real"}] ctxt;
       
    89 
       
    90 val SOME fun1 = parseNEW ctxt "X z = 3 / (z - 1/4 + -1/8 * z ^ -1)"; term2str fun1;
       
    91 val SOME fun1' = parseNEW ctxt "X z = 3 / (z - 1/4 + -1/8 * (1/z))"; term2str fun1';
       
    92 *}
       
    93 
       
    94 axiomatization where
       
    95   ruleZY: "(X z = a / b) = (X' z = a / (z * b))"
       
    96 
       
    97 ML {*
       
    98 val (thy, ro, er) = (@{theory}, tless_true, eval_rls);
       
    99 val SOME (fun2, asm1) = rewrite_ thy ro er true  @{thm ruleZY} fun1; term2str fun2;
       
   100 val SOME (fun2', asm1) = rewrite_ thy ro er true  @{thm ruleZY} fun1'; term2str fun2';
       
   101 
       
   102 val SOME (fun3,_) = rewrite_set_ @{theory Isac} false norm_Rational fun2;
       
   103 term2str fun3; (*fails on x^(-1) TODO*)
       
   104 val SOME (fun3',_) = rewrite_set_ @{theory Isac} false norm_Rational fun2';
       
   105 term2str fun3'; (*OK*)
       
   106 
       
   107 val (_, expr) = HOLogic.dest_eq fun3'; term2str expr;
       
   108 *}
       
   109 
       
   110 subsection {*solve equation*}
       
   111 ML {*(*from test/Tools/isac/Minisubpbl/100-init-rootpbl.sml*)
       
   112 "----------- Minisubplb/100-init-rootp (*OK*)bl.sml ---------------------";
       
   113 val denominator = parseNEW ctxt "z^2 - 1/4*z - 1/8 = 0";
       
   114 val fmz = ["equality (z^2 - 1/4*z - 1/8 = (0::real))", "solveFor z","solutions L"];
       
   115 val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
       
   116 (*                           ^^^^^^^^^^^^^^^^^^^^^^ TODO: ISAC determines type of eq*)
       
   117 *}
       
   118 ML {*
       
   119 val (p,_,f,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
       
   120 val (p,_,f,nxt,_,pt) = me nxt p [] pt;
       
   121 (*[
       
   122 (([], Frm), solve (z ^ 2 - 1 / 4 * z - 1 / 8 = 0, z)),
       
   123 (([1], Frm), z ^ 2 - 1 / 4 * z - 1 / 8 = 0),              bad rewrite order
       
   124 (([1], Res), -1 / 8 + z ^ 2 + -1 / 4 * z = 0),            bad pattern
       
   125 (([2], Pbl), solve (-1 / 8 + z ^ 2 + -1 / 4 * z = 0, z)),
       
   126 (([2,1], Pbl), solve (-1 / 8 + z ^ 2 + -1 / 4 * z = 0, z)),
       
   127 (([2,1,1], Pbl), solve (-1 / 8 + z ^ 2 + -1 / 4 * z = 0, z)),
       
   128 (([2,1,1,1], Frm), -1 / 8 + z ^ 2 + -1 / 4 * z = 0)] 
       
   129 *)
       
   130 *}
       
   131 ML {*
       
   132 val denominator = parseNEW ctxt "-1/8 + -1/4*z + z^2 = 0";
       
   133 (*ergebnis: [gleichung, was tun?, lösung]*)
       
   134 val fmz = ["equality (-1/8 + -1/4*z + z^2 = (0::real))", "solveFor z","solutions L"];
       
   135 (*liste der theoreme die zum lösen benötigt werden, aus isac, keine spezielle methode (no met)*)
       
   136 val (dI',pI',mI') =
       
   137   ("Isac", ["pqFormula","degree_2","polynomial","univariate","equation"], ["no_met"]);
       
   138 (*schritte abarbeiten*)
       
   139 val (p,_,f,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
       
   140 val (p,_,f,nxt,_,pt) = me nxt p [] pt;
       
   141 val (p,_,f,nxt,_,pt) = me nxt p [] pt;
       
   142 val (p,_,f,nxt,_,pt) = me nxt p [] pt;
       
   143 val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*val nxt = ("Empty_Tac", ...): tac'_*)
       
   144 show_pt pt;
       
   145 *}
       
   146 
       
   147 subsection {*partial fraction decomposition*}
       
   148 subsubsection {*solution of the equation*}
       
   149 ML {*
       
   150 val SOME solutions = parseNEW ctxt "[z=1/2, z=-1/4]";
       
   151 term2str solutions;
       
   152 atomty solutions;
       
   153 *}
       
   154 
       
   155 subsubsection {*get solutions out of list*}
       
   156 text {*in isac's CTP-based programming language: $let s_1 = NTH 1 solutions; s_2 = NTH 2...$*}
       
   157 ML {*
       
   158 val Const ("List.list.Cons", _) $ s_1 $ (Const ("List.list.Cons", _) $
       
   159       s_2 $ Const ("List.list.Nil", _)) = solutions;
       
   160 term2str s_1;
       
   161 term2str s_2;
       
   162 *}
       
   163 
       
   164 ML {* (*Solutions as Denominator --> Denominator1 = z - Zeropoint1, Denominator2 = z-Zeropoint2,...*)
       
   165 val xx = HOLogic.dest_eq s_1;
       
   166 val s_1' = HOLogic.mk_binop "Groups.minus_class.minus" xx;
       
   167 val xx = HOLogic.dest_eq s_2;
       
   168 val s_2' = HOLogic.mk_binop "Groups.minus_class.minus" xx;
       
   169 term2str s_1';
       
   170 term2str s_2';
       
   171 *}
       
   172 
       
   173 subsubsection {*build expression*}
       
   174 text {*in isac's CTP-based programming language: $let s_1 = Take numerator / (s_1 * s_2)$*}
       
   175 ML {*
       
   176 (*The Main Denominator is the multiplikation of the partial fraction denominators*)
       
   177 val denominator' = HOLogic.mk_binop "Groups.times_class.times" (s_1', s_2') ;
       
   178 val SOME numerator = parseNEW ctxt "3::real";
       
   179 
       
   180 val expr' = HOLogic.mk_binop "Rings.inverse_class.divide" (numerator, denominator');
       
   181 term2str expr';
       
   182 *}
       
   183 
       
   184 subsubsection {*Ansatz - create partial fractions out of our expression*}
       
   185 
       
   186 axiomatization where
       
   187   ansatz2: "n / (a*b) = A/a + B/(b::real)" and
       
   188   multiply_eq2: "(n / (a*b) = A/a + B/b) = (a*b*(n  / (a*b)) = a*b*(A/a + B/b))"
       
   189 
       
   190 ML {*
       
   191 (*we use our ansatz2 to rewrite our expression and get an equilation with our expression on the left and the partial fractions of it on the right side*)
       
   192 val SOME (t1,_) = rewrite_ @{theory Isac} e_rew_ord e_rls false @{thm ansatz2} expr';
       
   193 term2str t1;
       
   194 atomty t1;
       
   195 val eq1 = HOLogic.mk_eq (expr', t1);
       
   196 term2str eq1;
       
   197 *}
       
   198 ML {*
       
   199 (*eliminate the demoninators by multiplying the left and the right side with the main denominator*)
       
   200 val SOME (eq2,_) = rewrite_ @{theory Isac} e_rew_ord e_rls false @{thm multiply_eq2} eq1;
       
   201 term2str eq2;
       
   202 *}
       
   203 ML {*
       
   204 (*simplificatoin*)
       
   205 val SOME (eq3,_) = rewrite_set_ @{theory Isac} false norm_Rational eq2;
       
   206 term2str eq3; (*?A ?B not simplified*)
       
   207 *}
       
   208 ML {*
       
   209 val SOME fract1 =
       
   210   parseNEW ctxt "(z - 1 / 2) * (z - -1 / 4) * (A / (z - 1 / 2) + B / (z - -1 / 4))"; (*A B !*)
       
   211 val SOME (fract2,_) = rewrite_set_ @{theory Isac} false norm_Rational fract1;
       
   212 term2str fract2 = "(A + -2 * B + 4 * A * z + 4 * B * z) / 4";
       
   213 (*term2str fract2 = "A * (1 / 4 + z) + B * (-1 / 2 + z)" would be more traditional*)
       
   214 *}
       
   215 ML {*
       
   216 val (numerator, denominator) = HOLogic.dest_eq eq3;
       
   217 val eq3' = HOLogic.mk_eq (numerator, fract1); (*A B !*)
       
   218 term2str eq3';
       
   219 *}
       
   220 ML {* (*MANDATORY: otherwise 3 = 0*)
       
   221 val SOME (eq3'' ,_) = rewrite_set_ @{theory Isac} false norm_Rational eq3';
       
   222 term2str eq3'';
       
   223 *}
       
   224 
       
   225 subsubsection {*get first koeffizient*}
       
   226 
       
   227 ML {*
       
   228 (*substitude z with the first zeropoint to get A*)
       
   229 val SOME (eq4_1,_) = rewrite_terms_ @{theory Isac} e_rew_ord e_rls [s_1] eq3'';
       
   230 term2str eq4_1;
       
   231 *}
       
   232 ML {*
       
   233 val SOME (eq4_2,_) = rewrite_set_ @{theory Isac} false norm_Rational eq4_1;
       
   234 term2str eq4_2;
       
   235 *}
       
   236 ML {*
       
   237 val fmz = ["equality (3 = 3 * A / (4::real))", "solveFor A","solutions L"];
       
   238 val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
       
   239 
       
   240 *}
       
   241 ML {*
       
   242 (*solve the simple linear equilation for A TODO: return eq, not list of eq*)
       
   243 val (p,_,fa,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
       
   244 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   245 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   246 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   247 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   248 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   249 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   250 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   251 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   252 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   253 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   254 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   255 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   256 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   257 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   258 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   259 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   260 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   261 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   262 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   263 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   264 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   265 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   266 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   267 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   268 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   269 val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
       
   270 *}
       
   271 ML {*
       
   272 val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
       
   273 f2str fa;
       
   274 *}
       
   275 
       
   276 subsubsection {*get second koeffizient*}
       
   277 
       
   278 ML {*
       
   279 (*substitude z with the second zeropoint to get B*)
       
   280 val SOME (eq4b_1,_) = rewrite_terms_ @{theory Isac} e_rew_ord e_rls [s_2] eq3'';
       
   281 term2str eq4b_1;
       
   282 *}
       
   283 
       
   284 ML {*
       
   285 val SOME (eq4b_2,_) = rewrite_set_ @{theory Isac} false norm_Rational eq4b_1;
       
   286 term2str eq4b_2;
       
   287 *}
       
   288 
       
   289 ML {*
       
   290 (*solve the simple linear equilation for B TODO: return eq, not list of eq*)
       
   291 val fmz = ["equality (3 = -3 * B / (4::real))", "solveFor B","solutions L"];
       
   292 val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
       
   293 val (p,_,fb,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
       
   294 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   295 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   296 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   297 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   298 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   299 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   300 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   301 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   302 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   303 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   304 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   305 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   306 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   307 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   308 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   309 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   310 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   311 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   312 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   313 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   314 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   315 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   316 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   317 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   318 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   319 val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
       
   320 val (p,_,fb,nxt,_,pt) = me nxt p [] pt; 
       
   321 f2str fb;
       
   322 *}
       
   323 
       
   324 ML {* (*check koeffizients*)
       
   325 if f2str fa = "[A = 4]" then () else error "part.fract. eq4_1";
       
   326 if f2str fb = "[B = -4]" then () else error "part.fract. eq4_1";
       
   327 *}
       
   328 
       
   329 subsubsection {*substitute expression with solutions*}
       
   330 ML {*
       
   331 *}
       
   332 
       
   333 section {*Implement the Specification and the Method*}
       
   334 text{*==============================================*}
       
   335 subsection{*Define the Specification*}
       
   336 ML {*
       
   337 val thy = @{theory};
       
   338 *}
       
   339 ML {*
       
   340 store_pbt
       
   341  (prep_pbt thy "pbl_SP" [] e_pblID
       
   342  (["SignalProcessing"], [], e_rls, NONE, []));
       
   343 store_pbt
       
   344  (prep_pbt thy "pbl_SP_Ztrans" [] e_pblID
       
   345  (["Z_Transform","SignalProcessing"], [], e_rls, NONE, []));
       
   346 store_pbt
       
   347  (prep_pbt thy "pbl_SP_Ztrans_inv" [] e_pblID
       
   348  (["inverse", "Z_Transform", "SignalProcessing"],
       
   349   [("#Given" ,["equality X_eq"]),
       
   350    ("#Find"  ,["equality n_eq"])
       
   351   ],
       
   352   append_rls "e_rls" e_rls [(*for preds in where_*)], NONE, 
       
   353   [["TODO: path to method"]]));
       
   354 
       
   355 show_ptyps();
       
   356 get_pbt ["inverse","Z_Transform","SignalProcessing"];
       
   357 *}
       
   358 
       
   359 subsection{*Define the (Dummy-)Method*}
       
   360 subsection {*Define Name and Signature for the Method*}
       
   361 consts
       
   362   InverseZTransform :: "[bool, bool] => bool"
       
   363     ("((Script InverseZTransform (_ =))// (_))" 9)
       
   364 
       
   365 ML {*
       
   366 store_met
       
   367  (prep_met thy "met_SP" [] e_metID
       
   368  (["SignalProcessing"], [],
       
   369    {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls,
       
   370     crls = e_rls, nrls = e_rls}, "empty_script"));
       
   371 store_met
       
   372  (prep_met thy "met_SP_Ztrans" [] e_metID
       
   373  (["SignalProcessing", "Z_Transform"], [],
       
   374    {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls,
       
   375     crls = e_rls, nrls = e_rls}, "empty_script"));
       
   376 *}
       
   377 ML {*
       
   378 store_met
       
   379  (prep_met thy "met_SP_Ztrans_inv" [] e_metID
       
   380  (["SignalProcessing", "Z_Transform", "inverse"], [],
       
   381    {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls,
       
   382     crls = e_rls, nrls = e_rls}, 
       
   383   "empty_script"
       
   384  ));
       
   385 *}
       
   386 ML {*(*
       
   387 store_met
       
   388  (prep_met thy "met_SP_Ztrans_inv" [] e_metID
       
   389  (["SignalProcessing", "Z_Transform", "inverse"], [],
       
   390    {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls,
       
   391     crls = e_rls, nrls = e_rls}, 
       
   392   "Script InverseZTransform (Xeq::bool) =" ^
       
   393   " (let X = Take Xeq;" ^
       
   394   "      X = Rewrite ruleZY False X" ^
       
   395   "  in X)"
       
   396  ));
       
   397 *)*}
       
   398 ML {*
       
   399 show_mets();
       
   400 get_met ["SignalProcessing","Z_Transform","inverse"];
       
   401 *}
       
   402 
       
   403 
       
   404 section {*Program in CTP-based language*}
       
   405 text{*=================================*}
       
   406 subsection {*Stepwise extend Program*}
       
   407 ML {*
       
   408 val str = 
       
   409 "Script InverseZTransform (Xeq::bool) =" ^
       
   410 " Xeq";
       
   411 *}
       
   412 ML {*
       
   413 val str = 
       
   414 "Script InverseZTransform (Xeq::bool) =" ^
       
   415 " (let X = Take Xeq;" ^
       
   416 "      X = Rewrite ruleZY False X" ^
       
   417 "  in X)";
       
   418 *}
       
   419 ML {*
       
   420 val thy = @{theory};
       
   421 val sc = ((inst_abs thy) o term_of o the o (parse thy)) str;
       
   422 *}
       
   423 ML {*
       
   424 term2str sc;
       
   425 atomty sc
       
   426 *}
       
   427 
       
   428 subsection {*Stepwise Execute the Program*}
       
   429 
       
   430 
       
   431 
       
   432 
       
   433 
       
   434 
       
   435 
       
   436 
       
   437 section {*Write Tests for Crucial Details*}
       
   438 text{*===================================*}
       
   439 ML {*
       
   440 
       
   441 *}
       
   442 
       
   443 section {*Integrate Program into Knowledge*}
       
   444 ML {*
       
   445 
       
   446 *}
       
   447 
       
   448 end
       
   449