src/HOL/IMP/Abs_Int_Den/Abs_Int_den1.thy
changeset 45963 054a9ac0d7ef
parent 45962 305f83b6da54
child 46068 1f1897ac7877
equal deleted inserted replaced
45962:305f83b6da54 45963:054a9ac0d7ef
       
     1 (* Author: Tobias Nipkow *)
       
     2 
       
     3 theory Abs_Int_den1
       
     4 imports Abs_Int_den0_const
       
     5 begin
       
     6 
       
     7 subsection "Backward Analysis of Expressions"
       
     8 
       
     9 class L_top_bot = SL_top +
       
    10 fixes meet :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 65)
       
    11 and Bot :: "'a"
       
    12 assumes meet_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x"
       
    13 and meet_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y"
       
    14 and meet_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"
       
    15 assumes bot[simp]: "Bot \<sqsubseteq> x"
       
    16 
       
    17 locale Rep1 = Rep rep for rep :: "'a::L_top_bot \<Rightarrow> 'b set" +
       
    18 assumes inter_rep_subset_rep_meet: "rep a1 \<inter> rep a2 \<subseteq> rep(a1 \<sqinter> a2)"
       
    19 and rep_Bot: "rep Bot = {}"
       
    20 begin
       
    21 
       
    22 lemma in_rep_meet: "x <: a1 \<Longrightarrow> x <: a2 \<Longrightarrow> x <: a1 \<sqinter> a2"
       
    23 by (metis IntI inter_rep_subset_rep_meet set_mp)
       
    24 
       
    25 lemma rep_meet[simp]: "rep(a1 \<sqinter> a2) = rep a1 \<inter> rep a2"
       
    26 by (metis equalityI inter_rep_subset_rep_meet le_inf_iff le_rep meet_le1 meet_le2)
       
    27 
       
    28 end
       
    29 
       
    30 
       
    31 locale Val_abs1 = Val_abs rep num' plus' + Rep1 rep
       
    32   for rep :: "'a::L_top_bot \<Rightarrow> int set" and num' plus' +
       
    33 fixes filter_plus' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a * 'a"
       
    34 and filter_less' :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a * 'a"
       
    35 assumes filter_plus': "filter_plus' a a1 a2 = (a1',a2') \<Longrightarrow>
       
    36   n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1+n2 <: a \<Longrightarrow> n1 <: a1' \<and> n2 <: a2'"
       
    37 and filter_less': "filter_less' (n1<n2) a1 a2 = (a1',a2') \<Longrightarrow>
       
    38   n1 <: a1 \<Longrightarrow> n2 <: a2 \<Longrightarrow> n1 <: a1' \<and> n2 <: a2'"
       
    39 
       
    40 datatype 'a up = bot | Up 'a
       
    41 
       
    42 instantiation up :: (SL_top)SL_top
       
    43 begin
       
    44 
       
    45 fun le_up where
       
    46 "Up x \<sqsubseteq> Up y = (x \<sqsubseteq> y)" |
       
    47 "bot \<sqsubseteq> y = True" |
       
    48 "Up _ \<sqsubseteq> bot = False"
       
    49 
       
    50 lemma [simp]: "(x \<sqsubseteq> bot) = (x = bot)"
       
    51 by (cases x) simp_all
       
    52 
       
    53 lemma [simp]: "(Up x \<sqsubseteq> u) = (EX y. u = Up y & x \<sqsubseteq> y)"
       
    54 by (cases u) auto
       
    55 
       
    56 fun join_up where
       
    57 "Up x \<squnion> Up y = Up(x \<squnion> y)" |
       
    58 "bot \<squnion> y = y" |
       
    59 "x \<squnion> bot = x"
       
    60 
       
    61 lemma [simp]: "x \<squnion> bot = x"
       
    62 by (cases x) simp_all
       
    63 
       
    64 
       
    65 definition "Top = Up Top"
       
    66 
       
    67 instance proof
       
    68   case goal1 show ?case by(cases x, simp_all)
       
    69 next
       
    70   case goal2 thus ?case
       
    71     by(cases z, simp, cases y, simp, cases x, auto intro: le_trans)
       
    72 next
       
    73   case goal3 thus ?case by(cases x, simp, cases y, simp_all)
       
    74 next
       
    75   case goal4 thus ?case by(cases y, simp, cases x, simp_all)
       
    76 next
       
    77   case goal5 thus ?case by(cases z, simp, cases y, simp, cases x, simp_all)
       
    78 next
       
    79   case goal6 thus ?case by(cases x, simp_all add: Top_up_def)
       
    80 qed
       
    81 
       
    82 end
       
    83 
       
    84 
       
    85 locale Abs_Int1 = Val_abs1 +
       
    86 fixes pfp :: "('a astate up \<Rightarrow> 'a astate up) \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up"
       
    87 assumes pfp: "f(pfp f x0) \<sqsubseteq> pfp f x0"
       
    88 assumes above: "x0 \<sqsubseteq> pfp f x0"
       
    89 begin
       
    90 
       
    91 (* FIXME avoid duplicating this defn *)
       
    92 abbreviation astate_in_rep (infix "<:" 50) where
       
    93 "s <: S == ALL x. s x <: lookup S x"
       
    94 
       
    95 abbreviation in_rep_up :: "state \<Rightarrow> 'a astate up \<Rightarrow> bool"  (infix "<::" 50) where
       
    96 "s <:: S == EX S0. S = Up S0 \<and> s <: S0"
       
    97 
       
    98 lemma in_rep_up_trans: "(s::state) <:: S \<Longrightarrow> S \<sqsubseteq> T \<Longrightarrow> s <:: T"
       
    99 apply auto
       
   100 by (metis in_mono le_astate_def le_rep lookup_def top)
       
   101 
       
   102 lemma in_rep_join_UpI: "s <:: S1 | s <:: S2 \<Longrightarrow> s <:: S1 \<squnion> S2"
       
   103 by (metis in_rep_up_trans SL_top_class.join_ge1 SL_top_class.join_ge2)
       
   104 
       
   105 fun aval' :: "aexp \<Rightarrow> 'a astate up \<Rightarrow> 'a" ("aval\<^isup>#") where
       
   106 "aval' _ bot = Bot" |
       
   107 "aval' (N n) _ = num' n" |
       
   108 "aval' (V x) (Up S) = lookup S x" |
       
   109 "aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"
       
   110 
       
   111 lemma aval'_sound: "s <:: S \<Longrightarrow> aval a s <: aval' a S"
       
   112 by (induct a) (auto simp: rep_num' rep_plus')
       
   113 
       
   114 fun afilter :: "aexp \<Rightarrow> 'a \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where
       
   115 "afilter (N n) a S = (if n <: a then S else bot)" |
       
   116 "afilter (V x) a S = (case S of bot \<Rightarrow> bot | Up S \<Rightarrow>
       
   117   let a' = lookup S x \<sqinter> a in
       
   118   if a' \<sqsubseteq> Bot then bot else Up(update S x a'))" |
       
   119 "afilter (Plus e1 e2) a S =
       
   120  (let (a1,a2) = filter_plus' a (aval' e1 S) (aval' e2 S)
       
   121   in afilter e1 a1 (afilter e2 a2 S))"
       
   122 
       
   123 text{* The test for @{const Bot} in the @{const V}-case is important: @{const
       
   124 Bot} indicates that a variable has no possible values, i.e.\ that the current
       
   125 program point is unreachable. But then the abstract state should collapse to
       
   126 @{const bot}. Put differently, we maintain the invariant that in an abstract
       
   127 state all variables are mapped to non-@{const Bot} values. Otherwise the
       
   128 (pointwise) join of two abstract states, one of which contains @{const Bot}
       
   129 values, may produce too large a result, thus making the analysis less
       
   130 precise. *}
       
   131 
       
   132 
       
   133 fun bfilter :: "bexp \<Rightarrow> bool \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where
       
   134 "bfilter (B bv) res S = (if bv=res then S else bot)" |
       
   135 "bfilter (Not b) res S = bfilter b (\<not> res) S" |
       
   136 "bfilter (And b1 b2) res S =
       
   137   (if res then bfilter b1 True (bfilter b2 True S)
       
   138    else bfilter b1 False S \<squnion> bfilter b2 False S)" |
       
   139 "bfilter (Less e1 e2) res S =
       
   140   (let (res1,res2) = filter_less' res (aval' e1 S) (aval' e2 S)
       
   141    in afilter e1 res1 (afilter e2 res2 S))"
       
   142 
       
   143 lemma afilter_sound: "s <:: S \<Longrightarrow> aval e s <: a \<Longrightarrow> s <:: afilter e a S"
       
   144 proof(induction e arbitrary: a S)
       
   145   case N thus ?case by simp
       
   146 next
       
   147   case (V x)
       
   148   obtain S' where "S = Up S'" and "s <: S'" using `s <:: S` by auto
       
   149   moreover hence "s x <: lookup S' x" by(simp)
       
   150   moreover have "s x <: a" using V by simp
       
   151   ultimately show ?case using V(1)
       
   152     by(simp add: lookup_update Let_def)
       
   153        (metis le_rep emptyE in_rep_meet rep_Bot subset_empty)
       
   154 next
       
   155   case (Plus e1 e2) thus ?case
       
   156     using filter_plus'[OF _ aval'_sound[OF Plus(3)] aval'_sound[OF Plus(3)]]
       
   157     by (auto split: prod.split)
       
   158 qed
       
   159 
       
   160 lemma bfilter_sound: "s <:: S \<Longrightarrow> bv = bval b s \<Longrightarrow> s <:: bfilter b bv S"
       
   161 proof(induction b arbitrary: S bv)
       
   162   case B thus ?case by simp
       
   163 next
       
   164   case (Not b) thus ?case by simp
       
   165 next
       
   166   case (And b1 b2) thus ?case by (auto simp: in_rep_join_UpI)
       
   167 next
       
   168   case (Less e1 e2) thus ?case
       
   169     by (auto split: prod.split)
       
   170        (metis afilter_sound filter_less' aval'_sound Less)
       
   171 qed
       
   172 
       
   173 fun AI :: "com \<Rightarrow> 'a astate up \<Rightarrow> 'a astate up" where
       
   174 "AI SKIP S = S" |
       
   175 "AI (x ::= a) S =
       
   176   (case S of bot \<Rightarrow> bot | Up S \<Rightarrow> Up(update S x (aval' a (Up S))))" |
       
   177 "AI (c1;c2) S = AI c2 (AI c1 S)" |
       
   178 "AI (IF b THEN c1 ELSE c2) S =
       
   179   AI c1 (bfilter b True S) \<squnion> AI c2 (bfilter b False S)" |
       
   180 "AI (WHILE b DO c) S =
       
   181   bfilter b False (pfp (\<lambda>S. AI c (bfilter b True S)) S)"
       
   182 
       
   183 lemma AI_sound: "(c,s) \<Rightarrow> t \<Longrightarrow> s <:: S \<Longrightarrow> t <:: AI c S"
       
   184 proof(induction c arbitrary: s t S)
       
   185   case SKIP thus ?case by fastforce
       
   186 next
       
   187   case Assign thus ?case
       
   188     by (auto simp: lookup_update aval'_sound)
       
   189 next
       
   190   case Semi thus ?case by fastforce
       
   191 next
       
   192   case If thus ?case by (auto simp: in_rep_join_UpI bfilter_sound)
       
   193 next
       
   194   case (While b c)
       
   195   let ?P = "pfp (\<lambda>S. AI c (bfilter b True S)) S"
       
   196   { fix s t
       
   197     have "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> s <:: ?P \<Longrightarrow>
       
   198           t <:: bfilter b False ?P"
       
   199     proof(induction "WHILE b DO c" s t rule: big_step_induct)
       
   200       case WhileFalse thus ?case by(metis bfilter_sound)
       
   201     next
       
   202       case WhileTrue show ?case
       
   203         by(rule WhileTrue, rule in_rep_up_trans[OF _ pfp],
       
   204            rule While.IH[OF WhileTrue(2)],
       
   205            rule bfilter_sound[OF WhileTrue.prems], simp add: WhileTrue(1))
       
   206     qed
       
   207   }
       
   208   with in_rep_up_trans[OF `s <:: S` above] While(2,3) AI.simps(5)
       
   209   show ?case by simp
       
   210 qed
       
   211 
       
   212 end
       
   213 
       
   214 end