src/HOL/Probability/Caratheodory.thy
changeset 48565 05663f75964c
parent 47605 5302e932d1e5
child 48632 dfe747e72fa8
equal deleted inserted replaced
48564:64023cf4d148 48565:05663f75964c
     4 *)
     4 *)
     5 
     5 
     6 header {*Caratheodory Extension Theorem*}
     6 header {*Caratheodory Extension Theorem*}
     7 
     7 
     8 theory Caratheodory
     8 theory Caratheodory
     9 imports Sigma_Algebra "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits"
     9   imports Measure_Space
    10 begin
    10 begin
    11 
    11 
    12 lemma sums_def2:
    12 lemma sums_def2:
    13   "f sums x \<longleftrightarrow> (\<lambda>n. (\<Sum>i\<le>n. f i)) ----> x"
    13   "f sums x \<longleftrightarrow> (\<lambda>n. (\<Sum>i\<le>n. f i)) ----> x"
    14   unfolding sums_def
    14   unfolding sums_def
    51                      SUPR_ereal_setsum[symmetric] incseq_setsumI setsum_nonneg)
    51                      SUPR_ereal_setsum[symmetric] incseq_setsumI setsum_nonneg)
    52 qed
    52 qed
    53 
    53 
    54 subsection {* Measure Spaces *}
    54 subsection {* Measure Spaces *}
    55 
    55 
    56 record 'a measure_space = "'a algebra" +
       
    57   measure :: "'a set \<Rightarrow> ereal"
       
    58 
       
    59 definition positive where "positive M f \<longleftrightarrow> f {} = (0::ereal) \<and> (\<forall>A\<in>sets M. 0 \<le> f A)"
       
    60 
       
    61 definition additive where "additive M f \<longleftrightarrow>
       
    62   (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<inter> y = {} \<longrightarrow> f (x \<union> y) = f x + f y)"
       
    63 
       
    64 definition countably_additive :: "('a, 'b) algebra_scheme \<Rightarrow> ('a set \<Rightarrow> ereal) \<Rightarrow> bool" where
       
    65   "countably_additive M f \<longleftrightarrow> (\<forall>A. range A \<subseteq> sets M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> sets M \<longrightarrow>
       
    66     (\<Sum>i. f (A i)) = f (\<Union>i. A i))"
       
    67 
       
    68 definition increasing where "increasing M f \<longleftrightarrow>
       
    69   (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<subseteq> y \<longrightarrow> f x \<le> f y)"
       
    70 
       
    71 definition subadditive where "subadditive M f \<longleftrightarrow>
    56 definition subadditive where "subadditive M f \<longleftrightarrow>
    72   (\<forall>x \<in> sets M. \<forall>y \<in> sets M. x \<inter> y = {} \<longrightarrow> f (x \<union> y) \<le> f x + f y)"
    57   (\<forall>x\<in>M. \<forall>y\<in>M. x \<inter> y = {} \<longrightarrow> f (x \<union> y) \<le> f x + f y)"
    73 
    58 
    74 definition countably_subadditive where "countably_subadditive M f \<longleftrightarrow>
    59 definition countably_subadditive where "countably_subadditive M f \<longleftrightarrow>
    75   (\<forall>A. range A \<subseteq> sets M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> sets M \<longrightarrow>
    60   (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow>
    76     (f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))))"
    61     (f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))))"
    77 
    62 
    78 definition lambda_system where "lambda_system M f = {l \<in> sets M.
    63 definition lambda_system where "lambda_system \<Omega> M f = {l \<in> M.
    79   \<forall>x \<in> sets M. f (l \<inter> x) + f ((space M - l) \<inter> x) = f x}"
    64   \<forall>x \<in> M. f (l \<inter> x) + f ((\<Omega> - l) \<inter> x) = f x}"
    80 
    65 
    81 definition outer_measure_space where "outer_measure_space M f \<longleftrightarrow>
    66 definition outer_measure_space where "outer_measure_space M f \<longleftrightarrow>
    82   positive M f \<and> increasing M f \<and> countably_subadditive M f"
    67   positive M f \<and> increasing M f \<and> countably_subadditive M f"
    83 
    68 
    84 definition measure_set where "measure_set M f X = {r.
    69 definition measure_set where "measure_set M f X = {r.
    85   \<exists>A. range A \<subseteq> sets M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) = r}"
    70   \<exists>A. range A \<subseteq> M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) = r}"
    86 
       
    87 locale measure_space = sigma_algebra M for M :: "('a, 'b) measure_space_scheme" +
       
    88   assumes measure_positive: "positive M (measure M)"
       
    89       and ca: "countably_additive M (measure M)"
       
    90 
       
    91 abbreviation (in measure_space) "\<mu> \<equiv> measure M"
       
    92 
       
    93 lemma (in measure_space)
       
    94   shows empty_measure[simp, intro]: "\<mu> {} = 0"
       
    95   and positive_measure[simp, intro!]: "\<And>A. A \<in> sets M \<Longrightarrow> 0 \<le> \<mu> A"
       
    96   using measure_positive unfolding positive_def by auto
       
    97 
       
    98 lemma increasingD:
       
    99   "increasing M f \<Longrightarrow> x \<subseteq> y \<Longrightarrow> x\<in>sets M \<Longrightarrow> y\<in>sets M \<Longrightarrow> f x \<le> f y"
       
   100   by (auto simp add: increasing_def)
       
   101 
    71 
   102 lemma subadditiveD:
    72 lemma subadditiveD:
   103   "subadditive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> sets M \<Longrightarrow> y \<in> sets M
    73   "subadditive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> M \<Longrightarrow> y \<in> M \<Longrightarrow> f (x \<union> y) \<le> f x + f y"
   104     \<Longrightarrow> f (x \<union> y) \<le> f x + f y"
       
   105   by (auto simp add: subadditive_def)
    74   by (auto simp add: subadditive_def)
   106 
    75 
   107 lemma additiveD:
       
   108   "additive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> sets M \<Longrightarrow> y \<in> sets M
       
   109     \<Longrightarrow> f (x \<union> y) = f x + f y"
       
   110   by (auto simp add: additive_def)
       
   111 
       
   112 lemma countably_additiveI:
       
   113   assumes "\<And>A x. range A \<subseteq> sets M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i. A i) \<in> sets M
       
   114     \<Longrightarrow> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
       
   115   shows "countably_additive M f"
       
   116   using assms by (simp add: countably_additive_def)
       
   117 
       
   118 section "Extend binary sets"
       
   119 
       
   120 lemma LIMSEQ_binaryset:
       
   121   assumes f: "f {} = 0"
       
   122   shows  "(\<lambda>n. \<Sum>i<n. f (binaryset A B i)) ----> f A + f B"
       
   123 proof -
       
   124   have "(\<lambda>n. \<Sum>i < Suc (Suc n). f (binaryset A B i)) = (\<lambda>n. f A + f B)"
       
   125     proof
       
   126       fix n
       
   127       show "(\<Sum>i < Suc (Suc n). f (binaryset A B i)) = f A + f B"
       
   128         by (induct n)  (auto simp add: binaryset_def f)
       
   129     qed
       
   130   moreover
       
   131   have "... ----> f A + f B" by (rule tendsto_const)
       
   132   ultimately
       
   133   have "(\<lambda>n. \<Sum>i< Suc (Suc n). f (binaryset A B i)) ----> f A + f B"
       
   134     by metis
       
   135   hence "(\<lambda>n. \<Sum>i< n+2. f (binaryset A B i)) ----> f A + f B"
       
   136     by simp
       
   137   thus ?thesis by (rule LIMSEQ_offset [where k=2])
       
   138 qed
       
   139 
       
   140 lemma binaryset_sums:
       
   141   assumes f: "f {} = 0"
       
   142   shows  "(\<lambda>n. f (binaryset A B n)) sums (f A + f B)"
       
   143     by (simp add: sums_def LIMSEQ_binaryset [where f=f, OF f] atLeast0LessThan)
       
   144 
       
   145 lemma suminf_binaryset_eq:
       
   146   fixes f :: "'a set \<Rightarrow> 'b::{comm_monoid_add, t2_space}"
       
   147   shows "f {} = 0 \<Longrightarrow> (\<Sum>n. f (binaryset A B n)) = f A + f B"
       
   148   by (metis binaryset_sums sums_unique)
       
   149 
       
   150 subsection {* Lambda Systems *}
    76 subsection {* Lambda Systems *}
   151 
    77 
   152 lemma (in algebra) lambda_system_eq:
    78 lemma (in algebra) lambda_system_eq:
   153   shows "lambda_system M f = {l \<in> sets M.
    79   shows "lambda_system \<Omega> M f = {l \<in> M. \<forall>x \<in> M. f (x \<inter> l) + f (x - l) = f x}"
   154     \<forall>x \<in> sets M. f (x \<inter> l) + f (x - l) = f x}"
    80 proof -
   155 proof -
    81   have [simp]: "!!l x. l \<in> M \<Longrightarrow> x \<in> M \<Longrightarrow> (\<Omega> - l) \<inter> x = x - l"
   156   have [simp]: "!!l x. l \<in> sets M \<Longrightarrow> x \<in> sets M \<Longrightarrow> (space M - l) \<inter> x = x - l"
       
   157     by (metis Int_Diff Int_absorb1 Int_commute sets_into_space)
    82     by (metis Int_Diff Int_absorb1 Int_commute sets_into_space)
   158   show ?thesis
    83   show ?thesis
   159     by (auto simp add: lambda_system_def) (metis Int_commute)+
    84     by (auto simp add: lambda_system_def) (metis Int_commute)+
   160 qed
    85 qed
   161 
    86 
   162 lemma (in algebra) lambda_system_empty:
    87 lemma (in algebra) lambda_system_empty:
   163   "positive M f \<Longrightarrow> {} \<in> lambda_system M f"
    88   "positive M f \<Longrightarrow> {} \<in> lambda_system \<Omega> M f"
   164   by (auto simp add: positive_def lambda_system_eq)
    89   by (auto simp add: positive_def lambda_system_eq)
   165 
    90 
   166 lemma lambda_system_sets:
    91 lemma lambda_system_sets:
   167   "x \<in> lambda_system M f \<Longrightarrow> x \<in> sets M"
    92   "x \<in> lambda_system \<Omega> M f \<Longrightarrow> x \<in> M"
   168   by (simp add: lambda_system_def)
    93   by (simp add: lambda_system_def)
   169 
    94 
   170 lemma (in algebra) lambda_system_Compl:
    95 lemma (in algebra) lambda_system_Compl:
   171   fixes f:: "'a set \<Rightarrow> ereal"
    96   fixes f:: "'a set \<Rightarrow> ereal"
   172   assumes x: "x \<in> lambda_system M f"
    97   assumes x: "x \<in> lambda_system \<Omega> M f"
   173   shows "space M - x \<in> lambda_system M f"
    98   shows "\<Omega> - x \<in> lambda_system \<Omega> M f"
   174 proof -
    99 proof -
   175   have "x \<subseteq> space M"
   100   have "x \<subseteq> \<Omega>"
   176     by (metis sets_into_space lambda_system_sets x)
   101     by (metis sets_into_space lambda_system_sets x)
   177   hence "space M - (space M - x) = x"
   102   hence "\<Omega> - (\<Omega> - x) = x"
   178     by (metis double_diff equalityE)
   103     by (metis double_diff equalityE)
   179   with x show ?thesis
   104   with x show ?thesis
   180     by (force simp add: lambda_system_def ac_simps)
   105     by (force simp add: lambda_system_def ac_simps)
   181 qed
   106 qed
   182 
   107 
   183 lemma (in algebra) lambda_system_Int:
   108 lemma (in algebra) lambda_system_Int:
   184   fixes f:: "'a set \<Rightarrow> ereal"
   109   fixes f:: "'a set \<Rightarrow> ereal"
   185   assumes xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
   110   assumes xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
   186   shows "x \<inter> y \<in> lambda_system M f"
   111   shows "x \<inter> y \<in> lambda_system \<Omega> M f"
   187 proof -
   112 proof -
   188   from xl yl show ?thesis
   113   from xl yl show ?thesis
   189   proof (auto simp add: positive_def lambda_system_eq Int)
   114   proof (auto simp add: positive_def lambda_system_eq Int)
   190     fix u
   115     fix u
   191     assume x: "x \<in> sets M" and y: "y \<in> sets M" and u: "u \<in> sets M"
   116     assume x: "x \<in> M" and y: "y \<in> M" and u: "u \<in> M"
   192        and fx: "\<forall>z\<in>sets M. f (z \<inter> x) + f (z - x) = f z"
   117        and fx: "\<forall>z\<in>M. f (z \<inter> x) + f (z - x) = f z"
   193        and fy: "\<forall>z\<in>sets M. f (z \<inter> y) + f (z - y) = f z"
   118        and fy: "\<forall>z\<in>M. f (z \<inter> y) + f (z - y) = f z"
   194     have "u - x \<inter> y \<in> sets M"
   119     have "u - x \<inter> y \<in> M"
   195       by (metis Diff Diff_Int Un u x y)
   120       by (metis Diff Diff_Int Un u x y)
   196     moreover
   121     moreover
   197     have "(u - (x \<inter> y)) \<inter> y = u \<inter> y - x" by blast
   122     have "(u - (x \<inter> y)) \<inter> y = u \<inter> y - x" by blast
   198     moreover
   123     moreover
   199     have "u - x \<inter> y - y = u - y" by blast
   124     have "u - x \<inter> y - y = u - y" by blast
   214   qed
   139   qed
   215 qed
   140 qed
   216 
   141 
   217 lemma (in algebra) lambda_system_Un:
   142 lemma (in algebra) lambda_system_Un:
   218   fixes f:: "'a set \<Rightarrow> ereal"
   143   fixes f:: "'a set \<Rightarrow> ereal"
   219   assumes xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
   144   assumes xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
   220   shows "x \<union> y \<in> lambda_system M f"
   145   shows "x \<union> y \<in> lambda_system \<Omega> M f"
   221 proof -
   146 proof -
   222   have "(space M - x) \<inter> (space M - y) \<in> sets M"
   147   have "(\<Omega> - x) \<inter> (\<Omega> - y) \<in> M"
   223     by (metis Diff_Un Un compl_sets lambda_system_sets xl yl)
   148     by (metis Diff_Un Un compl_sets lambda_system_sets xl yl)
   224   moreover
   149   moreover
   225   have "x \<union> y = space M - ((space M - x) \<inter> (space M - y))"
   150   have "x \<union> y = \<Omega> - ((\<Omega> - x) \<inter> (\<Omega> - y))"
   226     by auto (metis subsetD lambda_system_sets sets_into_space xl yl)+
   151     by auto (metis subsetD lambda_system_sets sets_into_space xl yl)+
   227   ultimately show ?thesis
   152   ultimately show ?thesis
   228     by (metis lambda_system_Compl lambda_system_Int xl yl)
   153     by (metis lambda_system_Compl lambda_system_Int xl yl)
   229 qed
   154 qed
   230 
   155 
   231 lemma (in algebra) lambda_system_algebra:
   156 lemma (in algebra) lambda_system_algebra:
   232   "positive M f \<Longrightarrow> algebra (M\<lparr>sets := lambda_system M f\<rparr>)"
   157   "positive M f \<Longrightarrow> algebra \<Omega> (lambda_system \<Omega> M f)"
   233   apply (auto simp add: algebra_iff_Un)
   158   apply (auto simp add: algebra_iff_Un)
   234   apply (metis lambda_system_sets set_mp sets_into_space)
   159   apply (metis lambda_system_sets set_mp sets_into_space)
   235   apply (metis lambda_system_empty)
   160   apply (metis lambda_system_empty)
   236   apply (metis lambda_system_Compl)
   161   apply (metis lambda_system_Compl)
   237   apply (metis lambda_system_Un)
   162   apply (metis lambda_system_Un)
   238   done
   163   done
   239 
   164 
   240 lemma (in algebra) lambda_system_strong_additive:
   165 lemma (in algebra) lambda_system_strong_additive:
   241   assumes z: "z \<in> sets M" and disj: "x \<inter> y = {}"
   166   assumes z: "z \<in> M" and disj: "x \<inter> y = {}"
   242       and xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
   167       and xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
   243   shows "f (z \<inter> (x \<union> y)) = f (z \<inter> x) + f (z \<inter> y)"
   168   shows "f (z \<inter> (x \<union> y)) = f (z \<inter> x) + f (z \<inter> y)"
   244 proof -
   169 proof -
   245   have "z \<inter> x = (z \<inter> (x \<union> y)) \<inter> x" using disj by blast
   170   have "z \<inter> x = (z \<inter> (x \<union> y)) \<inter> x" using disj by blast
   246   moreover
   171   moreover
   247   have "z \<inter> y = (z \<inter> (x \<union> y)) - x" using disj by blast
   172   have "z \<inter> y = (z \<inter> (x \<union> y)) - x" using disj by blast
   248   moreover
   173   moreover
   249   have "(z \<inter> (x \<union> y)) \<in> sets M"
   174   have "(z \<inter> (x \<union> y)) \<in> M"
   250     by (metis Int Un lambda_system_sets xl yl z)
   175     by (metis Int Un lambda_system_sets xl yl z)
   251   ultimately show ?thesis using xl yl
   176   ultimately show ?thesis using xl yl
   252     by (simp add: lambda_system_eq)
   177     by (simp add: lambda_system_eq)
   253 qed
   178 qed
   254 
   179 
   255 lemma (in algebra) lambda_system_additive:
   180 lemma (in algebra) lambda_system_additive: "additive (lambda_system \<Omega> M f) f"
   256      "additive (M (|sets := lambda_system M f|)) f"
       
   257 proof (auto simp add: additive_def)
   181 proof (auto simp add: additive_def)
   258   fix x and y
   182   fix x and y
   259   assume disj: "x \<inter> y = {}"
   183   assume disj: "x \<inter> y = {}"
   260      and xl: "x \<in> lambda_system M f" and yl: "y \<in> lambda_system M f"
   184      and xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
   261   hence  "x \<in> sets M" "y \<in> sets M" by (blast intro: lambda_system_sets)+
   185   hence  "x \<in> M" "y \<in> M" by (blast intro: lambda_system_sets)+
   262   thus "f (x \<union> y) = f x + f y"
   186   thus "f (x \<union> y) = f x + f y"
   263     using lambda_system_strong_additive [OF top disj xl yl]
   187     using lambda_system_strong_additive [OF top disj xl yl]
   264     by (simp add: Un)
   188     by (simp add: Un)
   265 qed
   189 qed
   266 
       
   267 lemma (in ring_of_sets) disjointed_additive:
       
   268   assumes f: "positive M f" "additive M f" and A: "range A \<subseteq> sets M" "incseq A"
       
   269   shows "(\<Sum>i\<le>n. f (disjointed A i)) = f (A n)"
       
   270 proof (induct n)
       
   271   case (Suc n)
       
   272   then have "(\<Sum>i\<le>Suc n. f (disjointed A i)) = f (A n) + f (disjointed A (Suc n))"
       
   273     by simp
       
   274   also have "\<dots> = f (A n \<union> disjointed A (Suc n))"
       
   275     using A by (subst f(2)[THEN additiveD]) (auto simp: disjointed_incseq)
       
   276   also have "A n \<union> disjointed A (Suc n) = A (Suc n)"
       
   277     using `incseq A` by (auto dest: incseq_SucD simp: disjointed_incseq)
       
   278   finally show ?case .
       
   279 qed simp
       
   280 
   190 
   281 lemma (in ring_of_sets) countably_subadditive_subadditive:
   191 lemma (in ring_of_sets) countably_subadditive_subadditive:
   282   assumes f: "positive M f" and cs: "countably_subadditive M f"
   192   assumes f: "positive M f" and cs: "countably_subadditive M f"
   283   shows  "subadditive M f"
   193   shows  "subadditive M f"
   284 proof (auto simp add: subadditive_def)
   194 proof (auto simp add: subadditive_def)
   285   fix x y
   195   fix x y
   286   assume x: "x \<in> sets M" and y: "y \<in> sets M" and "x \<inter> y = {}"
   196   assume x: "x \<in> M" and y: "y \<in> M" and "x \<inter> y = {}"
   287   hence "disjoint_family (binaryset x y)"
   197   hence "disjoint_family (binaryset x y)"
   288     by (auto simp add: disjoint_family_on_def binaryset_def)
   198     by (auto simp add: disjoint_family_on_def binaryset_def)
   289   hence "range (binaryset x y) \<subseteq> sets M \<longrightarrow>
   199   hence "range (binaryset x y) \<subseteq> M \<longrightarrow>
   290          (\<Union>i. binaryset x y i) \<in> sets M \<longrightarrow>
   200          (\<Union>i. binaryset x y i) \<in> M \<longrightarrow>
   291          f (\<Union>i. binaryset x y i) \<le> (\<Sum> n. f (binaryset x y n))"
   201          f (\<Union>i. binaryset x y i) \<le> (\<Sum> n. f (binaryset x y n))"
   292     using cs by (auto simp add: countably_subadditive_def)
   202     using cs by (auto simp add: countably_subadditive_def)
   293   hence "{x,y,{}} \<subseteq> sets M \<longrightarrow> x \<union> y \<in> sets M \<longrightarrow>
   203   hence "{x,y,{}} \<subseteq> M \<longrightarrow> x \<union> y \<in> M \<longrightarrow>
   294          f (x \<union> y) \<le> (\<Sum> n. f (binaryset x y n))"
   204          f (x \<union> y) \<le> (\<Sum> n. f (binaryset x y n))"
   295     by (simp add: range_binaryset_eq UN_binaryset_eq)
   205     by (simp add: range_binaryset_eq UN_binaryset_eq)
   296   thus "f (x \<union> y) \<le>  f x + f y" using f x y
   206   thus "f (x \<union> y) \<le>  f x + f y" using f x y
   297     by (auto simp add: Un o_def suminf_binaryset_eq positive_def)
   207     by (auto simp add: Un o_def suminf_binaryset_eq positive_def)
   298 qed
   208 qed
   299 
   209 
   300 lemma (in ring_of_sets) additive_sum:
       
   301   fixes A:: "nat \<Rightarrow> 'a set"
       
   302   assumes f: "positive M f" and ad: "additive M f" and "finite S"
       
   303       and A: "range A \<subseteq> sets M"
       
   304       and disj: "disjoint_family_on A S"
       
   305   shows  "(\<Sum>i\<in>S. f (A i)) = f (\<Union>i\<in>S. A i)"
       
   306 using `finite S` disj proof induct
       
   307   case empty show ?case using f by (simp add: positive_def)
       
   308 next
       
   309   case (insert s S)
       
   310   then have "A s \<inter> (\<Union>i\<in>S. A i) = {}"
       
   311     by (auto simp add: disjoint_family_on_def neq_iff)
       
   312   moreover
       
   313   have "A s \<in> sets M" using A by blast
       
   314   moreover have "(\<Union>i\<in>S. A i) \<in> sets M"
       
   315     using A `finite S` by auto
       
   316   moreover
       
   317   ultimately have "f (A s \<union> (\<Union>i\<in>S. A i)) = f (A s) + f(\<Union>i\<in>S. A i)"
       
   318     using ad UNION_in_sets A by (auto simp add: additive_def)
       
   319   with insert show ?case using ad disjoint_family_on_mono[of S "insert s S" A]
       
   320     by (auto simp add: additive_def subset_insertI)
       
   321 qed
       
   322 
       
   323 lemma (in algebra) increasing_additive_bound:
       
   324   fixes A:: "nat \<Rightarrow> 'a set" and  f :: "'a set \<Rightarrow> ereal"
       
   325   assumes f: "positive M f" and ad: "additive M f"
       
   326       and inc: "increasing M f"
       
   327       and A: "range A \<subseteq> sets M"
       
   328       and disj: "disjoint_family A"
       
   329   shows  "(\<Sum>i. f (A i)) \<le> f (space M)"
       
   330 proof (safe intro!: suminf_bound)
       
   331   fix N
       
   332   note disj_N = disjoint_family_on_mono[OF _ disj, of "{..<N}"]
       
   333   have "(\<Sum>i<N. f (A i)) = f (\<Union>i\<in>{..<N}. A i)"
       
   334     by (rule additive_sum [OF f ad _ A]) (auto simp: disj_N)
       
   335   also have "... \<le> f (space M)" using space_closed A
       
   336     by (intro increasingD[OF inc] finite_UN) auto
       
   337   finally show "(\<Sum>i<N. f (A i)) \<le> f (space M)" by simp
       
   338 qed (insert f A, auto simp: positive_def)
       
   339 
       
   340 lemma lambda_system_increasing:
   210 lemma lambda_system_increasing:
   341  "increasing M f \<Longrightarrow> increasing (M (|sets := lambda_system M f|)) f"
   211  "increasing M f \<Longrightarrow> increasing (lambda_system \<Omega> M f) f"
   342   by (simp add: increasing_def lambda_system_def)
   212   by (simp add: increasing_def lambda_system_def)
   343 
   213 
   344 lemma lambda_system_positive:
   214 lemma lambda_system_positive:
   345   "positive M f \<Longrightarrow> positive (M (|sets := lambda_system M f|)) f"
   215   "positive M f \<Longrightarrow> positive (lambda_system \<Omega> M f) f"
   346   by (simp add: positive_def lambda_system_def)
   216   by (simp add: positive_def lambda_system_def)
   347 
   217 
   348 lemma (in algebra) lambda_system_strong_sum:
   218 lemma (in algebra) lambda_system_strong_sum:
   349   fixes A:: "nat \<Rightarrow> 'a set" and f :: "'a set \<Rightarrow> ereal"
   219   fixes A:: "nat \<Rightarrow> 'a set" and f :: "'a set \<Rightarrow> ereal"
   350   assumes f: "positive M f" and a: "a \<in> sets M"
   220   assumes f: "positive M f" and a: "a \<in> M"
   351       and A: "range A \<subseteq> lambda_system M f"
   221       and A: "range A \<subseteq> lambda_system \<Omega> M f"
   352       and disj: "disjoint_family A"
   222       and disj: "disjoint_family A"
   353   shows  "(\<Sum>i = 0..<n. f (a \<inter>A i)) = f (a \<inter> (\<Union>i\<in>{0..<n}. A i))"
   223   shows  "(\<Sum>i = 0..<n. f (a \<inter>A i)) = f (a \<inter> (\<Union>i\<in>{0..<n}. A i))"
   354 proof (induct n)
   224 proof (induct n)
   355   case 0 show ?case using f by (simp add: positive_def)
   225   case 0 show ?case using f by (simp add: positive_def)
   356 next
   226 next
   357   case (Suc n)
   227   case (Suc n)
   358   have 2: "A n \<inter> UNION {0..<n} A = {}" using disj
   228   have 2: "A n \<inter> UNION {0..<n} A = {}" using disj
   359     by (force simp add: disjoint_family_on_def neq_iff)
   229     by (force simp add: disjoint_family_on_def neq_iff)
   360   have 3: "A n \<in> lambda_system M f" using A
   230   have 3: "A n \<in> lambda_system \<Omega> M f" using A
   361     by blast
   231     by blast
   362   interpret l: algebra "M\<lparr>sets := lambda_system M f\<rparr>"
   232   interpret l: algebra \<Omega> "lambda_system \<Omega> M f"
   363     using f by (rule lambda_system_algebra)
   233     using f by (rule lambda_system_algebra)
   364   have 4: "UNION {0..<n} A \<in> lambda_system M f"
   234   have 4: "UNION {0..<n} A \<in> lambda_system \<Omega> M f"
   365     using A l.UNION_in_sets by simp
   235     using A l.UNION_in_sets by simp
   366   from Suc.hyps show ?case
   236   from Suc.hyps show ?case
   367     by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4])
   237     by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4])
   368 qed
   238 qed
   369 
   239 
   370 lemma (in sigma_algebra) lambda_system_caratheodory:
   240 lemma (in sigma_algebra) lambda_system_caratheodory:
   371   assumes oms: "outer_measure_space M f"
   241   assumes oms: "outer_measure_space M f"
   372       and A: "range A \<subseteq> lambda_system M f"
   242       and A: "range A \<subseteq> lambda_system \<Omega> M f"
   373       and disj: "disjoint_family A"
   243       and disj: "disjoint_family A"
   374   shows  "(\<Union>i. A i) \<in> lambda_system M f \<and> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
   244   shows  "(\<Union>i. A i) \<in> lambda_system \<Omega> M f \<and> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
   375 proof -
   245 proof -
   376   have pos: "positive M f" and inc: "increasing M f"
   246   have pos: "positive M f" and inc: "increasing M f"
   377    and csa: "countably_subadditive M f"
   247    and csa: "countably_subadditive M f"
   378     by (metis oms outer_measure_space_def)+
   248     by (metis oms outer_measure_space_def)+
   379   have sa: "subadditive M f"
   249   have sa: "subadditive M f"
   380     by (metis countably_subadditive_subadditive csa pos)
   250     by (metis countably_subadditive_subadditive csa pos)
   381   have A': "range A \<subseteq> sets (M(|sets := lambda_system M f|))" using A
   251   have A': "\<And>S. A`S \<subseteq> (lambda_system \<Omega> M f)" using A
   382     by simp
   252     by auto
   383   interpret ls: algebra "M\<lparr>sets := lambda_system M f\<rparr>"
   253   interpret ls: algebra \<Omega> "lambda_system \<Omega> M f"
   384     using pos by (rule lambda_system_algebra)
   254     using pos by (rule lambda_system_algebra)
   385   have A'': "range A \<subseteq> sets M"
   255   have A'': "range A \<subseteq> M"
   386      by (metis A image_subset_iff lambda_system_sets)
   256      by (metis A image_subset_iff lambda_system_sets)
   387 
   257 
   388   have U_in: "(\<Union>i. A i) \<in> sets M"
   258   have U_in: "(\<Union>i. A i) \<in> M"
   389     by (metis A'' countable_UN)
   259     by (metis A'' countable_UN)
   390   have U_eq: "f (\<Union>i. A i) = (\<Sum>i. f (A i))"
   260   have U_eq: "f (\<Union>i. A i) = (\<Sum>i. f (A i))"
   391   proof (rule antisym)
   261   proof (rule antisym)
   392     show "f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))"
   262     show "f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))"
   393       using csa[unfolded countably_subadditive_def] A'' disj U_in by auto
   263       using csa[unfolded countably_subadditive_def] A'' disj U_in by auto
   394     have *: "\<And>i. 0 \<le> f (A i)" using pos A'' unfolding positive_def by auto
   264     have *: "\<And>i. 0 \<le> f (A i)" using pos A'' unfolding positive_def by auto
   395     have dis: "\<And>N. disjoint_family_on A {..<N}" by (intro disjoint_family_on_mono[OF _ disj]) auto
   265     have dis: "\<And>N. disjoint_family_on A {..<N}" by (intro disjoint_family_on_mono[OF _ disj]) auto
   396     show "(\<Sum>i. f (A i)) \<le> f (\<Union>i. A i)"
   266     show "(\<Sum>i. f (A i)) \<le> f (\<Union>i. A i)"
   397       using ls.additive_sum [OF lambda_system_positive[OF pos] lambda_system_additive _ A' dis]
   267       using ls.additive_sum [OF lambda_system_positive[OF pos] lambda_system_additive _ A' dis]
   398       using A''
   268       using A''
   399       by (intro suminf_bound[OF _ *]) (auto intro!: increasingD[OF inc] allI countable_UN)
   269       by (intro suminf_bound[OF _ *]) (auto intro!: increasingD[OF inc] countable_UN)
   400   qed
   270   qed
   401   {
   271   {
   402     fix a
   272     fix a
   403     assume a [iff]: "a \<in> sets M"
   273     assume a [iff]: "a \<in> M"
   404     have "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) = f a"
   274     have "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) = f a"
   405     proof -
   275     proof -
   406       show ?thesis
   276       show ?thesis
   407       proof (rule antisym)
   277       proof (rule antisym)
   408         have "range (\<lambda>i. a \<inter> A i) \<subseteq> sets M" using A''
   278         have "range (\<lambda>i. a \<inter> A i) \<subseteq> M" using A''
   409           by blast
   279           by blast
   410         moreover
   280         moreover
   411         have "disjoint_family (\<lambda>i. a \<inter> A i)" using disj
   281         have "disjoint_family (\<lambda>i. a \<inter> A i)" using disj
   412           by (auto simp add: disjoint_family_on_def)
   282           by (auto simp add: disjoint_family_on_def)
   413         moreover
   283         moreover
   414         have "a \<inter> (\<Union>i. A i) \<in> sets M"
   284         have "a \<inter> (\<Union>i. A i) \<in> M"
   415           by (metis Int U_in a)
   285           by (metis Int U_in a)
   416         ultimately
   286         ultimately
   417         have "f (a \<inter> (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i))"
   287         have "f (a \<inter> (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i))"
   418           using csa[unfolded countably_subadditive_def, rule_format, of "(\<lambda>i. a \<inter> A i)"]
   288           using csa[unfolded countably_subadditive_def, rule_format, of "(\<lambda>i. a \<inter> A i)"]
   419           by (simp add: o_def)
   289           by (simp add: o_def)
   422           by (rule add_right_mono)
   292           by (rule add_right_mono)
   423         moreover
   293         moreover
   424         have "(\<Sum>i. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
   294         have "(\<Sum>i. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
   425           proof (intro suminf_bound_add allI)
   295           proof (intro suminf_bound_add allI)
   426             fix n
   296             fix n
   427             have UNION_in: "(\<Union>i\<in>{0..<n}. A i) \<in> sets M"
   297             have UNION_in: "(\<Union>i\<in>{0..<n}. A i) \<in> M"
   428               by (metis A'' UNION_in_sets)
   298               by (metis A'' UNION_in_sets)
   429             have le_fa: "f (UNION {0..<n} A \<inter> a) \<le> f a" using A''
   299             have le_fa: "f (UNION {0..<n} A \<inter> a) \<le> f a" using A''
   430               by (blast intro: increasingD [OF inc] A'' UNION_in_sets)
   300               by (blast intro: increasingD [OF inc] A'' UNION_in_sets)
   431             have ls: "(\<Union>i\<in>{0..<n}. A i) \<in> lambda_system M f"
   301             have ls: "(\<Union>i\<in>{0..<n}. A i) \<in> lambda_system \<Omega> M f"
   432               using ls.UNION_in_sets by (simp add: A)
   302               using ls.UNION_in_sets by (simp add: A)
   433             hence eq_fa: "f a = f (a \<inter> (\<Union>i\<in>{0..<n}. A i)) + f (a - (\<Union>i\<in>{0..<n}. A i))"
   303             hence eq_fa: "f a = f (a \<inter> (\<Union>i\<in>{0..<n}. A i)) + f (a - (\<Union>i\<in>{0..<n}. A i))"
   434               by (simp add: lambda_system_eq UNION_in)
   304               by (simp add: lambda_system_eq UNION_in)
   435             have "f (a - (\<Union>i. A i)) \<le> f (a - (\<Union>i\<in>{0..<n}. A i))"
   305             have "f (a - (\<Union>i. A i)) \<le> f (a - (\<Union>i\<in>{0..<n}. A i))"
   436               by (blast intro: increasingD [OF inc] UNION_in U_in)
   306               by (blast intro: increasingD [OF inc] UNION_in U_in)
   437             thus "(\<Sum>i<n. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
   307             thus "(\<Sum>i<n. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
   438               by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono atLeast0LessThan[symmetric])
   308               by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono atLeast0LessThan[symmetric])
   439           next
   309           next
   440             have "\<And>i. a \<inter> A i \<in> sets M" using A'' by auto
   310             have "\<And>i. a \<inter> A i \<in> M" using A'' by auto
   441             then show "\<And>i. 0 \<le> f (a \<inter> A i)" using pos[unfolded positive_def] by auto
   311             then show "\<And>i. 0 \<le> f (a \<inter> A i)" using pos[unfolded positive_def] by auto
   442             have "\<And>i. a - (\<Union>i. A i) \<in> sets M" using A'' by auto
   312             have "\<And>i. a - (\<Union>i. A i) \<in> M" using A'' by auto
   443             then have "\<And>i. 0 \<le> f (a - (\<Union>i. A i))" using pos[unfolded positive_def] by auto
   313             then have "\<And>i. 0 \<le> f (a - (\<Union>i. A i))" using pos[unfolded positive_def] by auto
   444             then show "f (a - (\<Union>i. A i)) \<noteq> -\<infinity>" by auto
   314             then show "f (a - (\<Union>i. A i)) \<noteq> -\<infinity>" by auto
   445           qed
   315           qed
   446         ultimately show "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> f a"
   316         ultimately show "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> f a"
   447           by (rule order_trans)
   317           by (rule order_trans)
   458     by (simp add: lambda_system_eq sums_iff U_eq U_in)
   328     by (simp add: lambda_system_eq sums_iff U_eq U_in)
   459 qed
   329 qed
   460 
   330 
   461 lemma (in sigma_algebra) caratheodory_lemma:
   331 lemma (in sigma_algebra) caratheodory_lemma:
   462   assumes oms: "outer_measure_space M f"
   332   assumes oms: "outer_measure_space M f"
   463   shows "measure_space \<lparr> space = space M, sets = lambda_system M f, measure = f \<rparr>"
   333   defines "L \<equiv> lambda_system \<Omega> M f"
   464     (is "measure_space ?M")
   334   shows "measure_space \<Omega> L f"
   465 proof -
   335 proof -
   466   have pos: "positive M f"
   336   have pos: "positive M f"
   467     by (metis oms outer_measure_space_def)
   337     by (metis oms outer_measure_space_def)
   468   have alg: "algebra ?M"
   338   have alg: "algebra \<Omega> L"
   469     using lambda_system_algebra [of f, OF pos]
   339     using lambda_system_algebra [of f, OF pos]
   470     by (simp add: algebra_iff_Un)
   340     by (simp add: algebra_iff_Un L_def)
   471   then
   341   then
   472   have "sigma_algebra ?M"
   342   have "sigma_algebra \<Omega> L"
   473     using lambda_system_caratheodory [OF oms]
   343     using lambda_system_caratheodory [OF oms]
   474     by (simp add: sigma_algebra_disjoint_iff)
   344     by (simp add: sigma_algebra_disjoint_iff L_def)
   475   moreover
   345   moreover
   476   have "measure_space_axioms ?M"
   346   have "countably_additive L f" "positive L f"
   477     using pos lambda_system_caratheodory [OF oms]
   347     using pos lambda_system_caratheodory [OF oms]
   478     by (simp add: measure_space_axioms_def positive_def lambda_system_sets
   348     by (auto simp add: lambda_system_sets L_def countably_additive_def positive_def)
   479                   countably_additive_def o_def)
       
   480   ultimately
   349   ultimately
   481   show ?thesis
   350   show ?thesis
   482     by (simp add: measure_space_def)
   351     using pos by (simp add: measure_space_def)
   483 qed
       
   484 
       
   485 lemma (in ring_of_sets) additive_increasing:
       
   486   assumes posf: "positive M f" and addf: "additive M f"
       
   487   shows "increasing M f"
       
   488 proof (auto simp add: increasing_def)
       
   489   fix x y
       
   490   assume xy: "x \<in> sets M" "y \<in> sets M" "x \<subseteq> y"
       
   491   then have "y - x \<in> sets M" by auto
       
   492   then have "0 \<le> f (y-x)" using posf[unfolded positive_def] by auto
       
   493   then have "f x + 0 \<le> f x + f (y-x)" by (intro add_left_mono) auto
       
   494   also have "... = f (x \<union> (y-x))" using addf
       
   495     by (auto simp add: additive_def) (metis Diff_disjoint Un_Diff_cancel Diff xy(1,2))
       
   496   also have "... = f y"
       
   497     by (metis Un_Diff_cancel Un_absorb1 xy(3))
       
   498   finally show "f x \<le> f y" by simp
       
   499 qed
       
   500 
       
   501 lemma (in ring_of_sets) countably_additive_additive:
       
   502   assumes posf: "positive M f" and ca: "countably_additive M f"
       
   503   shows "additive M f"
       
   504 proof (auto simp add: additive_def)
       
   505   fix x y
       
   506   assume x: "x \<in> sets M" and y: "y \<in> sets M" and "x \<inter> y = {}"
       
   507   hence "disjoint_family (binaryset x y)"
       
   508     by (auto simp add: disjoint_family_on_def binaryset_def)
       
   509   hence "range (binaryset x y) \<subseteq> sets M \<longrightarrow>
       
   510          (\<Union>i. binaryset x y i) \<in> sets M \<longrightarrow>
       
   511          f (\<Union>i. binaryset x y i) = (\<Sum> n. f (binaryset x y n))"
       
   512     using ca
       
   513     by (simp add: countably_additive_def)
       
   514   hence "{x,y,{}} \<subseteq> sets M \<longrightarrow> x \<union> y \<in> sets M \<longrightarrow>
       
   515          f (x \<union> y) = (\<Sum>n. f (binaryset x y n))"
       
   516     by (simp add: range_binaryset_eq UN_binaryset_eq)
       
   517   thus "f (x \<union> y) = f x + f y" using posf x y
       
   518     by (auto simp add: Un suminf_binaryset_eq positive_def)
       
   519 qed
   352 qed
   520 
   353 
   521 lemma inf_measure_nonempty:
   354 lemma inf_measure_nonempty:
   522   assumes f: "positive M f" and b: "b \<in> sets M" and a: "a \<subseteq> b" "{} \<in> sets M"
   355   assumes f: "positive M f" and b: "b \<in> M" and a: "a \<subseteq> b" "{} \<in> M"
   523   shows "f b \<in> measure_set M f a"
   356   shows "f b \<in> measure_set M f a"
   524 proof -
   357 proof -
   525   let ?A = "\<lambda>i::nat. (if i = 0 then b else {})"
   358   let ?A = "\<lambda>i::nat. (if i = 0 then b else {})"
   526   have "(\<Sum>i. f (?A i)) = (\<Sum>i<1::nat. f (?A i))"
   359   have "(\<Sum>i. f (?A i)) = (\<Sum>i<1::nat. f (?A i))"
   527     by (rule suminf_finite) (simp add: f[unfolded positive_def])
   360     by (rule suminf_finite) (simp add: f[unfolded positive_def])
   532              simp: measure_set_def disjoint_family_on_def split_if_mem2 comp_def)
   365              simp: measure_set_def disjoint_family_on_def split_if_mem2 comp_def)
   533 qed
   366 qed
   534 
   367 
   535 lemma (in ring_of_sets) inf_measure_agrees:
   368 lemma (in ring_of_sets) inf_measure_agrees:
   536   assumes posf: "positive M f" and ca: "countably_additive M f"
   369   assumes posf: "positive M f" and ca: "countably_additive M f"
   537       and s: "s \<in> sets M"
   370       and s: "s \<in> M"
   538   shows "Inf (measure_set M f s) = f s"
   371   shows "Inf (measure_set M f s) = f s"
   539   unfolding Inf_ereal_def
   372   unfolding Inf_ereal_def
   540 proof (safe intro!: Greatest_equality)
   373 proof (safe intro!: Greatest_equality)
   541   fix z
   374   fix z
   542   assume z: "z \<in> measure_set M f s"
   375   assume z: "z \<in> measure_set M f s"
   543   from this obtain A where
   376   from this obtain A where
   544     A: "range A \<subseteq> sets M" and disj: "disjoint_family A"
   377     A: "range A \<subseteq> M" and disj: "disjoint_family A"
   545     and "s \<subseteq> (\<Union>x. A x)" and si: "(\<Sum>i. f (A i)) = z"
   378     and "s \<subseteq> (\<Union>x. A x)" and si: "(\<Sum>i. f (A i)) = z"
   546     by (auto simp add: measure_set_def comp_def)
   379     by (auto simp add: measure_set_def comp_def)
   547   hence seq: "s = (\<Union>i. A i \<inter> s)" by blast
   380   hence seq: "s = (\<Union>i. A i \<inter> s)" by blast
   548   have inc: "increasing M f"
   381   have inc: "increasing M f"
   549     by (metis additive_increasing ca countably_additive_additive posf)
   382     by (metis additive_increasing ca countably_additive_additive posf)
   550   have sums: "(\<Sum>i. f (A i \<inter> s)) = f (\<Union>i. A i \<inter> s)"
   383   have sums: "(\<Sum>i. f (A i \<inter> s)) = f (\<Union>i. A i \<inter> s)"
   551     proof (rule ca[unfolded countably_additive_def, rule_format])
   384     proof (rule ca[unfolded countably_additive_def, rule_format])
   552       show "range (\<lambda>n. A n \<inter> s) \<subseteq> sets M" using A s
   385       show "range (\<lambda>n. A n \<inter> s) \<subseteq> M" using A s
   553         by blast
   386         by blast
   554       show "disjoint_family (\<lambda>n. A n \<inter> s)" using disj
   387       show "disjoint_family (\<lambda>n. A n \<inter> s)" using disj
   555         by (auto simp add: disjoint_family_on_def)
   388         by (auto simp add: disjoint_family_on_def)
   556       show "(\<Union>i. A i \<inter> s) \<in> sets M" using A s
   389       show "(\<Union>i. A i \<inter> s) \<in> M" using A s
   557         by (metis UN_extend_simps(4) s seq)
   390         by (metis UN_extend_simps(4) s seq)
   558     qed
   391     qed
   559   hence "f s = (\<Sum>i. f (A i \<inter> s))"
   392   hence "f s = (\<Sum>i. f (A i \<inter> s))"
   560     using seq [symmetric] by (simp add: sums_iff)
   393     using seq [symmetric] by (simp add: sums_iff)
   561   also have "... \<le> (\<Sum>i. f (A i))"
   394   also have "... \<le> (\<Sum>i. f (A i))"
   562     proof (rule suminf_le_pos)
   395     proof (rule suminf_le_pos)
   563       fix n show "f (A n \<inter> s) \<le> f (A n)" using A s
   396       fix n show "f (A n \<inter> s) \<le> f (A n)" using A s
   564         by (force intro: increasingD [OF inc])
   397         by (force intro: increasingD [OF inc])
   565       fix N have "A N \<inter> s \<in> sets M"  using A s by auto
   398       fix N have "A N \<inter> s \<in> M"  using A s by auto
   566       then show "0 \<le> f (A N \<inter> s)" using posf unfolding positive_def by auto
   399       then show "0 \<le> f (A N \<inter> s)" using posf unfolding positive_def by auto
   567     qed
   400     qed
   568   also have "... = z" by (rule si)
   401   also have "... = z" by (rule si)
   569   finally show "f s \<le> z" .
   402   finally show "f s \<le> z" .
   570 next
   403 next
   576 
   409 
   577 lemma measure_set_pos:
   410 lemma measure_set_pos:
   578   assumes posf: "positive M f" "r \<in> measure_set M f X"
   411   assumes posf: "positive M f" "r \<in> measure_set M f X"
   579   shows "0 \<le> r"
   412   shows "0 \<le> r"
   580 proof -
   413 proof -
   581   obtain A where "range A \<subseteq> sets M" and r: "r = (\<Sum>i. f (A i))"
   414   obtain A where "range A \<subseteq> M" and r: "r = (\<Sum>i. f (A i))"
   582     using `r \<in> measure_set M f X` unfolding measure_set_def by auto
   415     using `r \<in> measure_set M f X` unfolding measure_set_def by auto
   583   then show "0 \<le> r" using posf unfolding r positive_def
   416   then show "0 \<le> r" using posf unfolding r positive_def
   584     by (intro suminf_0_le) auto
   417     by (intro suminf_0_le) auto
   585 qed
   418 qed
   586 
   419 
   591   fix r assume "r \<in> measure_set M f X" with posf show "0 \<le> r"
   424   fix r assume "r \<in> measure_set M f X" with posf show "0 \<le> r"
   592     by (rule measure_set_pos)
   425     by (rule measure_set_pos)
   593 qed
   426 qed
   594 
   427 
   595 lemma inf_measure_empty:
   428 lemma inf_measure_empty:
   596   assumes posf: "positive M f" and "{} \<in> sets M"
   429   assumes posf: "positive M f" and "{} \<in> M"
   597   shows "Inf (measure_set M f {}) = 0"
   430   shows "Inf (measure_set M f {}) = 0"
   598 proof (rule antisym)
   431 proof (rule antisym)
   599   show "Inf (measure_set M f {}) \<le> 0"
   432   show "Inf (measure_set M f {}) \<le> 0"
   600     by (metis complete_lattice_class.Inf_lower `{} \<in> sets M`
   433     by (metis complete_lattice_class.Inf_lower `{} \<in> M`
   601               inf_measure_nonempty[OF posf] subset_refl posf[unfolded positive_def])
   434               inf_measure_nonempty[OF posf] subset_refl posf[unfolded positive_def])
   602 qed (rule inf_measure_pos[OF posf])
   435 qed (rule inf_measure_pos[OF posf])
   603 
   436 
   604 lemma (in ring_of_sets) inf_measure_positive:
   437 lemma (in ring_of_sets) inf_measure_positive:
   605   assumes p: "positive M f" and "{} \<in> sets M"
   438   assumes p: "positive M f" and "{} \<in> M"
   606   shows "positive M (\<lambda>x. Inf (measure_set M f x))"
   439   shows "positive M (\<lambda>x. Inf (measure_set M f x))"
   607 proof (unfold positive_def, intro conjI ballI)
   440 proof (unfold positive_def, intro conjI ballI)
   608   show "Inf (measure_set M f {}) = 0" using inf_measure_empty[OF assms] by auto
   441   show "Inf (measure_set M f {}) = 0" using inf_measure_empty[OF assms] by auto
   609   fix A assume "A \<in> sets M"
   442   fix A assume "A \<in> M"
   610 qed (rule inf_measure_pos[OF p])
   443 qed (rule inf_measure_pos[OF p])
   611 
   444 
   612 lemma (in ring_of_sets) inf_measure_increasing:
   445 lemma (in ring_of_sets) inf_measure_increasing:
   613   assumes posf: "positive M f"
   446   assumes posf: "positive M f"
   614   shows "increasing \<lparr> space = space M, sets = Pow (space M) \<rparr>
   447   shows "increasing (Pow \<Omega>) (\<lambda>x. Inf (measure_set M f x))"
   615                     (\<lambda>x. Inf (measure_set M f x))"
       
   616 apply (clarsimp simp add: increasing_def)
   448 apply (clarsimp simp add: increasing_def)
   617 apply (rule complete_lattice_class.Inf_greatest)
   449 apply (rule complete_lattice_class.Inf_greatest)
   618 apply (rule complete_lattice_class.Inf_lower)
   450 apply (rule complete_lattice_class.Inf_lower)
   619 apply (clarsimp simp add: measure_set_def, rule_tac x=A in exI, blast)
   451 apply (clarsimp simp add: measure_set_def, rule_tac x=A in exI, blast)
   620 done
   452 done
   621 
   453 
   622 lemma (in ring_of_sets) inf_measure_le:
   454 lemma (in ring_of_sets) inf_measure_le:
   623   assumes posf: "positive M f" and inc: "increasing M f"
   455   assumes posf: "positive M f" and inc: "increasing M f"
   624       and x: "x \<in> {r . \<exists>A. range A \<subseteq> sets M \<and> s \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) = r}"
   456       and x: "x \<in> {r . \<exists>A. range A \<subseteq> M \<and> s \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) = r}"
   625   shows "Inf (measure_set M f s) \<le> x"
   457   shows "Inf (measure_set M f s) \<le> x"
   626 proof -
   458 proof -
   627   obtain A where A: "range A \<subseteq> sets M" and ss: "s \<subseteq> (\<Union>i. A i)"
   459   obtain A where A: "range A \<subseteq> M" and ss: "s \<subseteq> (\<Union>i. A i)"
   628              and xeq: "(\<Sum>i. f (A i)) = x"
   460              and xeq: "(\<Sum>i. f (A i)) = x"
   629     using x by auto
   461     using x by auto
   630   have dA: "range (disjointed A) \<subseteq> sets M"
   462   have dA: "range (disjointed A) \<subseteq> M"
   631     by (metis A range_disjointed_sets)
   463     by (metis A range_disjointed_sets)
   632   have "\<forall>n. f (disjointed A n) \<le> f (A n)"
   464   have "\<forall>n. f (disjointed A n) \<le> f (A n)"
   633     by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset A comp_def)
   465     by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset A comp_def)
   634   moreover have "\<forall>i. 0 \<le> f (disjointed A i)"
   466   moreover have "\<forall>i. 0 \<le> f (disjointed A i)"
   635     using posf dA unfolding positive_def by auto
   467     using posf dA unfolding positive_def by auto
   646     by (blast intro: y order_trans [OF _ ley] posf complete_lattice_class.Inf_lower)
   478     by (blast intro: y order_trans [OF _ ley] posf complete_lattice_class.Inf_lower)
   647 qed
   479 qed
   648 
   480 
   649 lemma (in ring_of_sets) inf_measure_close:
   481 lemma (in ring_of_sets) inf_measure_close:
   650   fixes e :: ereal
   482   fixes e :: ereal
   651   assumes posf: "positive M f" and e: "0 < e" and ss: "s \<subseteq> (space M)" and "Inf (measure_set M f s) \<noteq> \<infinity>"
   483   assumes posf: "positive M f" and e: "0 < e" and ss: "s \<subseteq> (\<Omega>)" and "Inf (measure_set M f s) \<noteq> \<infinity>"
   652   shows "\<exists>A. range A \<subseteq> sets M \<and> disjoint_family A \<and> s \<subseteq> (\<Union>i. A i) \<and>
   484   shows "\<exists>A. range A \<subseteq> M \<and> disjoint_family A \<and> s \<subseteq> (\<Union>i. A i) \<and>
   653                (\<Sum>i. f (A i)) \<le> Inf (measure_set M f s) + e"
   485                (\<Sum>i. f (A i)) \<le> Inf (measure_set M f s) + e"
   654 proof -
   486 proof -
   655   from `Inf (measure_set M f s) \<noteq> \<infinity>` have fin: "\<bar>Inf (measure_set M f s)\<bar> \<noteq> \<infinity>"
   487   from `Inf (measure_set M f s) \<noteq> \<infinity>` have fin: "\<bar>Inf (measure_set M f s)\<bar> \<noteq> \<infinity>"
   656     using inf_measure_pos[OF posf, of s] by auto
   488     using inf_measure_pos[OF posf, of s] by auto
   657   obtain l where "l \<in> measure_set M f s" "l \<le> Inf (measure_set M f s) + e"
   489   obtain l where "l \<in> measure_set M f s" "l \<le> Inf (measure_set M f s) + e"
   660     by (auto intro!: exI[of _ l] simp: measure_set_def comp_def)
   492     by (auto intro!: exI[of _ l] simp: measure_set_def comp_def)
   661 qed
   493 qed
   662 
   494 
   663 lemma (in ring_of_sets) inf_measure_countably_subadditive:
   495 lemma (in ring_of_sets) inf_measure_countably_subadditive:
   664   assumes posf: "positive M f" and inc: "increasing M f"
   496   assumes posf: "positive M f" and inc: "increasing M f"
   665   shows "countably_subadditive (| space = space M, sets = Pow (space M) |)
   497   shows "countably_subadditive (Pow \<Omega>) (\<lambda>x. Inf (measure_set M f x))"
   666                   (\<lambda>x. Inf (measure_set M f x))"
       
   667 proof (simp add: countably_subadditive_def, safe)
   498 proof (simp add: countably_subadditive_def, safe)
   668   fix A :: "nat \<Rightarrow> 'a set"
   499   fix A :: "nat \<Rightarrow> 'a set"
   669   let ?outer = "\<lambda>B. Inf (measure_set M f B)"
   500   let ?outer = "\<lambda>B. Inf (measure_set M f B)"
   670   assume A: "range A \<subseteq> Pow (space M)"
   501   assume A: "range A \<subseteq> Pow (\<Omega>)"
   671      and disj: "disjoint_family A"
   502      and disj: "disjoint_family A"
   672      and sb: "(\<Union>i. A i) \<subseteq> space M"
   503      and sb: "(\<Union>i. A i) \<subseteq> \<Omega>"
   673 
   504 
   674   { fix e :: ereal assume e: "0 < e" and "\<forall>i. ?outer (A i) \<noteq> \<infinity>"
   505   { fix e :: ereal assume e: "0 < e" and "\<forall>i. ?outer (A i) \<noteq> \<infinity>"
   675     hence "\<exists>BB. \<forall>n. range (BB n) \<subseteq> sets M \<and> disjoint_family (BB n) \<and>
   506     hence "\<exists>BB. \<forall>n. range (BB n) \<subseteq> M \<and> disjoint_family (BB n) \<and>
   676         A n \<subseteq> (\<Union>i. BB n i) \<and> (\<Sum>i. f (BB n i)) \<le> ?outer (A n) + e * (1/2)^(Suc n)"
   507         A n \<subseteq> (\<Union>i. BB n i) \<and> (\<Sum>i. f (BB n i)) \<le> ?outer (A n) + e * (1/2)^(Suc n)"
   677       apply (safe intro!: choice inf_measure_close [of f, OF posf])
   508       apply (safe intro!: choice inf_measure_close [of f, OF posf])
   678       using e sb by (auto simp: ereal_zero_less_0_iff one_ereal_def)
   509       using e sb by (auto simp: ereal_zero_less_0_iff one_ereal_def)
   679     then obtain BB
   510     then obtain BB
   680       where BB: "\<And>n. (range (BB n) \<subseteq> sets M)"
   511       where BB: "\<And>n. (range (BB n) \<subseteq> M)"
   681       and disjBB: "\<And>n. disjoint_family (BB n)"
   512       and disjBB: "\<And>n. disjoint_family (BB n)"
   682       and sbBB: "\<And>n. A n \<subseteq> (\<Union>i. BB n i)"
   513       and sbBB: "\<And>n. A n \<subseteq> (\<Union>i. BB n i)"
   683       and BBle: "\<And>n. (\<Sum>i. f (BB n i)) \<le> ?outer (A n) + e * (1/2)^(Suc n)"
   514       and BBle: "\<And>n. (\<Sum>i. f (BB n i)) \<le> ?outer (A n) + e * (1/2)^(Suc n)"
   684       by auto blast
   515       by auto blast
   685     have sll: "(\<Sum>n. \<Sum>i. (f (BB n i))) \<le> (\<Sum>n. ?outer (A n)) + e"
   516     have sll: "(\<Sum>n. \<Sum>i. (f (BB n i))) \<le> (\<Sum>n. ?outer (A n)) + e"
   695         using sum_eq_1 inf_measure_pos[OF posf] e
   526         using sum_eq_1 inf_measure_pos[OF posf] e
   696         by (subst suminf_add_ereal) (auto simp add: ereal_zero_le_0_iff)
   527         by (subst suminf_add_ereal) (auto simp add: ereal_zero_le_0_iff)
   697       finally show ?thesis .
   528       finally show ?thesis .
   698     qed
   529     qed
   699     def C \<equiv> "(split BB) o prod_decode"
   530     def C \<equiv> "(split BB) o prod_decode"
   700     have C: "!!n. C n \<in> sets M"
   531     have C: "!!n. C n \<in> M"
   701       apply (rule_tac p="prod_decode n" in PairE)
   532       apply (rule_tac p="prod_decode n" in PairE)
   702       apply (simp add: C_def)
   533       apply (simp add: C_def)
   703       apply (metis BB subsetD rangeI)
   534       apply (metis BB subsetD rangeI)
   704       done
   535       done
   705     have sbC: "(\<Union>i. A i) \<subseteq> (\<Union>i. C i)"
   536     have sbC: "(\<Union>i. A i) \<subseteq> (\<Union>i. C i)"
   742     then show ?thesis by simp
   573     then show ?thesis by simp
   743   qed
   574   qed
   744 qed
   575 qed
   745 
   576 
   746 lemma (in ring_of_sets) inf_measure_outer:
   577 lemma (in ring_of_sets) inf_measure_outer:
   747   "\<lbrakk> positive M f ; increasing M f \<rbrakk>
   578   "\<lbrakk> positive M f ; increasing M f \<rbrakk> \<Longrightarrow>
   748    \<Longrightarrow> outer_measure_space \<lparr> space = space M, sets = Pow (space M) \<rparr>
   579     outer_measure_space (Pow \<Omega>) (\<lambda>x. Inf (measure_set M f x))"
   749                           (\<lambda>x. Inf (measure_set M f x))"
       
   750   using inf_measure_pos[of M f]
   580   using inf_measure_pos[of M f]
   751   by (simp add: outer_measure_space_def inf_measure_empty
   581   by (simp add: outer_measure_space_def inf_measure_empty
   752                 inf_measure_increasing inf_measure_countably_subadditive positive_def)
   582                 inf_measure_increasing inf_measure_countably_subadditive positive_def)
   753 
   583 
   754 lemma (in ring_of_sets) algebra_subset_lambda_system:
   584 lemma (in ring_of_sets) algebra_subset_lambda_system:
   755   assumes posf: "positive M f" and inc: "increasing M f"
   585   assumes posf: "positive M f" and inc: "increasing M f"
   756       and add: "additive M f"
   586       and add: "additive M f"
   757   shows "sets M \<subseteq> lambda_system \<lparr> space = space M, sets = Pow (space M) \<rparr>
   587   shows "M \<subseteq> lambda_system \<Omega> (Pow \<Omega>) (\<lambda>x. Inf (measure_set M f x))"
   758                                 (\<lambda>x. Inf (measure_set M f x))"
       
   759 proof (auto dest: sets_into_space
   588 proof (auto dest: sets_into_space
   760             simp add: algebra.lambda_system_eq [OF algebra_Pow])
   589             simp add: algebra.lambda_system_eq [OF algebra_Pow])
   761   fix x s
   590   fix x s
   762   assume x: "x \<in> sets M"
   591   assume x: "x \<in> M"
   763      and s: "s \<subseteq> space M"
   592      and s: "s \<subseteq> \<Omega>"
   764   have [simp]: "!!x. x \<in> sets M \<Longrightarrow> s \<inter> (space M - x) = s-x" using s
   593   have [simp]: "!!x. x \<in> M \<Longrightarrow> s \<inter> (\<Omega> - x) = s-x" using s
   765     by blast
   594     by blast
   766   have "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
   595   have "Inf (measure_set M f (s\<inter>x)) + Inf (measure_set M f (s-x))
   767         \<le> Inf (measure_set M f s)"
   596         \<le> Inf (measure_set M f s)"
   768   proof cases
   597   proof cases
   769     assume "Inf (measure_set M f s) = \<infinity>" then show ?thesis by simp
   598     assume "Inf (measure_set M f s) = \<infinity>" then show ?thesis by simp
   772     then have "measure_set M f s \<noteq> {}"
   601     then have "measure_set M f s \<noteq> {}"
   773       by (auto simp: top_ereal_def)
   602       by (auto simp: top_ereal_def)
   774     show ?thesis
   603     show ?thesis
   775     proof (rule complete_lattice_class.Inf_greatest)
   604     proof (rule complete_lattice_class.Inf_greatest)
   776       fix r assume "r \<in> measure_set M f s"
   605       fix r assume "r \<in> measure_set M f s"
   777       then obtain A where A: "disjoint_family A" "range A \<subseteq> sets M" "s \<subseteq> (\<Union>i. A i)"
   606       then obtain A where A: "disjoint_family A" "range A \<subseteq> M" "s \<subseteq> (\<Union>i. A i)"
   778         and r: "r = (\<Sum>i. f (A i))" unfolding measure_set_def by auto
   607         and r: "r = (\<Sum>i. f (A i))" unfolding measure_set_def by auto
   779       have "Inf (measure_set M f (s \<inter> x)) \<le> (\<Sum>i. f (A i \<inter> x))"
   608       have "Inf (measure_set M f (s \<inter> x)) \<le> (\<Sum>i. f (A i \<inter> x))"
   780         unfolding measure_set_def
   609         unfolding measure_set_def
   781       proof (safe intro!: complete_lattice_class.Inf_lower exI[of _ "\<lambda>i. A i \<inter> x"])
   610       proof (safe intro!: complete_lattice_class.Inf_lower exI[of _ "\<lambda>i. A i \<inter> x"])
   782         from A(1) show "disjoint_family (\<lambda>i. A i \<inter> x)"
   611         from A(1) show "disjoint_family (\<lambda>i. A i \<inter> x)"
   820         = Inf (measure_set M f s)"
   649         = Inf (measure_set M f s)"
   821     by (rule order_antisym)
   650     by (rule order_antisym)
   822 qed
   651 qed
   823 
   652 
   824 lemma measure_down:
   653 lemma measure_down:
   825   "measure_space N \<Longrightarrow> sigma_algebra M \<Longrightarrow> sets M \<subseteq> sets N \<Longrightarrow> measure N = measure M \<Longrightarrow> measure_space M"
   654   "measure_space \<Omega> N \<mu> \<Longrightarrow> sigma_algebra \<Omega> M \<Longrightarrow> M \<subseteq> N \<Longrightarrow> measure_space \<Omega> M \<mu>"
   826   by (simp add: measure_space_def measure_space_axioms_def positive_def
   655   by (simp add: measure_space_def positive_def countably_additive_def)
   827                 countably_additive_def)
       
   828      blast
   656      blast
   829 
   657 
   830 theorem (in ring_of_sets) caratheodory:
   658 theorem (in ring_of_sets) caratheodory:
   831   assumes posf: "positive M f" and ca: "countably_additive M f"
   659   assumes posf: "positive M f" and ca: "countably_additive M f"
   832   shows "\<exists>\<mu> :: 'a set \<Rightarrow> ereal. (\<forall>s \<in> sets M. \<mu> s = f s) \<and>
   660   shows "\<exists>\<mu> :: 'a set \<Rightarrow> ereal. (\<forall>s \<in> M. \<mu> s = f s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
   833             measure_space \<lparr> space = space M, sets = sets (sigma M), measure = \<mu> \<rparr>"
       
   834 proof -
   661 proof -
   835   have inc: "increasing M f"
   662   have inc: "increasing M f"
   836     by (metis additive_increasing ca countably_additive_additive posf)
   663     by (metis additive_increasing ca countably_additive_additive posf)
   837   let ?infm = "(\<lambda>x. Inf (measure_set M f x))"
   664   let ?infm = "(\<lambda>x. Inf (measure_set M f x))"
   838   def ls \<equiv> "lambda_system (|space = space M, sets = Pow (space M)|) ?infm"
   665   def ls \<equiv> "lambda_system \<Omega> (Pow \<Omega>) ?infm"
   839   have mls: "measure_space \<lparr>space = space M, sets = ls, measure = ?infm\<rparr>"
   666   have mls: "measure_space \<Omega> ls ?infm"
   840     using sigma_algebra.caratheodory_lemma
   667     using sigma_algebra.caratheodory_lemma
   841             [OF sigma_algebra_Pow  inf_measure_outer [OF posf inc]]
   668             [OF sigma_algebra_Pow  inf_measure_outer [OF posf inc]]
   842     by (simp add: ls_def)
   669     by (simp add: ls_def)
   843   hence sls: "sigma_algebra (|space = space M, sets = ls, measure = ?infm|)"
   670   hence sls: "sigma_algebra \<Omega> ls"
   844     by (simp add: measure_space_def)
   671     by (simp add: measure_space_def)
   845   have "sets M \<subseteq> ls"
   672   have "M \<subseteq> ls"
   846     by (simp add: ls_def)
   673     by (simp add: ls_def)
   847        (metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
   674        (metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
   848   hence sgs_sb: "sigma_sets (space M) (sets M) \<subseteq> ls"
   675   hence sgs_sb: "sigma_sets (\<Omega>) (M) \<subseteq> ls"
   849     using sigma_algebra.sigma_sets_subset [OF sls, of "sets M"]
   676     using sigma_algebra.sigma_sets_subset [OF sls, of "M"]
   850     by simp
   677     by simp
   851   have "measure_space \<lparr> space = space M, sets = sets (sigma M), measure = ?infm \<rparr>"
   678   have "measure_space \<Omega> (sigma_sets \<Omega> M) ?infm"
   852     unfolding sigma_def
       
   853     by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets)
   679     by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets)
   854        (simp_all add: sgs_sb space_closed)
   680        (simp_all add: sgs_sb space_closed)
   855   thus ?thesis using inf_measure_agrees [OF posf ca]
   681   thus ?thesis using inf_measure_agrees [OF posf ca]
   856     by (intro exI[of _ ?infm]) auto
   682     by (intro exI[of _ ?infm]) auto
   857 qed
   683 qed
   859 subsubsection {*Alternative instances of caratheodory*}
   685 subsubsection {*Alternative instances of caratheodory*}
   860 
   686 
   861 lemma (in ring_of_sets) countably_additive_iff_continuous_from_below:
   687 lemma (in ring_of_sets) countably_additive_iff_continuous_from_below:
   862   assumes f: "positive M f" "additive M f"
   688   assumes f: "positive M f" "additive M f"
   863   shows "countably_additive M f \<longleftrightarrow>
   689   shows "countably_additive M f \<longleftrightarrow>
   864     (\<forall>A. range A \<subseteq> sets M \<longrightarrow> incseq A \<longrightarrow> (\<Union>i. A i) \<in> sets M \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Union>i. A i))"
   690     (\<forall>A. range A \<subseteq> M \<longrightarrow> incseq A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Union>i. A i))"
   865   unfolding countably_additive_def
   691   unfolding countably_additive_def
   866 proof safe
   692 proof safe
   867   assume count_sum: "\<forall>A. range A \<subseteq> sets M \<longrightarrow> disjoint_family A \<longrightarrow> UNION UNIV A \<in> sets M \<longrightarrow> (\<Sum>i. f (A i)) = f (UNION UNIV A)"
   693   assume count_sum: "\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> UNION UNIV A \<in> M \<longrightarrow> (\<Sum>i. f (A i)) = f (UNION UNIV A)"
   868   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> sets M" "incseq A" "(\<Union>i. A i) \<in> sets M"
   694   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "incseq A" "(\<Union>i. A i) \<in> M"
   869   then have dA: "range (disjointed A) \<subseteq> sets M" by (auto simp: range_disjointed_sets)
   695   then have dA: "range (disjointed A) \<subseteq> M" by (auto simp: range_disjointed_sets)
   870   with count_sum[THEN spec, of "disjointed A"] A(3)
   696   with count_sum[THEN spec, of "disjointed A"] A(3)
   871   have f_UN: "(\<Sum>i. f (disjointed A i)) = f (\<Union>i. A i)"
   697   have f_UN: "(\<Sum>i. f (disjointed A i)) = f (\<Union>i. A i)"
   872     by (auto simp: UN_disjointed_eq disjoint_family_disjointed)
   698     by (auto simp: UN_disjointed_eq disjoint_family_disjointed)
   873   moreover have "(\<lambda>n. (\<Sum>i=0..<n. f (disjointed A i))) ----> (\<Sum>i. f (disjointed A i))"
   699   moreover have "(\<lambda>n. (\<Sum>i=0..<n. f (disjointed A i))) ----> (\<Sum>i. f (disjointed A i))"
   874     using f(1)[unfolded positive_def] dA
   700     using f(1)[unfolded positive_def] dA
   878     unfolding atLeastLessThanSuc_atLeastAtMost atLeast0AtMost .
   704     unfolding atLeastLessThanSuc_atLeastAtMost atLeast0AtMost .
   879   moreover have "\<And>n. (\<Sum>i\<le>n. f (disjointed A i)) = f (A n)"
   705   moreover have "\<And>n. (\<Sum>i\<le>n. f (disjointed A i)) = f (A n)"
   880     using disjointed_additive[OF f A(1,2)] .
   706     using disjointed_additive[OF f A(1,2)] .
   881   ultimately show "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)" by simp
   707   ultimately show "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)" by simp
   882 next
   708 next
   883   assume cont: "\<forall>A. range A \<subseteq> sets M \<longrightarrow> incseq A \<longrightarrow> (\<Union>i. A i) \<in> sets M \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   709   assume cont: "\<forall>A. range A \<subseteq> M \<longrightarrow> incseq A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   884   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> sets M" "disjoint_family A" "(\<Union>i. A i) \<in> sets M"
   710   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "disjoint_family A" "(\<Union>i. A i) \<in> M"
   885   have *: "(\<Union>n. (\<Union>i\<le>n. A i)) = (\<Union>i. A i)" by auto
   711   have *: "(\<Union>n. (\<Union>i\<le>n. A i)) = (\<Union>i. A i)" by auto
   886   have "(\<lambda>n. f (\<Union>i\<le>n. A i)) ----> f (\<Union>i. A i)"
   712   have "(\<lambda>n. f (\<Union>i\<le>n. A i)) ----> f (\<Union>i. A i)"
   887   proof (unfold *[symmetric], intro cont[rule_format])
   713   proof (unfold *[symmetric], intro cont[rule_format])
   888     show "range (\<lambda>i. \<Union> i\<le>i. A i) \<subseteq> sets M" "(\<Union>i. \<Union> i\<le>i. A i) \<in> sets M"
   714     show "range (\<lambda>i. \<Union> i\<le>i. A i) \<subseteq> M" "(\<Union>i. \<Union> i\<le>i. A i) \<in> M"
   889       using A * by auto
   715       using A * by auto
   890   qed (force intro!: incseq_SucI)
   716   qed (force intro!: incseq_SucI)
   891   moreover have "\<And>n. f (\<Union>i\<le>n. A i) = (\<Sum>i\<le>n. f (A i))"
   717   moreover have "\<And>n. f (\<Union>i\<le>n. A i) = (\<Sum>i\<le>n. f (A i))"
   892     using A
   718     using A
   893     by (intro additive_sum[OF f, of _ A, symmetric])
   719     by (intro additive_sum[OF f, of _ A, symmetric])
   899   show "(\<Sum>i. f (A i)) = f (\<Union>i. A i)" by simp
   725   show "(\<Sum>i. f (A i)) = f (\<Union>i. A i)" by simp
   900 qed
   726 qed
   901 
   727 
   902 lemma (in ring_of_sets) continuous_from_above_iff_empty_continuous:
   728 lemma (in ring_of_sets) continuous_from_above_iff_empty_continuous:
   903   assumes f: "positive M f" "additive M f"
   729   assumes f: "positive M f" "additive M f"
   904   shows "(\<forall>A. range A \<subseteq> sets M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) \<in> sets M \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Inter>i. A i))
   730   shows "(\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) \<in> M \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Inter>i. A i))
   905      \<longleftrightarrow> (\<forall>A. range A \<subseteq> sets M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> 0)"
   731      \<longleftrightarrow> (\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> 0)"
   906 proof safe
   732 proof safe
   907   assume cont: "(\<forall>A. range A \<subseteq> sets M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) \<in> sets M \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Inter>i. A i))"
   733   assume cont: "(\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) \<in> M \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Inter>i. A i))"
   908   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> sets M" "decseq A" "(\<Inter>i. A i) = {}" "\<forall>i. f (A i) \<noteq> \<infinity>"
   734   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "decseq A" "(\<Inter>i. A i) = {}" "\<forall>i. f (A i) \<noteq> \<infinity>"
   909   with cont[THEN spec, of A] show "(\<lambda>i. f (A i)) ----> 0"
   735   with cont[THEN spec, of A] show "(\<lambda>i. f (A i)) ----> 0"
   910     using `positive M f`[unfolded positive_def] by auto
   736     using `positive M f`[unfolded positive_def] by auto
   911 next
   737 next
   912   assume cont: "\<forall>A. range A \<subseteq> sets M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   738   assume cont: "\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   913   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> sets M" "decseq A" "(\<Inter>i. A i) \<in> sets M" "\<forall>i. f (A i) \<noteq> \<infinity>"
   739   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "decseq A" "(\<Inter>i. A i) \<in> M" "\<forall>i. f (A i) \<noteq> \<infinity>"
   914 
   740 
   915   have f_mono: "\<And>a b. a \<in> sets M \<Longrightarrow> b \<in> sets M \<Longrightarrow> a \<subseteq> b \<Longrightarrow> f a \<le> f b"
   741   have f_mono: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<subseteq> b \<Longrightarrow> f a \<le> f b"
   916     using additive_increasing[OF f] unfolding increasing_def by simp
   742     using additive_increasing[OF f] unfolding increasing_def by simp
   917 
   743 
   918   have decseq_fA: "decseq (\<lambda>i. f (A i))"
   744   have decseq_fA: "decseq (\<lambda>i. f (A i))"
   919     using A by (auto simp: decseq_def intro!: f_mono)
   745     using A by (auto simp: decseq_def intro!: f_mono)
   920   have decseq: "decseq (\<lambda>i. A i - (\<Inter>i. A i))"
   746   have decseq: "decseq (\<lambda>i. A i - (\<Inter>i. A i))"
   930     then have "f (A i - (\<Inter>i. A i)) \<noteq> \<infinity>"
   756     then have "f (A i - (\<Inter>i. A i)) \<noteq> \<infinity>"
   931       using A by auto }
   757       using A by auto }
   932   note f_fin = this
   758   note f_fin = this
   933   have "(\<lambda>i. f (A i - (\<Inter>i. A i))) ----> 0"
   759   have "(\<lambda>i. f (A i - (\<Inter>i. A i))) ----> 0"
   934   proof (intro cont[rule_format, OF _ decseq _ f_fin])
   760   proof (intro cont[rule_format, OF _ decseq _ f_fin])
   935     show "range (\<lambda>i. A i - (\<Inter>i. A i)) \<subseteq> sets M" "(\<Inter>i. A i - (\<Inter>i. A i)) = {}"
   761     show "range (\<lambda>i. A i - (\<Inter>i. A i)) \<subseteq> M" "(\<Inter>i. A i - (\<Inter>i. A i)) = {}"
   936       using A by auto
   762       using A by auto
   937   qed
   763   qed
   938   from INF_Lim_ereal[OF decseq_f this]
   764   from INF_Lim_ereal[OF decseq_f this]
   939   have "(INF n. f (A n - (\<Inter>i. A i))) = 0" .
   765   have "(INF n. f (A n - (\<Inter>i. A i))) = 0" .
   940   moreover have "(INF n. f (\<Inter>i. A i)) = f (\<Inter>i. A i)"
   766   moreover have "(INF n. f (\<Inter>i. A i)) = f (\<Inter>i. A i)"
   954   with LIMSEQ_ereal_INFI[OF decseq_fA]
   780   with LIMSEQ_ereal_INFI[OF decseq_fA]
   955   show "(\<lambda>i. f (A i)) ----> f (\<Inter>i. A i)" by simp
   781   show "(\<lambda>i. f (A i)) ----> f (\<Inter>i. A i)" by simp
   956 qed
   782 qed
   957 
   783 
   958 lemma positiveD1: "positive M f \<Longrightarrow> f {} = 0" by (auto simp: positive_def)
   784 lemma positiveD1: "positive M f \<Longrightarrow> f {} = 0" by (auto simp: positive_def)
   959 lemma positiveD2: "positive M f \<Longrightarrow> A \<in> sets M \<Longrightarrow> 0 \<le> f A" by (auto simp: positive_def)
   785 lemma positiveD2: "positive M f \<Longrightarrow> A \<in> M \<Longrightarrow> 0 \<le> f A" by (auto simp: positive_def)
   960 
   786 
   961 lemma (in ring_of_sets) empty_continuous_imp_continuous_from_below:
   787 lemma (in ring_of_sets) empty_continuous_imp_continuous_from_below:
   962   assumes f: "positive M f" "additive M f" "\<forall>A\<in>sets M. f A \<noteq> \<infinity>"
   788   assumes f: "positive M f" "additive M f" "\<forall>A\<in>M. f A \<noteq> \<infinity>"
   963   assumes cont: "\<forall>A. range A \<subseteq> sets M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   789   assumes cont: "\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   964   assumes A: "range A \<subseteq> sets M" "incseq A" "(\<Union>i. A i) \<in> sets M"
   790   assumes A: "range A \<subseteq> M" "incseq A" "(\<Union>i. A i) \<in> M"
   965   shows "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   791   shows "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   966 proof -
   792 proof -
   967   have "\<forall>A\<in>sets M. \<exists>x. f A = ereal x"
   793   have "\<forall>A\<in>M. \<exists>x. f A = ereal x"
   968   proof
   794   proof
   969     fix A assume "A \<in> sets M" with f show "\<exists>x. f A = ereal x"
   795     fix A assume "A \<in> M" with f show "\<exists>x. f A = ereal x"
   970       unfolding positive_def by (cases "f A") auto
   796       unfolding positive_def by (cases "f A") auto
   971   qed
   797   qed
   972   from bchoice[OF this] guess f' .. note f' = this[rule_format]
   798   from bchoice[OF this] guess f' .. note f' = this[rule_format]
   973   from A have "(\<lambda>i. f ((\<Union>i. A i) - A i)) ----> 0"
   799   from A have "(\<lambda>i. f ((\<Union>i. A i) - A i)) ----> 0"
   974     by (intro cont[rule_format]) (auto simp: decseq_def incseq_def)
   800     by (intro cont[rule_format]) (auto simp: decseq_def incseq_def)
   989   then show "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   815   then show "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   990     using A by (subst (1 2) f') auto
   816     using A by (subst (1 2) f') auto
   991 qed
   817 qed
   992 
   818 
   993 lemma (in ring_of_sets) empty_continuous_imp_countably_additive:
   819 lemma (in ring_of_sets) empty_continuous_imp_countably_additive:
   994   assumes f: "positive M f" "additive M f" and fin: "\<forall>A\<in>sets M. f A \<noteq> \<infinity>"
   820   assumes f: "positive M f" "additive M f" and fin: "\<forall>A\<in>M. f A \<noteq> \<infinity>"
   995   assumes cont: "\<And>A. range A \<subseteq> sets M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   821   assumes cont: "\<And>A. range A \<subseteq> M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   996   shows "countably_additive M f"
   822   shows "countably_additive M f"
   997   using countably_additive_iff_continuous_from_below[OF f]
   823   using countably_additive_iff_continuous_from_below[OF f]
   998   using empty_continuous_imp_continuous_from_below[OF f fin] cont
   824   using empty_continuous_imp_continuous_from_below[OF f fin] cont
   999   by blast
   825   by blast
  1000 
   826 
  1001 lemma (in ring_of_sets) caratheodory_empty_continuous:
   827 lemma (in ring_of_sets) caratheodory_empty_continuous:
  1002   assumes f: "positive M f" "additive M f" and fin: "\<And>A. A \<in> sets M \<Longrightarrow> f A \<noteq> \<infinity>"
   828   assumes f: "positive M f" "additive M f" and fin: "\<And>A. A \<in> M \<Longrightarrow> f A \<noteq> \<infinity>"
  1003   assumes cont: "\<And>A. range A \<subseteq> sets M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   829   assumes cont: "\<And>A. range A \<subseteq> M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) ----> 0"
  1004   shows "\<exists>\<mu> :: 'a set \<Rightarrow> ereal. (\<forall>s \<in> sets M. \<mu> s = f s) \<and>
   830   shows "\<exists>\<mu> :: 'a set \<Rightarrow> ereal. (\<forall>s \<in> M. \<mu> s = f s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
  1005             measure_space \<lparr> space = space M, sets = sets (sigma M), measure = \<mu> \<rparr>"
       
  1006 proof (intro caratheodory empty_continuous_imp_countably_additive f)
   831 proof (intro caratheodory empty_continuous_imp_countably_additive f)
  1007   show "\<forall>A\<in>sets M. f A \<noteq> \<infinity>" using fin by auto
   832   show "\<forall>A\<in>M. f A \<noteq> \<infinity>" using fin by auto
  1008 qed (rule cont)
   833 qed (rule cont)
  1009 
   834 
  1010 end
   835 end