src/HOL/HahnBanach/Bounds.thy
changeset 31795 be3e1cc5005c
parent 29252 ea97aa6aeba2
equal deleted inserted replaced
31794:71af1fd6a5e4 31795:be3e1cc5005c
     1 (*  Title:      HOL/Real/HahnBanach/Bounds.thy
       
     2     Author:     Gertrud Bauer, TU Munich
       
     3 *)
       
     4 
       
     5 header {* Bounds *}
       
     6 
       
     7 theory Bounds
       
     8 imports Main ContNotDenum
       
     9 begin
       
    10 
       
    11 locale lub =
       
    12   fixes A and x
       
    13   assumes least [intro?]: "(\<And>a. a \<in> A \<Longrightarrow> a \<le> b) \<Longrightarrow> x \<le> b"
       
    14     and upper [intro?]: "a \<in> A \<Longrightarrow> a \<le> x"
       
    15 
       
    16 lemmas [elim?] = lub.least lub.upper
       
    17 
       
    18 definition
       
    19   the_lub :: "'a::order set \<Rightarrow> 'a" where
       
    20   "the_lub A = The (lub A)"
       
    21 
       
    22 notation (xsymbols)
       
    23   the_lub  ("\<Squnion>_" [90] 90)
       
    24 
       
    25 lemma the_lub_equality [elim?]:
       
    26   assumes "lub A x"
       
    27   shows "\<Squnion>A = (x::'a::order)"
       
    28 proof -
       
    29   interpret lub A x by fact
       
    30   show ?thesis
       
    31   proof (unfold the_lub_def)
       
    32     from `lub A x` show "The (lub A) = x"
       
    33     proof
       
    34       fix x' assume lub': "lub A x'"
       
    35       show "x' = x"
       
    36       proof (rule order_antisym)
       
    37 	from lub' show "x' \<le> x"
       
    38 	proof
       
    39           fix a assume "a \<in> A"
       
    40           then show "a \<le> x" ..
       
    41 	qed
       
    42 	show "x \<le> x'"
       
    43 	proof
       
    44           fix a assume "a \<in> A"
       
    45           with lub' show "a \<le> x'" ..
       
    46 	qed
       
    47       qed
       
    48     qed
       
    49   qed
       
    50 qed
       
    51 
       
    52 lemma the_lubI_ex:
       
    53   assumes ex: "\<exists>x. lub A x"
       
    54   shows "lub A (\<Squnion>A)"
       
    55 proof -
       
    56   from ex obtain x where x: "lub A x" ..
       
    57   also from x have [symmetric]: "\<Squnion>A = x" ..
       
    58   finally show ?thesis .
       
    59 qed
       
    60 
       
    61 lemma lub_compat: "lub A x = isLub UNIV A x"
       
    62 proof -
       
    63   have "isUb UNIV A = (\<lambda>x. A *<= x \<and> x \<in> UNIV)"
       
    64     by (rule ext) (simp only: isUb_def)
       
    65   then show ?thesis
       
    66     by (simp only: lub_def isLub_def leastP_def setge_def setle_def) blast
       
    67 qed
       
    68 
       
    69 lemma real_complete:
       
    70   fixes A :: "real set"
       
    71   assumes nonempty: "\<exists>a. a \<in> A"
       
    72     and ex_upper: "\<exists>y. \<forall>a \<in> A. a \<le> y"
       
    73   shows "\<exists>x. lub A x"
       
    74 proof -
       
    75   from ex_upper have "\<exists>y. isUb UNIV A y"
       
    76     unfolding isUb_def setle_def by blast
       
    77   with nonempty have "\<exists>x. isLub UNIV A x"
       
    78     by (rule reals_complete)
       
    79   then show ?thesis by (simp only: lub_compat)
       
    80 qed
       
    81 
       
    82 end