src/HOL/Hyperreal/MacLaurin.thy
changeset 14738 83f1a514dcb4
parent 12224 02df7cbe7d25
child 15079 2ef899e4526d
equal deleted inserted replaced
14737:77ea79aed99d 14738:83f1a514dcb4
     2     Author      : Jacques D. Fleuriot
     2     Author      : Jacques D. Fleuriot
     3     Copyright   : 2001 University of Edinburgh
     3     Copyright   : 2001 University of Edinburgh
     4     Description : MacLaurin series
     4     Description : MacLaurin series
     5 *)
     5 *)
     6 
     6 
     7 MacLaurin = Log
     7 theory MacLaurin = Log
       
     8 files ("MacLaurin_lemmas.ML"):
       
     9 
       
    10 use "MacLaurin_lemmas.ML"
       
    11 
       
    12 lemma Maclaurin_sin_bound: 
       
    13   "abs(sin x - sumr 0 n (%m. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * 
       
    14   x ^ m))  <= inverse(real (fact n)) * abs(x) ^ n"
       
    15 proof -
       
    16   have "!! x (y::real). x <= 1 \<Longrightarrow> 0 <= y \<Longrightarrow> x * y \<le> 1 * y" 
       
    17     by (rule_tac mult_right_mono,simp_all)
       
    18   note est = this[simplified]
       
    19   show ?thesis
       
    20     apply (cut_tac f=sin and n=n and x=x and 
       
    21       diff = "%n x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)"
       
    22       in Maclaurin_all_le_objl)
       
    23     apply (tactic{* (Step_tac 1) *})
       
    24     apply (simp)
       
    25     apply (subst mod_Suc_eq_Suc_mod)
       
    26     apply (tactic{* cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor RS lemma_exhaust_less_4) 1*})
       
    27     apply (tactic{* Step_tac 1 *})
       
    28     apply (simp)+
       
    29     apply (rule DERIV_minus, simp+)
       
    30     apply (rule lemma_DERIV_subst, rule DERIV_minus, rule DERIV_cos, simp)
       
    31     apply (tactic{* dtac ssubst 1 THEN assume_tac 2 *})
       
    32     apply (tactic {* rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1 *})
       
    33     apply (rule sumr_fun_eq)
       
    34     apply (tactic{* Step_tac 1 *})
       
    35     apply (tactic{*rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1*})
       
    36     apply (subst even_even_mod_4_iff)
       
    37     apply (tactic{* cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor RS lemma_exhaust_less_4) 1 *})
       
    38     apply (tactic{* Step_tac 1 *})
       
    39     apply (simp)
       
    40     apply (simp_all add:even_num_iff)
       
    41     apply (drule lemma_even_mod_4_div_2[simplified])
       
    42     apply(simp add: numeral_2_eq_2 real_divide_def)
       
    43     apply (drule lemma_odd_mod_4_div_2 );
       
    44     apply (simp add: numeral_2_eq_2 real_divide_def)
       
    45     apply (auto intro: real_mult_le_lemma mult_right_mono simp add: est mult_pos_le mult_ac real_divide_def abs_mult abs_inverse power_abs[symmetric])
       
    46     done
       
    47 qed
       
    48 
       
    49 end