src/HOL/Multivariate_Analysis/Derivative.thy
changeset 35172 579dd5570f96
parent 35028 108662d50512
child 35290 3707f625314f
equal deleted inserted replaced
35171:28f824c7addc 35172:579dd5570f96
   385         "norm (f y - f x - f' (y - x)) \<le> e / 2 * norm (y - x)"
   385         "norm (f y - f x - f' (y - x)) \<le> e / 2 * norm (y - x)"
   386     thus "\<bar>1 / norm (y - x)\<bar> * norm (f y - (f x + f' (y - x))) < e"
   386     thus "\<bar>1 / norm (y - x)\<bar> * norm (f y - (f x + f' (y - x))) < e"
   387       apply(rule_tac le_less_trans[of _ "e/2"]) by(auto intro!:mult_imp_div_pos_le simp add:group_simps) qed auto qed
   387       apply(rule_tac le_less_trans[of _ "e/2"]) by(auto intro!:mult_imp_div_pos_le simp add:group_simps) qed auto qed
   388 
   388 
   389 lemma has_derivative_at_alt:
   389 lemma has_derivative_at_alt:
   390   "(f has_derivative f') (at (x::real^'n)) \<longleftrightarrow> bounded_linear f' \<and>
   390   "(f has_derivative f') (at x) \<longleftrightarrow> bounded_linear f' \<and>
   391   (\<forall>e>0. \<exists>d>0. \<forall>y. norm(y - x) < d \<longrightarrow> norm(f y - f x - f'(y - x)) \<le> e * norm(y - x))"
   391   (\<forall>e>0. \<exists>d>0. \<forall>y. norm(y - x) < d \<longrightarrow> norm(f y - f x - f'(y - x)) \<le> e * norm(y - x))"
   392   using has_derivative_within_alt[where s=UNIV] unfolding within_UNIV by auto
   392   using has_derivative_within_alt[where s=UNIV] unfolding within_UNIV by auto
   393 
   393 
   394 subsection {* The chain rule. *}
   394 subsection {* The chain rule. *}
   395 
   395