src/HOL/Library/List_Cset.thy
changeset 44842 892030194015
parent 44178 1a32a953cef1
child 44850 9f27d2bf4087
equal deleted inserted replaced
44837:bb11faa6a79e 44842:892030194015
     6 theory List_Cset
     6 theory List_Cset
     7 imports Cset
     7 imports Cset
     8 begin
     8 begin
     9 
     9 
    10 declare mem_def [simp]
    10 declare mem_def [simp]
    11 
    11 declare Cset.set_code [code del]
    12 definition set :: "'a list \<Rightarrow> 'a Cset.set" where
       
    13   "set xs = Set (List.set xs)"
       
    14 hide_const (open) set
       
    15 
       
    16 lemma member_set [simp]:
       
    17   "member (List_Cset.set xs) = set xs"
       
    18   by (simp add: set_def)
       
    19 hide_fact (open) member_set
       
    20 
    12 
    21 definition coset :: "'a list \<Rightarrow> 'a Cset.set" where
    13 definition coset :: "'a list \<Rightarrow> 'a Cset.set" where
    22   "coset xs = Set (- set xs)"
    14   "coset xs = Set (- set xs)"
    23 hide_const (open) coset
    15 hide_const (open) coset
    24 
    16 
    25 lemma member_coset [simp]:
    17 lemma member_coset [simp]:
    26   "member (List_Cset.coset xs) = - set xs"
    18   "member (List_Cset.coset xs) = - set xs"
    27   by (simp add: coset_def)
    19   by (simp add: coset_def)
    28 hide_fact (open) member_coset
    20 hide_fact (open) member_coset
    29 
    21 
    30 code_datatype List_Cset.set List_Cset.coset
    22 code_datatype Cset.set List_Cset.coset
    31 
    23 
    32 lemma member_code [code]:
    24 lemma member_code [code]:
    33   "member (List_Cset.set xs) = List.member xs"
    25   "member (Cset.set xs) = List.member xs"
    34   "member (List_Cset.coset xs) = Not \<circ> List.member xs"
    26   "member (List_Cset.coset xs) = Not \<circ> List.member xs"
    35   by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
    27   by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def)
    36 
    28 
    37 lemma member_image_UNIV [simp]:
    29 lemma member_image_UNIV [simp]:
    38   "member ` UNIV = UNIV"
    30   "member ` UNIV = UNIV"
    46 qed
    38 qed
    47 
    39 
    48 definition (in term_syntax)
    40 definition (in term_syntax)
    49   setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
    41   setify :: "'a\<Colon>typerep list \<times> (unit \<Rightarrow> Code_Evaluation.term)
    50     \<Rightarrow> 'a Cset.set \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
    42     \<Rightarrow> 'a Cset.set \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
    51   [code_unfold]: "setify xs = Code_Evaluation.valtermify List_Cset.set {\<cdot>} xs"
    43   [code_unfold]: "setify xs = Code_Evaluation.valtermify Cset.set {\<cdot>} xs"
    52 
    44 
    53 notation fcomp (infixl "\<circ>>" 60)
    45 notation fcomp (infixl "\<circ>>" 60)
    54 notation scomp (infixl "\<circ>\<rightarrow>" 60)
    46 notation scomp (infixl "\<circ>\<rightarrow>" 60)
    55 
    47 
    56 instantiation Cset.set :: (random) random
    48 instantiation Cset.set :: (random) random
    67 no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
    59 no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
    68 
    60 
    69 subsection {* Basic operations *}
    61 subsection {* Basic operations *}
    70 
    62 
    71 lemma is_empty_set [code]:
    63 lemma is_empty_set [code]:
    72   "Cset.is_empty (List_Cset.set xs) \<longleftrightarrow> List.null xs"
    64   "Cset.is_empty (Cset.set xs) \<longleftrightarrow> List.null xs"
    73   by (simp add: is_empty_set null_def)
    65   by (simp add: is_empty_set null_def)
    74 hide_fact (open) is_empty_set
    66 hide_fact (open) is_empty_set
    75 
    67 
    76 lemma empty_set [code]:
    68 lemma empty_set [code]:
    77   "bot = List_Cset.set []"
    69   "Cset.empty = Cset.set []"
    78   by (simp add: set_def)
    70   by (simp add: set_def)
    79 hide_fact (open) empty_set
    71 hide_fact (open) empty_set
    80 
    72 
    81 lemma UNIV_set [code]:
    73 lemma UNIV_set [code]:
    82   "top = List_Cset.coset []"
    74   "top = List_Cset.coset []"
    83   by (simp add: coset_def)
    75   by (simp add: coset_def)
    84 hide_fact (open) UNIV_set
    76 hide_fact (open) UNIV_set
    85 
    77 
    86 lemma remove_set [code]:
    78 lemma remove_set [code]:
    87   "Cset.remove x (List_Cset.set xs) = List_Cset.set (removeAll x xs)"
    79   "Cset.remove x (Cset.set xs) = Cset.set (removeAll x xs)"
    88   "Cset.remove x (List_Cset.coset xs) = List_Cset.coset (List.insert x xs)"
    80   "Cset.remove x (List_Cset.coset xs) = List_Cset.coset (List.insert x xs)"
    89 by (simp_all add: set_def coset_def)
    81 by (simp_all add: Cset.set_def coset_def)
    90   (metis List.set_insert More_Set.remove_def remove_set_compl)
    82   (metis List.set_insert More_Set.remove_def remove_set_compl)
    91 
    83 
    92 lemma insert_set [code]:
    84 lemma insert_set [code]:
    93   "Cset.insert x (List_Cset.set xs) = List_Cset.set (List.insert x xs)"
    85   "Cset.insert x (Cset.set xs) = Cset.set (List.insert x xs)"
    94   "Cset.insert x (List_Cset.coset xs) = List_Cset.coset (removeAll x xs)"
    86   "Cset.insert x (List_Cset.coset xs) = List_Cset.coset (removeAll x xs)"
    95   by (simp_all add: set_def coset_def)
    87   by (simp_all add: Cset.set_def coset_def)
    96 
    88 
    97 lemma map_set [code]:
    89 lemma map_set [code]:
    98   "Cset.map f (List_Cset.set xs) = List_Cset.set (remdups (List.map f xs))"
    90   "Cset.map f (Cset.set xs) = Cset.set (remdups (List.map f xs))"
    99   by (simp add: set_def)
    91   by (simp add: Cset.set_def)
   100   
    92   
   101 lemma filter_set [code]:
    93 lemma filter_set [code]:
   102   "Cset.filter P (List_Cset.set xs) = List_Cset.set (List.filter P xs)"
    94   "Cset.filter P (Cset.set xs) = Cset.set (List.filter P xs)"
   103   by (simp add: set_def project_set)
    95   by (simp add: Cset.set_def project_set)
   104 
    96 
   105 lemma forall_set [code]:
    97 lemma forall_set [code]:
   106   "Cset.forall P (List_Cset.set xs) \<longleftrightarrow> list_all P xs"
    98   "Cset.forall P (Cset.set xs) \<longleftrightarrow> list_all P xs"
   107   by (simp add: set_def list_all_iff)
    99   by (simp add: Cset.set_def list_all_iff)
   108 
   100 
   109 lemma exists_set [code]:
   101 lemma exists_set [code]:
   110   "Cset.exists P (List_Cset.set xs) \<longleftrightarrow> list_ex P xs"
   102   "Cset.exists P (Cset.set xs) \<longleftrightarrow> list_ex P xs"
   111   by (simp add: set_def list_ex_iff)
   103   by (simp add: Cset.set_def list_ex_iff)
   112 
   104 
   113 lemma card_set [code]:
   105 lemma card_set [code]:
   114   "Cset.card (List_Cset.set xs) = length (remdups xs)"
   106   "Cset.card (Cset.set xs) = length (remdups xs)"
   115 proof -
   107 proof -
   116   have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
   108   have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
   117     by (rule distinct_card) simp
   109     by (rule distinct_card) simp
   118   then show ?thesis by (simp add: set_def)
   110   then show ?thesis by (simp add: Cset.set_def)
   119 qed
   111 qed
   120 
   112 
   121 lemma compl_set [simp, code]:
   113 lemma compl_set [simp, code]:
   122   "- List_Cset.set xs = List_Cset.coset xs"
   114   "- Cset.set xs = List_Cset.coset xs"
   123   by (simp add: set_def coset_def)
   115   by (simp add: Cset.set_def coset_def)
   124 
   116 
   125 lemma compl_coset [simp, code]:
   117 lemma compl_coset [simp, code]:
   126   "- List_Cset.coset xs = List_Cset.set xs"
   118   "- List_Cset.coset xs = Cset.set xs"
   127   by (simp add: set_def coset_def)
   119   by (simp add: Cset.set_def coset_def)
   128 
   120 
   129 context complete_lattice
   121 context complete_lattice
   130 begin
   122 begin
   131 
   123 
   132 lemma Infimum_inf [code]:
   124 lemma Infimum_inf [code]:
   133   "Infimum (List_Cset.set As) = foldr inf As top"
   125   "Infimum (Cset.set As) = foldr inf As top"
   134   "Infimum (List_Cset.coset []) = bot"
   126   "Infimum (List_Cset.coset []) = bot"
   135   by (simp_all add: Inf_set_foldr Inf_UNIV)
   127   by (simp_all add: Inf_set_foldr Inf_UNIV)
   136 
   128 
   137 lemma Supremum_sup [code]:
   129 lemma Supremum_sup [code]:
   138   "Supremum (List_Cset.set As) = foldr sup As bot"
   130   "Supremum (Cset.set As) = foldr sup As bot"
   139   "Supremum (List_Cset.coset []) = top"
   131   "Supremum (List_Cset.coset []) = top"
   140   by (simp_all add: Sup_set_foldr Sup_UNIV)
   132   by (simp_all add: Sup_set_foldr Sup_UNIV)
   141 
   133 
   142 end
   134 end
   143 
   135 
       
   136 declare single_code [code del]
       
   137 lemma single_set [code]:
       
   138   "Cset.single a = Cset.set [a]"
       
   139 by(simp add: Cset.single_code)
       
   140 hide_fact (open) single_set
       
   141 
       
   142 lemma bind_set [code]:
       
   143   "Cset.bind (Cset.set xs) f = foldl (\<lambda>A x. sup A (f x)) (Cset.set []) xs"
       
   144 proof(rule sym)
       
   145   show "foldl (\<lambda>A x. sup A (f x)) (Cset.set []) xs = Cset.bind (Cset.set xs) f"
       
   146     by(induct xs rule: rev_induct)(auto simp add: Cset.bind_def Cset.set_def)
       
   147 qed
       
   148 hide_fact (open) bind_set
       
   149 
       
   150 lemma pred_of_cset_set [code]:
       
   151   "pred_of_cset (Cset.set xs) = foldr sup (map Predicate.single xs) bot"
       
   152 proof -
       
   153   have "pred_of_cset (Cset.set xs) = Predicate.Pred (\<lambda>x. x \<in> set xs)"
       
   154     by(auto simp add: Cset.pred_of_cset_def mem_def)
       
   155   moreover have "foldr sup (map Predicate.single xs) bot = \<dots>"
       
   156     by(induct xs)(auto simp add: bot_pred_def simp del: mem_def intro: pred_eqI, simp)
       
   157   ultimately show ?thesis by(simp)
       
   158 qed
       
   159 hide_fact (open) pred_of_cset_set
   144 
   160 
   145 subsection {* Derived operations *}
   161 subsection {* Derived operations *}
   146 
   162 
   147 lemma subset_eq_forall [code]:
   163 lemma subset_eq_forall [code]:
   148   "A \<le> B \<longleftrightarrow> Cset.forall (member B) A"
   164   "A \<le> B \<longleftrightarrow> Cset.forall (member B) A"
   169 
   185 
   170 
   186 
   171 subsection {* Functorial operations *}
   187 subsection {* Functorial operations *}
   172 
   188 
   173 lemma inter_project [code]:
   189 lemma inter_project [code]:
   174   "inf A (List_Cset.set xs) = List_Cset.set (List.filter (Cset.member A) xs)"
   190   "inf A (Cset.set xs) = Cset.set (List.filter (Cset.member A) xs)"
   175   "inf A (List_Cset.coset xs) = foldr Cset.remove xs A"
   191   "inf A (List_Cset.coset xs) = foldr Cset.remove xs A"
   176 proof -
   192 proof -
   177   show "inf A (List_Cset.set xs) = List_Cset.set (List.filter (member A) xs)"
   193   show "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)"
   178     by (simp add: inter project_def set_def)
   194     by (simp add: inter project_def Cset.set_def)
   179   have *: "\<And>x::'a. Cset.remove = (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member)"
   195   have *: "\<And>x::'a. Cset.remove = (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member)"
   180     by (simp add: fun_eq_iff More_Set.remove_def)
   196     by (simp add: fun_eq_iff More_Set.remove_def)
   181   have "member \<circ> fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs =
   197   have "member \<circ> fold (\<lambda>x. Set \<circ> More_Set.remove x \<circ> member) xs =
   182     fold More_Set.remove xs \<circ> member"
   198     fold More_Set.remove xs \<circ> member"
   183     by (rule fold_commute) (simp add: fun_eq_iff)
   199     by (rule fold_commute) (simp add: fun_eq_iff)
   191   ultimately show "inf A (List_Cset.coset xs) = foldr Cset.remove xs A"
   207   ultimately show "inf A (List_Cset.coset xs) = foldr Cset.remove xs A"
   192     by (simp add: foldr_fold)
   208     by (simp add: foldr_fold)
   193 qed
   209 qed
   194 
   210 
   195 lemma subtract_remove [code]:
   211 lemma subtract_remove [code]:
   196   "A - List_Cset.set xs = foldr Cset.remove xs A"
   212   "A - Cset.set xs = foldr Cset.remove xs A"
   197   "A - List_Cset.coset xs = List_Cset.set (List.filter (member A) xs)"
   213   "A - List_Cset.coset xs = Cset.set (List.filter (member A) xs)"
   198   by (simp_all only: diff_eq compl_set compl_coset inter_project)
   214   by (simp_all only: diff_eq compl_set compl_coset inter_project)
   199 
   215 
   200 lemma union_insert [code]:
   216 lemma union_insert [code]:
   201   "sup (List_Cset.set xs) A = foldr Cset.insert xs A"
   217   "sup (Cset.set xs) A = foldr Cset.insert xs A"
   202   "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \<circ> member A) xs)"
   218   "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \<circ> member A) xs)"
   203 proof -
   219 proof -
   204   have *: "\<And>x::'a. Cset.insert = (\<lambda>x. Set \<circ> Set.insert x \<circ> member)"
   220   have *: "\<And>x::'a. Cset.insert = (\<lambda>x. Set \<circ> Set.insert x \<circ> member)"
   205     by (simp add: fun_eq_iff)
   221     by (simp add: fun_eq_iff)
   206   have "member \<circ> fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs =
   222   have "member \<circ> fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs =
   207     fold Set.insert xs \<circ> member"
   223     fold Set.insert xs \<circ> member"
   208     by (rule fold_commute) (simp add: fun_eq_iff)
   224     by (rule fold_commute) (simp add: fun_eq_iff)
   209   then have "fold Set.insert xs (member A) =
   225   then have "fold Set.insert xs (member A) =
   210     member (fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs A)"
   226     member (fold (\<lambda>x. Set \<circ> Set.insert x \<circ> member) xs A)"
   211     by (simp add: fun_eq_iff)
   227     by (simp add: fun_eq_iff)
   212   then have "sup (List_Cset.set xs) A = fold Cset.insert xs A"
   228   then have "sup (Cset.set xs) A = fold Cset.insert xs A"
   213     by (simp add: union_set *)
   229     by (simp add: union_set *)
   214   moreover have "\<And>x y :: 'a. Cset.insert y \<circ> Cset.insert x = Cset.insert x \<circ> Cset.insert y"
   230   moreover have "\<And>x y :: 'a. Cset.insert y \<circ> Cset.insert x = Cset.insert x \<circ> Cset.insert y"
   215     by (auto simp add: * intro: ext)
   231     by (auto simp add: * intro: ext)
   216   ultimately show "sup (List_Cset.set xs) A = foldr Cset.insert xs A"
   232   ultimately show "sup (Cset.set xs) A = foldr Cset.insert xs A"
   217     by (simp add: foldr_fold)
   233     by (simp add: foldr_fold)
   218   show "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \<circ> member A) xs)"
   234   show "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \<circ> member A) xs)"
   219     by (auto simp add: coset_def)
   235     by (auto simp add: coset_def)
   220 qed
   236 qed
   221 
   237