src/HOL/Probability/Binary_Product_Measure.thy
changeset 50840 bb5db3d1d6dd
parent 50815 a6678da5692c
child 51014 dfb63b9b8908
equal deleted inserted replaced
50839:c26665a197dc 50840:bb5db3d1d6dd
   474 
   474 
   475 lemma measurable_compose_Pair1:
   475 lemma measurable_compose_Pair1:
   476   "x \<in> space M1 \<Longrightarrow> g \<in> measurable (M1 \<Otimes>\<^isub>M M2) L \<Longrightarrow> (\<lambda>y. g (x, y)) \<in> measurable M2 L"
   476   "x \<in> space M1 \<Longrightarrow> g \<in> measurable (M1 \<Otimes>\<^isub>M M2) L \<Longrightarrow> (\<lambda>y. g (x, y)) \<in> measurable M2 L"
   477   by (rule measurable_compose[OF measurable_Pair]) auto
   477   by (rule measurable_compose[OF measurable_Pair]) auto
   478 
   478 
   479 lemma (in pair_sigma_finite) borel_measurable_positive_integral_fst:
   479 lemma (in pair_sigma_finite) borel_measurable_positive_integral_fst':
   480   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2)" "\<And>x. 0 \<le> f x"
   480   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2)" "\<And>x. 0 \<le> f x"
   481   shows "(\<lambda>x. \<integral>\<^isup>+ y. f (x, y) \<partial>M2) \<in> borel_measurable M1"
   481   shows "(\<lambda>x. \<integral>\<^isup>+ y. f (x, y) \<partial>M2) \<in> borel_measurable M1"
   482 using f proof induct
   482 using f proof induct
   483   case (cong u v)
   483   case (cong u v)
   484   then have "\<And>w x. w \<in> space M1 \<Longrightarrow> x \<in> space M2 \<Longrightarrow> u (w, x) = v (w, x)"
   484   then have "\<And>w x. w \<in> space M1 \<Longrightarrow> x \<in> space M2 \<Longrightarrow> u (w, x) = v (w, x)"
   510   ultimately show ?case
   510   ultimately show ?case
   511     by (simp cong: positive_integral_cong)
   511     by (simp cong: positive_integral_cong)
   512 qed (simp_all add: M2.emeasure_pair_measure positive_integral_cmult positive_integral_add
   512 qed (simp_all add: M2.emeasure_pair_measure positive_integral_cmult positive_integral_add
   513                    positive_integral_monotone_convergence_SUP
   513                    positive_integral_monotone_convergence_SUP
   514                    measurable_compose_Pair1 positive_integral_positive
   514                    measurable_compose_Pair1 positive_integral_positive
   515                    borel_measurable_positive_integral_fst positive_integral_mono incseq_def le_fun_def
   515                    borel_measurable_positive_integral_fst' positive_integral_mono incseq_def le_fun_def
   516               cong: positive_integral_cong)
   516               cong: positive_integral_cong)
   517 
   517 
   518 lemma (in pair_sigma_finite) positive_integral_fst_measurable:
   518 lemma (in pair_sigma_finite) positive_integral_fst_measurable:
   519   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2)"
   519   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2)"
   520   shows "(\<lambda>x. \<integral>\<^isup>+ y. f (x, y) \<partial>M2) \<in> borel_measurable M1"
   520   shows "(\<lambda>x. \<integral>\<^isup>+ y. f (x, y) \<partial>M2) \<in> borel_measurable M1"
   521       (is "?C f \<in> borel_measurable M1")
   521       (is "?C f \<in> borel_measurable M1")
   522     and "(\<integral>\<^isup>+ x. (\<integral>\<^isup>+ y. f (x, y) \<partial>M2) \<partial>M1) = integral\<^isup>P (M1 \<Otimes>\<^isub>M M2) f"
   522     and "(\<integral>\<^isup>+ x. (\<integral>\<^isup>+ y. f (x, y) \<partial>M2) \<partial>M1) = integral\<^isup>P (M1 \<Otimes>\<^isub>M M2) f"
   523   using f
   523   using f
   524     borel_measurable_positive_integral_fst[of "\<lambda>x. max 0 (f x)"]
   524     borel_measurable_positive_integral_fst'[of "\<lambda>x. max 0 (f x)"]
   525     positive_integral_fst[of "\<lambda>x. max 0 (f x)"]
   525     positive_integral_fst[of "\<lambda>x. max 0 (f x)"]
   526   unfolding positive_integral_max_0 by auto
   526   unfolding positive_integral_max_0 by auto
       
   527 
       
   528 lemma (in pair_sigma_finite) borel_measurable_positive_integral_fst:
       
   529   "(\<lambda>(x, y). f x y) \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2) \<Longrightarrow> (\<lambda>x. \<integral>\<^isup>+ y. f x y \<partial>M2) \<in> borel_measurable M1"
       
   530   using positive_integral_fst_measurable(1)[of "\<lambda>(x, y). f x y"] by simp
       
   531 
       
   532 lemma (in pair_sigma_finite) borel_measurable_positive_integral_snd:
       
   533   assumes "(\<lambda>(x, y). f x y) \<in> borel_measurable (M2 \<Otimes>\<^isub>M M1)" shows "(\<lambda>x. \<integral>\<^isup>+ y. f x y \<partial>M1) \<in> borel_measurable M2"
       
   534 proof -
       
   535   interpret Q: pair_sigma_finite M2 M1 by default
       
   536   from Q.borel_measurable_positive_integral_fst assms show ?thesis by simp
       
   537 qed
   527 
   538 
   528 lemma (in pair_sigma_finite) positive_integral_snd_measurable:
   539 lemma (in pair_sigma_finite) positive_integral_snd_measurable:
   529   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2)"
   540   assumes f: "f \<in> borel_measurable (M1 \<Otimes>\<^isub>M M2)"
   530   shows "(\<integral>\<^isup>+ y. (\<integral>\<^isup>+ x. f (x, y) \<partial>M1) \<partial>M2) = integral\<^isup>P (M1 \<Otimes>\<^isub>M M2) f"
   541   shows "(\<integral>\<^isup>+ y. (\<integral>\<^isup>+ x. f (x, y) \<partial>M1) \<partial>M2) = integral\<^isup>P (M1 \<Otimes>\<^isub>M M2) f"
   531 proof -
   542 proof -