src/HOL/Library/Glbs.thy
changeset 56013 d64a4ef26edb
parent 52479 763c6872bd10
equal deleted inserted replaced
56012:cfb21e03fe2a 56013:d64a4ef26edb
     1 (* Author: Amine Chaieb, University of Cambridge *)
       
     2 
       
     3 header {* Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs *}
       
     4 
       
     5 theory Glbs
       
     6 imports Lubs
       
     7 begin
       
     8 
       
     9 definition greatestP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a::ord \<Rightarrow> bool"
       
    10   where "greatestP P x = (P x \<and> Collect P *<=  x)"
       
    11 
       
    12 definition isLb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
       
    13   where "isLb R S x = (x <=* S \<and> x: R)"
       
    14 
       
    15 definition isGlb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
       
    16   where "isGlb R S x = greatestP (isLb R S) x"
       
    17 
       
    18 definition lbs :: "'a set \<Rightarrow> 'a::ord set \<Rightarrow> 'a set"
       
    19   where "lbs R S = Collect (isLb R S)"
       
    20 
       
    21 
       
    22 subsection {* Rules about the Operators @{term greatestP}, @{term isLb}
       
    23   and @{term isGlb} *}
       
    24 
       
    25 lemma leastPD1: "greatestP P x \<Longrightarrow> P x"
       
    26   by (simp add: greatestP_def)
       
    27 
       
    28 lemma greatestPD2: "greatestP P x \<Longrightarrow> Collect P *<= x"
       
    29   by (simp add: greatestP_def)
       
    30 
       
    31 lemma greatestPD3: "greatestP P x \<Longrightarrow> y: Collect P \<Longrightarrow> x \<ge> y"
       
    32   by (blast dest!: greatestPD2 setleD)
       
    33 
       
    34 lemma isGlbD1: "isGlb R S x \<Longrightarrow> x <=* S"
       
    35   by (simp add: isGlb_def isLb_def greatestP_def)
       
    36 
       
    37 lemma isGlbD1a: "isGlb R S x \<Longrightarrow> x: R"
       
    38   by (simp add: isGlb_def isLb_def greatestP_def)
       
    39 
       
    40 lemma isGlb_isLb: "isGlb R S x \<Longrightarrow> isLb R S x"
       
    41   unfolding isLb_def by (blast dest: isGlbD1 isGlbD1a)
       
    42 
       
    43 lemma isGlbD2: "isGlb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
       
    44   by (blast dest!: isGlbD1 setgeD)
       
    45 
       
    46 lemma isGlbD3: "isGlb R S x \<Longrightarrow> greatestP (isLb R S) x"
       
    47   by (simp add: isGlb_def)
       
    48 
       
    49 lemma isGlbI1: "greatestP (isLb R S) x \<Longrightarrow> isGlb R S x"
       
    50   by (simp add: isGlb_def)
       
    51 
       
    52 lemma isGlbI2: "isLb R S x \<Longrightarrow> Collect (isLb R S) *<= x \<Longrightarrow> isGlb R S x"
       
    53   by (simp add: isGlb_def greatestP_def)
       
    54 
       
    55 lemma isLbD: "isLb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
       
    56   by (simp add: isLb_def setge_def)
       
    57 
       
    58 lemma isLbD2: "isLb R S x \<Longrightarrow> x <=* S "
       
    59   by (simp add: isLb_def)
       
    60 
       
    61 lemma isLbD2a: "isLb R S x \<Longrightarrow> x: R"
       
    62   by (simp add: isLb_def)
       
    63 
       
    64 lemma isLbI: "x <=* S \<Longrightarrow> x: R \<Longrightarrow> isLb R S x"
       
    65   by (simp add: isLb_def)
       
    66 
       
    67 lemma isGlb_le_isLb: "isGlb R S x \<Longrightarrow> isLb R S y \<Longrightarrow> x \<ge> y"
       
    68   unfolding isGlb_def by (blast intro!: greatestPD3)
       
    69 
       
    70 lemma isGlb_ubs: "isGlb R S x \<Longrightarrow> lbs R S *<= x"
       
    71   unfolding lbs_def isGlb_def by (rule greatestPD2)
       
    72 
       
    73 lemma isGlb_unique: "[| isGlb R S x; isGlb R S y |] ==> x = (y::'a::linorder)"
       
    74   apply (frule isGlb_isLb)
       
    75   apply (frule_tac x = y in isGlb_isLb)
       
    76   apply (blast intro!: order_antisym dest!: isGlb_le_isLb)
       
    77   done
       
    78 
       
    79 end