src/HOL/MacLaurin.thy
changeset 41412 4b2a457b17e8
parent 41368 74e41b2d48ea
child 45166 33572a766836
equal deleted inserted replaced
41411:ceb81a08534e 41412:4b2a457b17e8
    17 
    17 
    18 lemma Maclaurin_lemma:
    18 lemma Maclaurin_lemma:
    19     "0 < h ==>
    19     "0 < h ==>
    20      \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) +
    20      \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) +
    21                (B * ((h^n) / real(fact n)))"
    21                (B * ((h^n) / real(fact n)))"
    22 by (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) *
    22 by (rule exI[where x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) *
    23                  real(fact n) / (h^n)"
    23                  real(fact n) / (h^n)"]) simp
    24        in exI, simp)
       
    25 
    24 
    26 lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
    25 lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))"
    27 by arith
    26 by arith
    28 
    27 
    29 lemma fact_diff_Suc [rule_format]:
    28 lemma fact_diff_Suc [rule_format]:
    30   "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)"
    29   "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)"
    31   by (subst fact_reduce_nat, auto)
    30   by (subst fact_reduce_nat, auto)
    32 
    31 
    33 lemma Maclaurin_lemma2:
    32 lemma Maclaurin_lemma2:
       
    33   fixes B
    34   assumes DERIV : "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
    34   assumes DERIV : "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
    35   and INIT : "n = Suc k"
    35     and INIT : "n = Suc k"
    36   and DIFG_DEF: "difg = (\<lambda>m t. diff m t - ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) + 
    36   defines "difg \<equiv> (\<lambda>m t. diff m t - ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) +
    37   B * (t ^ (n - m) / real (fact (n - m)))))"
    37     B * (t ^ (n - m) / real (fact (n - m)))))" (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)")
    38   shows "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t"
    38   shows "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t"
    39 proof (rule allI)+
    39 proof (rule allI impI)+
    40   fix m
    40   fix m t assume INIT2: "m < n & 0 \<le> t & t \<le> h"
    41   fix t
    41   have "DERIV (difg m) t :> diff (Suc m) t -
    42   show "m < n \<and> 0 \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"
    42     ((\<Sum>x = 0..<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) +
    43   proof
    43      real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)))" unfolding difg_def
    44     assume INIT2: "m < n & 0 \<le> t & t \<le> h"
    44     by (auto intro!: DERIV_intros DERIV[rule_format, OF INIT2])
    45     hence INTERV: "0 \<le> t & t \<le> h" ..
       
    46     from INIT2 and INIT have mtok: "m < Suc k" by arith
       
    47     have "DERIV (\<lambda>t. diff m t -
       
    48     ((\<Sum>p = 0..<Suc k - m. diff (m + p) 0 / real (fact p) * t ^ p) +
       
    49     B * (t ^ (Suc k - m) / real (fact (Suc k - m)))))
       
    50     t :> diff (Suc m) t -
       
    51     ((\<Sum>p = 0..<Suc k - Suc m. diff (Suc m + p) 0 / real (fact p) * t ^ p) +
       
    52     B * (t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m))))"
       
    53     proof -
       
    54       from DERIV and INIT2 have "DERIV (diff m) t :> diff (Suc m) t" by simp
       
    55       moreover
    45       moreover
    56       have " DERIV (\<lambda>x. (\<Sum>p = 0..<Suc k - m. diff (m + p) 0 / real (fact p) * x ^ p) +
    46   from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
    57 	B * (x ^ (Suc k - m) / real (fact (Suc k - m))))
    47     unfolding atLeast0LessThan[symmetric] by auto
    58 	t :> (\<Sum>p = 0..<Suc k - Suc m. diff (Suc m + p) 0 / real (fact p) * t ^ p) +
    48   have "(\<Sum>x = 0..<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) =
    59 	B * (t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m)))"
    49       (\<Sum>x = 0..<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)))"
    60       proof -
    50     unfolding intvl atLeast0LessThan by (subst setsum.insert) (auto simp: setsum.reindex)
    61 	have "DERIV (\<lambda>x. \<Sum>p = 0..<Suc k - m. diff (m + p) 0 / real (fact p) * x ^ p) t
    51   moreover
    62 	  :> (\<Sum>p = 0..<Suc k - Suc m. diff (Suc m + p) 0 / real (fact p) * t ^ p)"
    52   have fact_neq_0: "\<And>x::nat. real (fact x) + real x * real (fact x) \<noteq> 0"
    63 	proof -
    53     by (metis fact_gt_zero_nat not_add_less1 real_of_nat_add real_of_nat_mult real_of_nat_zero_iff)
    64 	  have "\<exists> d. k = m + d"
    54   have "\<And>x. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)) =
    65 	  proof -
    55       diff (Suc m + x) 0 * t^x / real (fact x)"
    66 	    from INIT2 have "m < n" ..
    56     by (auto simp: field_simps real_of_nat_Suc fact_neq_0 intro!: nonzero_divide_eq_eq[THEN iffD2])
    67 	    hence "\<exists> d. n = m + d + Suc 0" by arith
    57   moreover
    68 	    with INIT show ?thesis by (simp del: setsum_op_ivl_Suc)
    58   have "real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)) =
    69 	  qed
    59       B * (t ^ (n - Suc m) / real (fact (n - Suc m)))"
    70 	  from this obtain d where kmd: "k = m + d" ..
    60     using `0 < n - m` by (simp add: fact_reduce_nat)
    71 	  have "DERIV (\<lambda>x. (\<Sum>ma = 0..<d. diff (Suc (m + ma)) 0 * x ^ Suc ma / real (fact (Suc ma))) +
    61   ultimately show "DERIV (difg m) t :> difg (Suc m) t"
    72             diff m 0)
    62     unfolding difg_def by simp
    73 	    t :> (\<Sum>p = 0..<d. diff (Suc (m + p)) 0 * t ^ p / real (fact p))"
    63 qed
    74 	    
       
    75 	  proof - 
       
    76 	    have "DERIV (\<lambda>x. (\<Sum>ma = 0..<d. diff (Suc (m + ma)) 0 * x ^ Suc ma / real (fact (Suc ma))) + diff m 0) t :>  (\<Sum>r = 0..<d. diff (Suc (m + r)) 0 * t ^ r / real (fact r)) + 0"
       
    77 	    proof -
       
    78 	      from DERIV and INTERV have "DERIV (\<lambda>x. (\<Sum>ma = 0..<d. diff (Suc (m + ma)) 0 * x ^ Suc ma / real (fact (Suc ma)))) t :>  (\<Sum>r = 0..<d. diff (Suc (m + r)) 0 * t ^ r / real (fact r))"
       
    79 	      proof -
       
    80 		have "\<forall>r. 0 \<le> r \<and> r < 0 + d \<longrightarrow>
       
    81 		  DERIV (\<lambda>x. diff (Suc (m + r)) 0 * x ^ Suc r / real (fact (Suc r))) t
       
    82 		  :> diff (Suc (m + r)) 0 * t ^ r / real (fact r)"
       
    83 		proof (rule allI)
       
    84 		  fix r
       
    85 		  show " 0 \<le> r \<and> r < 0 + d \<longrightarrow>
       
    86 		    DERIV (\<lambda>x. diff (Suc (m + r)) 0 * x ^ Suc r / real (fact (Suc r))) t
       
    87 		    :> diff (Suc (m + r)) 0 * t ^ r / real (fact r)"
       
    88 		  proof 
       
    89 		    assume "0 \<le> r & r < 0 + d"
       
    90 		    have "DERIV (\<lambda>x. diff (Suc (m + r)) 0 *
       
    91                       (x ^ Suc r * inverse (real (fact (Suc r)))))
       
    92 		      t :> diff (Suc (m + r)) 0 * (t ^ r * inverse (real (fact r)))"
       
    93 		    proof -
       
    94                       have "(1 + real r) * real (fact r) \<noteq> 0" by auto
       
    95 		      from this have "real (fact r) + real r * real (fact r) \<noteq> 0"
       
    96                         by (metis add_nonneg_eq_0_iff mult_nonneg_nonneg real_of_nat_fact_not_zero real_of_nat_ge_zero)
       
    97                       from this have "DERIV (\<lambda>x. x ^ Suc r * inverse (real (fact (Suc r)))) t :> real (Suc r) * t ^ (Suc r - Suc 0) * inverse (real (fact (Suc r))) +
       
    98 			0 * t ^ Suc r"
       
    99                         apply - by ( rule DERIV_intros | rule refl)+ auto
       
   100 		      moreover
       
   101 		      have "real (Suc r) * t ^ (Suc r - Suc 0) * inverse (real (fact (Suc r))) +
       
   102 			0 * t ^ Suc r =
       
   103 			t ^ r * inverse (real (fact r))"
       
   104 		      proof -
       
   105 			
       
   106 			have " real (Suc r) * t ^ (Suc r - Suc 0) *
       
   107 			  inverse (real (Suc r) * real (fact r)) +
       
   108 			  0 * t ^ Suc r =
       
   109 			  t ^ r * inverse (real (fact r))" by (simp add: mult_ac)
       
   110 			hence "real (Suc r) * t ^ (Suc r - Suc 0) * inverse (real (Suc r * fact r)) +
       
   111 			  0 * t ^ Suc r =
       
   112 			  t ^ r * inverse (real (fact r))" by (subst real_of_nat_mult)
       
   113 			thus ?thesis by (subst fact_Suc)
       
   114 		      qed
       
   115 		      ultimately have " DERIV (\<lambda>x. x ^ Suc r * inverse (real (fact (Suc r)))) t
       
   116 			:> t ^ r * inverse (real (fact r))" by (rule lemma_DERIV_subst)
       
   117 		      thus ?thesis by (rule DERIV_cmult)
       
   118 		    qed
       
   119 		    thus "DERIV (\<lambda>x. diff (Suc (m + r)) 0 * x ^ Suc r /
       
   120                       real (fact (Suc r)))
       
   121 		      t :> diff (Suc (m + r)) 0 * t ^ r / real (fact r)" by (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc)
       
   122 		  qed
       
   123 		qed
       
   124 		thus ?thesis by (rule DERIV_sumr)
       
   125 	      qed
       
   126 	      moreover
       
   127 	      from DERIV_const have "DERIV (\<lambda>x. diff m 0) t :> 0" .
       
   128 	      ultimately show ?thesis by (rule DERIV_add)
       
   129 	    qed
       
   130 	    moreover
       
   131 	    have " (\<Sum>r = 0..<d. diff (Suc (m + r)) 0 * t ^ r / real (fact r)) + 0 =  (\<Sum>p = 0..<d. diff (Suc (m + p)) 0 * t ^ p / real (fact p))"  by simp
       
   132 	    ultimately show ?thesis by (rule lemma_DERIV_subst)
       
   133 	  qed
       
   134 	  with kmd and sumr_offset4 [of 1] show ?thesis by (simp del: setsum_op_ivl_Suc fact_Suc power_Suc)
       
   135 	qed
       
   136 	moreover
       
   137 	have " DERIV (\<lambda>x. B * (x ^ (Suc k - m) / real (fact (Suc k - m)))) t
       
   138 	  :> B * (t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m)))"
       
   139 	proof -
       
   140 	  have " DERIV (\<lambda>x. x ^ (Suc k - m) / real (fact (Suc k - m))) t
       
   141 	    :> t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m))"
       
   142 	  proof -
       
   143 	    have "DERIV (\<lambda>x. x ^ (Suc k - m)) t :> real (Suc k - m) * t ^ (Suc k - m - Suc 0)" by (rule DERIV_pow)
       
   144 	    moreover
       
   145 	    have "DERIV (\<lambda>x. real (fact (Suc k - m))) t :> 0" by (rule DERIV_const)
       
   146 	    moreover
       
   147 	    have "(\<lambda>x. real (fact (Suc k - m))) t \<noteq> 0" by simp
       
   148 	    ultimately have " DERIV (\<lambda>y. y ^ (Suc k - m) / real (fact (Suc k - m))) t
       
   149 	      :>  ( real (Suc k - m) * t ^ (Suc k - m - Suc 0) * real (fact (Suc k - m)) + - (0 * t ^ (Suc k - m))) /
       
   150 	      real (fact (Suc k - m)) ^ Suc (Suc 0)"
       
   151               apply -
       
   152               apply (rule DERIV_cong) by (rule DERIV_intros | rule refl)+ auto
       
   153 	    moreover
       
   154 	    from mtok and INIT have "( real (Suc k - m) * t ^ (Suc k - m - Suc 0) * real (fact (Suc k - m)) + - (0 * t ^ (Suc k - m))) /
       
   155 	      real (fact (Suc k - m)) ^ Suc (Suc 0) =  t ^ (Suc k - Suc m) / real (fact (Suc k - Suc m))" by (simp add: fact_diff_Suc)
       
   156 	    ultimately show ?thesis by (rule lemma_DERIV_subst)
       
   157 	  qed
       
   158 	  moreover
       
   159 	  thus ?thesis by (rule DERIV_cmult)
       
   160 	qed
       
   161 	ultimately show ?thesis by (rule DERIV_add)
       
   162       qed
       
   163       ultimately show ?thesis by (rule DERIV_diff) 
       
   164     qed
       
   165     from INIT and this and DIFG_DEF show "DERIV (difg m) t :> difg (Suc m) t" by clarify
       
   166   qed
       
   167 qed
       
   168 
       
   169 
    64 
   170 lemma Maclaurin:
    65 lemma Maclaurin:
   171   assumes h: "0 < h"
    66   assumes h: "0 < h"
   172   assumes n: "0 < n"
    67   assumes n: "0 < n"
   173   assumes diff_0: "diff 0 = f"
    68   assumes diff_0: "diff 0 = f"
   175     "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t"
    70     "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t"
   176   shows
    71   shows
   177     "\<exists>t. 0 < t & t < h &
    72     "\<exists>t. 0 < t & t < h &
   178               f h =
    73               f h =
   179               setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
    74               setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
   180               (diff n t / real (fact n)) * h ^ n"  
    75               (diff n t / real (fact n)) * h ^ n"
   181 proof -
    76 proof -
   182   from n obtain m where m: "n = Suc m"
    77   from n obtain m where m: "n = Suc m"
   183     by (cases n, simp add: n)
    78     by (cases n) (simp add: n)
   184 
    79 
   185   obtain B where f_h: "f h =
    80   obtain B where f_h: "f h =
   186         (\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) +
    81         (\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) +
   187         B * (h ^ n / real (fact n))"
    82         B * (h ^ n / real (fact n))"
   188     using Maclaurin_lemma [OF h] ..
    83     using Maclaurin_lemma [OF h] ..
   189 
    84 
   190   obtain g where g_def: "g = (%t. f t -
    85   def g \<equiv> "(\<lambda>t. f t -
   191     (setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n}
    86     (setsum (\<lambda>m. (diff m 0 / real(fact m)) * t^m) {0..<n}
   192       + (B * (t^n / real(fact n)))))" by blast
    87       + (B * (t^n / real(fact n)))))"
   193 
    88 
   194   have g2: "g 0 = 0 & g h = 0"
    89   have g2: "g 0 = 0 & g h = 0"
   195     apply (simp add: m f_h g_def del: setsum_op_ivl_Suc)
    90     apply (simp add: m f_h g_def del: setsum_op_ivl_Suc)
   196     apply (cut_tac n = m and k = "Suc 0" in sumr_offset2)
    91     apply (cut_tac n = m and k = "Suc 0" in sumr_offset2)
   197     apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc)
    92     apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc)
   198     done
    93     done
   199 
    94 
   200   obtain difg where difg_def: "difg = (%m t. diff m t -
    95   def difg \<equiv> "(%m t. diff m t -
   201     (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m}
    96     (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m}
   202       + (B * ((t ^ (n - m)) / real (fact (n - m))))))" by blast
    97       + (B * ((t ^ (n - m)) / real (fact (n - m))))))"
   203 
    98 
   204   have difg_0: "difg 0 = g"
    99   have difg_0: "difg 0 = g"
   205     unfolding difg_def g_def by (simp add: diff_0)
   100     unfolding difg_def g_def by (simp add: diff_0)
   206 
   101 
   207   have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real.
   102   have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real.
   208         m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"
   103         m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t"
   209     using diff_Suc m difg_def by (rule Maclaurin_lemma2)
   104     using diff_Suc m unfolding difg_def by (rule Maclaurin_lemma2)
   210 
   105 
   211   have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0"
   106   have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0"
   212     apply clarify
   107     apply clarify
   213     apply (simp add: m difg_def)
   108     apply (simp add: m difg_def)
   214     apply (frule less_iff_Suc_add [THEN iffD1], clarify)
   109     apply (frule less_iff_Suc_add [THEN iffD1], clarify)
   231   have "m < n" using m by simp
   126   have "m < n" using m by simp
   232 
   127 
   233   have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0"
   128   have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0"
   234   using `m < n`
   129   using `m < n`
   235   proof (induct m)
   130   proof (induct m)
   236   case 0
   131     case 0
   237     show ?case
   132     show ?case
   238     proof (rule Rolle)
   133     proof (rule Rolle)
   239       show "0 < h" by fact
   134       show "0 < h" by fact
   240       show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2)
   135       show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2)
   241       show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x"
   136       show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x"
   242         by (simp add: isCont_difg n)
   137         by (simp add: isCont_difg n)
   243       show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x"
   138       show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x"
   244         by (simp add: differentiable_difg n)
   139         by (simp add: differentiable_difg n)
   245     qed
   140     qed
   246   next
   141   next
   247   case (Suc m')
   142     case (Suc m')
   248     hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp
   143     hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp
   249     then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast
   144     then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast
   250     have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"
   145     have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0"
   251     proof (rule Rolle)
   146     proof (rule Rolle)
   252       show "0 < t" by fact
   147       show "0 < t" by fact
   274       (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) +
   169       (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) +
   275       diff n t / real (fact n) * h ^ n"
   170       diff n t / real (fact n) * h ^ n"
   276       using `difg (Suc m) t = 0`
   171       using `difg (Suc m) t = 0`
   277       by (simp add: m f_h difg_def del: fact_Suc)
   172       by (simp add: m f_h difg_def del: fact_Suc)
   278   qed
   173   qed
   279 
       
   280 qed
   174 qed
   281 
   175 
   282 lemma Maclaurin_objl:
   176 lemma Maclaurin_objl:
   283   "0 < h & n>0 & diff 0 = f &
   177   "0 < h & n>0 & diff 0 = f &
   284   (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
   178   (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t)
   296   (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   190   (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   297   diff n t / real (fact n) * h ^ n"
   191   diff n t / real (fact n) * h ^ n"
   298 proof (cases "n")
   192 proof (cases "n")
   299   case 0 with INIT1 INIT2 show ?thesis by fastsimp
   193   case 0 with INIT1 INIT2 show ?thesis by fastsimp
   300 next
   194 next
   301   case Suc 
   195   case Suc
   302   hence "n > 0" by simp
   196   hence "n > 0" by simp
   303   from INIT1 this INIT2 DERIV have "\<exists>t>0. t < h \<and>
   197   from INIT1 this INIT2 DERIV have "\<exists>t>0. t < h \<and>
   304     f h =
   198     f h =
   305     (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" 
   199     (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n"
   306     by (rule Maclaurin)
   200     by (rule Maclaurin)
   307   thus ?thesis by fastsimp
   201   thus ?thesis by fastsimp
   308 qed
   202 qed
   309 
   203 
   310 lemma Maclaurin2_objl:
   204 lemma Maclaurin2_objl:
   317               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   211               (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   318               diff n t / real (fact n) * h ^ n)"
   212               diff n t / real (fact n) * h ^ n)"
   319 by (blast intro: Maclaurin2)
   213 by (blast intro: Maclaurin2)
   320 
   214 
   321 lemma Maclaurin_minus:
   215 lemma Maclaurin_minus:
   322   assumes INTERV : "h < 0" and
   216   assumes "h < 0" "0 < n" "diff 0 = f"
   323   INIT : "0 < n" "diff 0 = f" and
   217   and DERIV: "\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t"
   324              ABL : "\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t"
       
   325   shows "\<exists>t. h < t & t < 0 &
   218   shows "\<exists>t. h < t & t < 0 &
   326          f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   219          f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) +
   327          diff n t / real (fact n) * h ^ n"
   220          diff n t / real (fact n) * h ^ n"
   328 proof -
   221 proof -
   329   from INTERV have "0 < -h" by simp
   222   txt "Transform @{text ABL'} into @{text DERIV_intros} format."
   330   moreover
   223   note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong]
   331   from INIT have "0 < n" by simp
   224   from assms
   332   moreover
   225   have "\<exists>t>0. t < - h \<and>
   333   from INIT have "(% x. ( - 1) ^ 0 * diff 0 (- x)) = (% x. f (- x))" by simp
       
   334   moreover
       
   335   have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> - h \<longrightarrow>
       
   336     DERIV (\<lambda>x. (- 1) ^ m * diff m (- x)) t :> (- 1) ^ Suc m * diff (Suc m) (- t)"
       
   337   proof (rule allI impI)+
       
   338     fix m t
       
   339     assume tINTERV:" m < n \<and> 0 \<le> t \<and> t \<le> - h"
       
   340     with ABL show "DERIV (\<lambda>x. (- 1) ^ m * diff m (- x)) t :> (- 1) ^ Suc m * diff (Suc m) (- t)"
       
   341     proof -
       
   342       
       
   343       from ABL and tINTERV have "DERIV (\<lambda>x. diff m (- x)) t :> - diff (Suc m) (- t)" (is ?tABL)
       
   344       proof -
       
   345 	from ABL and tINTERV have "DERIV (diff m) (- t) :> diff (Suc m) (- t)" by force
       
   346 	moreover
       
   347 	from DERIV_ident[of t] have "DERIV uminus t :> (- 1)" by (rule DERIV_minus) 
       
   348 	ultimately have "DERIV (\<lambda>x. diff m (- x)) t :> diff (Suc m) (- t) * - 1" by (rule DERIV_chain2)
       
   349 	thus ?thesis by simp
       
   350       qed
       
   351       thus ?thesis
       
   352       proof -
       
   353 	assume ?tABL hence "DERIV (\<lambda>x. -1 ^ m * diff m (- x)) t :> -1 ^ m * - diff (Suc m) (- t)" by (rule DERIV_cmult)
       
   354 	hence "DERIV (\<lambda>x. -1 ^ m * diff m (- x)) t :> - (-1 ^ m * diff (Suc m) (- t))" by (subst minus_mult_right)
       
   355 	thus ?thesis by simp 
       
   356       qed
       
   357     qed
       
   358   qed
       
   359   ultimately have t_exists: "\<exists>t>0. t < - h \<and>
       
   360     f (- (- h)) =
   226     f (- (- h)) =
   361     (\<Sum>m = 0..<n.
   227     (\<Sum>m = 0..<n.
   362     (- 1) ^ m * diff m (- 0) / real (fact m) * (- h) ^ m) +
   228     (- 1) ^ m * diff m (- 0) / real (fact m) * (- h) ^ m) +
   363     (- 1) ^ n * diff n (- t) / real (fact n) * (- h) ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin)
   229     (- 1) ^ n * diff n (- t) / real (fact n) * (- h) ^ n"
   364   from this obtain t where t_def: "?P t" ..
   230     by (intro Maclaurin) (auto intro!: DERIV_intros DERIV')
       
   231   then guess t ..
   365   moreover
   232   moreover
   366   have "-1 ^ n * diff n (- t) * (- h) ^ n / real (fact n) = diff n (- t) * h ^ n / real (fact n)"
   233   have "-1 ^ n * diff n (- t) * (- h) ^ n / real (fact n) = diff n (- t) * h ^ n / real (fact n)"
   367     by (auto simp add: power_mult_distrib[symmetric])
   234     by (auto simp add: power_mult_distrib[symmetric])
   368   moreover
   235   moreover
   369   have "(SUM m = 0..<n. -1 ^ m * diff m 0 * (- h) ^ m / real (fact m)) = (SUM m = 0..<n. diff m 0 * h ^ m / real (fact m))"
   236   have "(SUM m = 0..<n. -1 ^ m * diff m 0 * (- h) ^ m / real (fact m)) = (SUM m = 0..<n. diff m 0 * h ^ m / real (fact m))"
   395 lemma Maclaurin_bi_le_lemma [rule_format]:
   262 lemma Maclaurin_bi_le_lemma [rule_format]:
   396   "n>0 \<longrightarrow>
   263   "n>0 \<longrightarrow>
   397    diff 0 0 =
   264    diff 0 0 =
   398    (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +
   265    (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) +
   399    diff n 0 * 0 ^ n / real (fact n)"
   266    diff n 0 * 0 ^ n / real (fact n)"
   400 by (induct "n", auto)
   267 by (induct "n") auto
   401 
   268 
   402 lemma Maclaurin_bi_le:
   269 lemma Maclaurin_bi_le:
   403    assumes INIT : "diff 0 = f"
   270    assumes "diff 0 = f"
   404    and DERIV : "\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t"
   271    and DERIV : "\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t"
   405    shows "\<exists>t. abs t \<le> abs x &
   272    shows "\<exists>t. abs t \<le> abs x &
   406               f x =
   273               f x =
   407               (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) +
   274               (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) +
   408               diff n t / real (fact n) * x ^ n"
   275      diff n t / real (fact n) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t")
   409 proof (cases "n = 0")
   276 proof cases
   410   case True from INIT True show ?thesis by force
   277   assume "n = 0" with `diff 0 = f` show ?thesis by force
   411 next
   278 next
   412   case False
   279   assume "n \<noteq> 0"
   413   from this have n_not_zero:"n \<noteq> 0" .
   280   show ?thesis
   414   from False INIT DERIV show ?thesis
   281   proof (cases rule: linorder_cases)
   415   proof (cases "x = 0")
   282     assume "x = 0" with `n \<noteq> 0` `diff 0 = f` DERIV
   416     case True show ?thesis
   283     have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by (force simp add: Maclaurin_bi_le_lemma)
   417     proof -
   284     thus ?thesis ..
   418       from n_not_zero True INIT DERIV have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and>
       
   419 	f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n 0 / real (fact n) * x ^ n" by(force simp add: Maclaurin_bi_le_lemma) 
       
   420       thus ?thesis ..
       
   421     qed
       
   422   next
   285   next
   423     case False 
   286     assume "x < 0"
   424     note linorder_less_linear [of "x" "0"] 
   287     with `n \<noteq> 0` DERIV
   425     thus ?thesis
   288     have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t" by (intro Maclaurin_minus) auto
   426     proof (elim disjE)
   289     then guess t ..
   427       assume "x = 0" with False show ?thesis ..
   290     with `x < 0` `diff 0 = f` have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp
   428       next
   291     thus ?thesis ..
   429       assume x_less_zero: "x < 0" moreover
   292   next
   430       from n_not_zero have "0 < n" by simp moreover
   293     assume "x > 0"
   431       have "diff 0 = diff 0" by simp moreover
   294     with `n \<noteq> 0` `diff 0 = f` DERIV
   432       have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
   295     have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t" by (intro Maclaurin) auto
   433       proof (rule allI, rule allI, rule impI)
   296     then guess t ..
   434 	fix m t
   297     with `x > 0` `diff 0 = f` have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp
   435 	assume "m < n & x \<le> t & t \<le> 0"
   298     thus ?thesis ..
   436 	with DERIV show " DERIV (diff m) t :> diff (Suc m) t" by (fastsimp simp add: abs_if)
       
   437       qed
       
   438       ultimately have t_exists:"\<exists>t>x. t < 0 \<and>
       
   439         diff 0 x =
       
   440         (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin_minus)
       
   441       from this obtain t where t_def: "?P t" ..
       
   442       from t_def x_less_zero INIT  have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and>
       
   443 	f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n"
       
   444 	by (simp add: abs_if order_less_le)
       
   445       thus ?thesis by (rule exI)
       
   446     next
       
   447     assume x_greater_zero: "x > 0" moreover
       
   448     from n_not_zero have "0 < n" by simp moreover
       
   449     have "diff 0 = diff 0" by simp moreover
       
   450     have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t"
       
   451       proof (rule allI, rule allI, rule impI)
       
   452 	fix m t
       
   453 	assume "m < n & 0 \<le> t & t \<le> x"
       
   454 	with DERIV show " DERIV (diff m) t :> diff (Suc m) t" by fastsimp
       
   455       qed
       
   456       ultimately have t_exists:"\<exists>t>0. t < x \<and>
       
   457         diff 0 x =
       
   458         (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin)
       
   459       from this obtain t where t_def: "?P t" ..
       
   460       from t_def x_greater_zero INIT  have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and>
       
   461 	f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n"
       
   462 	by fastsimp
       
   463       thus ?thesis ..
       
   464     qed
       
   465   qed
   299   qed
   466 qed
   300 qed
   467 
       
   468 
   301 
   469 lemma Maclaurin_all_lt:
   302 lemma Maclaurin_all_lt:
   470   assumes INIT1: "diff 0 = f" and INIT2: "0 < n" and INIT3: "x \<noteq> 0"
   303   assumes INIT1: "diff 0 = f" and INIT2: "0 < n" and INIT3: "x \<noteq> 0"
   471   and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x"
   304   and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x"
   472   shows "\<exists>t. 0 < abs t & abs t < abs x &
   305   shows "\<exists>t. 0 < abs t & abs t < abs x & f x =
   473                f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   306     (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   474                      (diff n t / real (fact n)) * x ^ n" 
   307                 (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t")
   475 proof -
   308 proof (cases rule: linorder_cases)
   476   have "(x = 0) \<Longrightarrow> ?thesis"
   309   assume "x = 0" with INIT3 show "?thesis"..
   477   proof -
   310 next
   478     assume "x = 0"
   311   assume "x < 0"
   479     with INIT3 show "(x = 0) \<Longrightarrow> ?thesis"..
   312   with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t" by (intro Maclaurin_minus) auto
   480   qed
   313   then guess t ..
   481   moreover have "(x < 0) \<Longrightarrow> ?thesis"
   314   with `x < 0` have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by simp
   482   proof -
   315   thus ?thesis ..
   483     assume x_less_zero: "x < 0"
   316 next
   484     from DERIV have "\<forall>m t. m < n \<and> x \<le> t \<and> t \<le> 0 \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" by simp 
   317   assume "x > 0"
   485     with x_less_zero INIT2 INIT1 have "\<exists>t>x. t < 0 \<and> f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin_minus)
   318   with assms have "\<exists>t>0. t < x \<and> f x = ?f x t " by (intro Maclaurin) auto
   486     from this obtain t where "?P t" ..
   319   then guess t ..
   487     with x_less_zero have "0 < \<bar>t\<bar> \<and>
   320   with `x > 0` have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by simp
   488       \<bar>t\<bar> < \<bar>x\<bar> \<and>
   321   thus ?thesis ..
   489       f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" by simp
       
   490     thus ?thesis ..
       
   491   qed
       
   492   moreover have "(x > 0) \<Longrightarrow> ?thesis"
       
   493   proof -
       
   494     assume x_greater_zero: "x > 0"
       
   495     from DERIV have "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" by simp
       
   496     with x_greater_zero INIT2 INIT1 have "\<exists>t>0. t < x \<and> f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin)
       
   497     from this obtain t where "?P t" ..
       
   498     with x_greater_zero have "0 < \<bar>t\<bar> \<and>
       
   499       \<bar>t\<bar> < \<bar>x\<bar> \<and>
       
   500       f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" by fastsimp
       
   501     thus ?thesis ..
       
   502   qed
       
   503   ultimately show ?thesis by (fastsimp) 
       
   504 qed
   322 qed
   505 
   323 
   506 
   324 
   507 lemma Maclaurin_all_lt_objl:
   325 lemma Maclaurin_all_lt_objl:
   508      "diff 0 = f &
   326      "diff 0 = f &
   522 
   340 
   523 
   341 
   524 lemma Maclaurin_all_le:
   342 lemma Maclaurin_all_le:
   525   assumes INIT: "diff 0 = f"
   343   assumes INIT: "diff 0 = f"
   526   and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x"
   344   and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x"
   527   shows "\<exists>t. abs t \<le> abs x &
   345   shows "\<exists>t. abs t \<le> abs x & f x =
   528               f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   346     (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   529                     (diff n t / real (fact n)) * x ^ n"
   347     (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t")
   530 proof -
   348 proof cases
   531   note linorder_le_less_linear [of n 0]
   349   assume "n = 0" with INIT show ?thesis by force
   532   thus ?thesis
       
   533   proof
       
   534     assume "n\<le> 0" with INIT show ?thesis by force
       
   535   next
   350   next
   536     assume n_greater_zero: "n > 0" show ?thesis
   351   assume "n \<noteq> 0"
   537     proof (cases "x = 0")
   352   show ?thesis
   538       case True
   353   proof cases
   539       from n_greater_zero have "n \<noteq> 0" by auto
   354     assume "x = 0"
   540       from True this  have f_0:"(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) = diff 0 0" by (rule Maclaurin_zero)
   355     with `n \<noteq> 0` have "(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) = diff 0 0"
   541       from n_greater_zero have "n \<noteq> 0" by (rule gr_implies_not0)
   356       by (intro Maclaurin_zero) auto
   542       hence "\<exists> m. n = Suc m" by (rule not0_implies_Suc)
   357     with INIT `x = 0` `n \<noteq> 0` have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by force
   543       with f_0 True INIT have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and>
   358     thus ?thesis ..
   544        f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n 0 / real (fact n) * x ^ n"
   359   next
   545 	by force
   360     assume "x \<noteq> 0"
   546       thus ?thesis ..
   361     with INIT `n \<noteq> 0` DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t"
   547     next
   362       by (intro Maclaurin_all_lt) auto
   548       case False
   363     then guess t ..
   549       from INIT n_greater_zero this DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and>
   364     hence "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp
   550 	\<bar>t\<bar> < \<bar>x\<bar> \<and> f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" (is "\<exists> t. ?P t") by (rule Maclaurin_all_lt)
   365     thus ?thesis ..
   551       from this obtain t where "?P t" ..
       
   552       hence "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and>
       
   553        f x = (\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) + diff n t / real (fact n) * x ^ n" by (simp add: order_less_le)
       
   554       thus ?thesis ..
       
   555     qed
       
   556   qed
   366   qed
   557 qed
   367 qed
   558 
       
   559 
   368 
   560 lemma Maclaurin_all_le_objl: "diff 0 = f &
   369 lemma Maclaurin_all_le_objl: "diff 0 = f &
   561       (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
   370       (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x)
   562       --> (\<exists>t. abs t \<le> abs x &
   371       --> (\<exists>t. abs t \<le> abs x &
   563               f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   372               f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) +
   602 
   411 
   603 
   412 
   604 text{*It is unclear why so many variant results are needed.*}
   413 text{*It is unclear why so many variant results are needed.*}
   605 
   414 
   606 lemma sin_expansion_lemma:
   415 lemma sin_expansion_lemma:
   607      "sin (x + real (Suc m) * pi / 2) =  
   416      "sin (x + real (Suc m) * pi / 2) =
   608       cos (x + real (m) * pi / 2)"
   417       cos (x + real (m) * pi / 2)"
   609 by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto)
   418 by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto)
   610 
   419 
   611 lemma Maclaurin_sin_expansion2:
   420 lemma Maclaurin_sin_expansion2:
   612      "\<exists>t. abs t \<le> abs x &
   421      "\<exists>t. abs t \<le> abs x &
   633      "\<exists>t. sin x =
   442      "\<exists>t. sin x =
   634        (\<Sum>m=0..<n. (if even m then 0
   443        (\<Sum>m=0..<n. (if even m then 0
   635                        else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
   444                        else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) *
   636                        x ^ m)
   445                        x ^ m)
   637       + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   446       + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)"
   638 apply (insert Maclaurin_sin_expansion2 [of x n]) 
   447 apply (insert Maclaurin_sin_expansion2 [of x n])
   639 apply (blast intro: elim:); 
   448 apply (blast intro: elim:)
   640 done
   449 done
   641 
   450 
   642 lemma Maclaurin_sin_expansion3:
   451 lemma Maclaurin_sin_expansion3:
   643      "[| n > 0; 0 < x |] ==>
   452      "[| n > 0; 0 < x |] ==>
   644        \<exists>t. 0 < t & t < x &
   453        \<exists>t. 0 < t & t < x &
   786     apply (subst t2)
   595     apply (subst t2)
   787     apply (rule sin_bound_lemma)
   596     apply (rule sin_bound_lemma)
   788     apply (rule setsum_cong[OF refl])
   597     apply (rule setsum_cong[OF refl])
   789     apply (subst diff_m_0, simp)
   598     apply (subst diff_m_0, simp)
   790     apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
   599     apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
   791                    simp add: est mult_nonneg_nonneg mult_ac divide_inverse
   600                 simp add: est mult_nonneg_nonneg mult_ac divide_inverse
   792                           power_abs [symmetric] abs_mult)
   601                           power_abs [symmetric] abs_mult)
   793     done
   602     done
   794 qed
   603 qed
   795 
   604 
   796 end
   605 end