src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
changeset 55715 c4159fe6fa46
parent 55712 6a967667fd45
child 55862 03ff4d1e6784
equal deleted inserted replaced
55714:326fd7103cb4 55715:c4159fe6fa46
     8 
     8 
     9 theory Topology_Euclidean_Space
     9 theory Topology_Euclidean_Space
    10 imports
    10 imports
    11   Complex_Main
    11   Complex_Main
    12   "~~/src/HOL/Library/Countable_Set"
    12   "~~/src/HOL/Library/Countable_Set"
    13   "~~/src/HOL/Library/Glbs"
       
    14   "~~/src/HOL/Library/FuncSet"
    13   "~~/src/HOL/Library/FuncSet"
    15   Linear_Algebra
    14   Linear_Algebra
    16   Norm_Arith
    15   Norm_Arith
    17 begin
    16 begin
    18 
    17 
    25   using dist_triangle[of y z x] by (simp add: dist_commute)
    24   using dist_triangle[of y z x] by (simp add: dist_commute)
    26 
    25 
    27 (* LEGACY *)
    26 (* LEGACY *)
    28 lemma lim_subseq: "subseq r \<Longrightarrow> s ----> l \<Longrightarrow> (s \<circ> r) ----> l"
    27 lemma lim_subseq: "subseq r \<Longrightarrow> s ----> l \<Longrightarrow> (s \<circ> r) ----> l"
    29   by (rule LIMSEQ_subseq_LIMSEQ)
    28   by (rule LIMSEQ_subseq_LIMSEQ)
    30 
       
    31 lemmas real_isGlb_unique = isGlb_unique[where 'a=real]
       
    32 
    29 
    33 lemma countable_PiE:
    30 lemma countable_PiE:
    34   "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> countable (F i)) \<Longrightarrow> countable (PiE I F)"
    31   "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> countable (F i)) \<Longrightarrow> countable (PiE I F)"
    35   by (induct I arbitrary: F rule: finite_induct) (auto simp: PiE_insert_eq)
    32   by (induct I arbitrary: F rule: finite_induct) (auto simp: PiE_insert_eq)
    36 
    33 
  1553     assume a: "a < Inf (f ` ({x<..} \<inter> I))"
  1550     assume a: "a < Inf (f ` ({x<..} \<inter> I))"
  1554     {
  1551     {
  1555       fix y
  1552       fix y
  1556       assume "y \<in> {x<..} \<inter> I"
  1553       assume "y \<in> {x<..} \<inter> I"
  1557       with False bnd have "Inf (f ` ({x<..} \<inter> I)) \<le> f y"
  1554       with False bnd have "Inf (f ` ({x<..} \<inter> I)) \<le> f y"
  1558         by (auto intro: cInf_lower)
  1555         by (auto intro!: cInf_lower bdd_belowI2)
  1559       with a have "a < f y"
  1556       with a have "a < f y"
  1560         by (blast intro: less_le_trans)
  1557         by (blast intro: less_le_trans)
  1561     }
  1558     }
  1562     then show "eventually (\<lambda>x. a < f x) (at x within ({x<..} \<inter> I))"
  1559     then show "eventually (\<lambda>x. a < f x) (at x within ({x<..} \<inter> I))"
  1563       by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one)
  1560       by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one)