src/HOL/HOLCF/Tools/holcf_library.ML
changeset 41022 0437dbc127b3
parent 40565 1dfdbd66093a
child 41080 4352ca878c41
equal deleted inserted replaced
41021:6c12f5e24e34 41022:0437dbc127b3
       
     1 (*  Title:      HOLCF/Tools/holcf_library.ML
       
     2     Author:     Brian Huffman
       
     3 
       
     4 Functions for constructing HOLCF types and terms.
       
     5 *)
       
     6 
       
     7 structure HOLCF_Library =
       
     8 struct
       
     9 
       
    10 infixr 6 ->>;
       
    11 infixr -->>;
       
    12 infix 9 `;
       
    13 
       
    14 (*** Operations from Isabelle/HOL ***)
       
    15 
       
    16 val boolT = HOLogic.boolT;
       
    17 val natT = HOLogic.natT;
       
    18 
       
    19 val mk_equals = Logic.mk_equals;
       
    20 val mk_eq = HOLogic.mk_eq;
       
    21 val mk_trp = HOLogic.mk_Trueprop;
       
    22 val mk_fst = HOLogic.mk_fst;
       
    23 val mk_snd = HOLogic.mk_snd;
       
    24 val mk_not = HOLogic.mk_not;
       
    25 val mk_conj = HOLogic.mk_conj;
       
    26 val mk_disj = HOLogic.mk_disj;
       
    27 val mk_imp = HOLogic.mk_imp;
       
    28 
       
    29 fun mk_ex (x, t) = HOLogic.exists_const (fastype_of x) $ Term.lambda x t;
       
    30 fun mk_all (x, t) = HOLogic.all_const (fastype_of x) $ Term.lambda x t;
       
    31 
       
    32 
       
    33 (*** Basic HOLCF concepts ***)
       
    34 
       
    35 fun mk_bottom T = Const (@{const_name UU}, T);
       
    36 
       
    37 fun below_const T = Const (@{const_name below}, [T, T] ---> boolT);
       
    38 fun mk_below (t, u) = below_const (fastype_of t) $ t $ u;
       
    39 
       
    40 fun mk_undef t = mk_eq (t, mk_bottom (fastype_of t));
       
    41 
       
    42 fun mk_defined t = mk_not (mk_undef t);
       
    43 
       
    44 fun mk_adm t =
       
    45   Const (@{const_name adm}, fastype_of t --> boolT) $ t;
       
    46 
       
    47 fun mk_compact t =
       
    48   Const (@{const_name compact}, fastype_of t --> boolT) $ t;
       
    49 
       
    50 fun mk_cont t =
       
    51   Const (@{const_name cont}, fastype_of t --> boolT) $ t;
       
    52 
       
    53 fun mk_chain t =
       
    54   Const (@{const_name chain}, Term.fastype_of t --> boolT) $ t;
       
    55 
       
    56 fun mk_lub t =
       
    57   let
       
    58     val T = Term.range_type (Term.fastype_of t);
       
    59     val lub_const = Const (@{const_name lub}, (T --> boolT) --> T);
       
    60     val UNIV_const = @{term "UNIV :: nat set"};
       
    61     val image_type = (natT --> T) --> (natT --> boolT) --> T --> boolT;
       
    62     val image_const = Const (@{const_name image}, image_type);
       
    63   in
       
    64     lub_const $ (image_const $ t $ UNIV_const)
       
    65   end;
       
    66 
       
    67 
       
    68 (*** Continuous function space ***)
       
    69 
       
    70 fun mk_cfunT (T, U) = Type(@{type_name cfun}, [T, U]);
       
    71 
       
    72 val (op ->>) = mk_cfunT;
       
    73 val (op -->>) = Library.foldr mk_cfunT;
       
    74 
       
    75 fun dest_cfunT (Type(@{type_name cfun}, [T, U])) = (T, U)
       
    76   | dest_cfunT T = raise TYPE ("dest_cfunT", [T], []);
       
    77 
       
    78 fun capply_const (S, T) =
       
    79   Const(@{const_name Rep_cfun}, (S ->> T) --> (S --> T));
       
    80 
       
    81 fun cabs_const (S, T) =
       
    82   Const(@{const_name Abs_cfun}, (S --> T) --> (S ->> T));
       
    83 
       
    84 fun mk_cabs t =
       
    85   let val T = fastype_of t
       
    86   in cabs_const (Term.domain_type T, Term.range_type T) $ t end
       
    87 
       
    88 (* builds the expression (% v1 v2 .. vn. rhs) *)
       
    89 fun lambdas [] rhs = rhs
       
    90   | lambdas (v::vs) rhs = Term.lambda v (lambdas vs rhs);
       
    91 
       
    92 (* builds the expression (LAM v. rhs) *)
       
    93 fun big_lambda v rhs =
       
    94   cabs_const (fastype_of v, fastype_of rhs) $ Term.lambda v rhs;
       
    95 
       
    96 (* builds the expression (LAM v1 v2 .. vn. rhs) *)
       
    97 fun big_lambdas [] rhs = rhs
       
    98   | big_lambdas (v::vs) rhs = big_lambda v (big_lambdas vs rhs);
       
    99 
       
   100 fun mk_capply (t, u) =
       
   101   let val (S, T) =
       
   102     case fastype_of t of
       
   103         Type(@{type_name cfun}, [S, T]) => (S, T)
       
   104       | _ => raise TERM ("mk_capply " ^ ML_Syntax.print_list ML_Syntax.print_term [t, u], [t, u]);
       
   105   in capply_const (S, T) $ t $ u end;
       
   106 
       
   107 val (op `) = mk_capply;
       
   108 
       
   109 val list_ccomb : term * term list -> term = Library.foldl mk_capply;
       
   110 
       
   111 fun mk_ID T = Const (@{const_name ID}, T ->> T);
       
   112 
       
   113 fun cfcomp_const (T, U, V) =
       
   114   Const (@{const_name cfcomp}, (U ->> V) ->> (T ->> U) ->> (T ->> V));
       
   115 
       
   116 fun mk_cfcomp (f, g) =
       
   117   let
       
   118     val (U, V) = dest_cfunT (fastype_of f);
       
   119     val (T, U') = dest_cfunT (fastype_of g);
       
   120   in
       
   121     if U = U'
       
   122     then mk_capply (mk_capply (cfcomp_const (T, U, V), f), g)
       
   123     else raise TYPE ("mk_cfcomp", [U, U'], [f, g])
       
   124   end;
       
   125 
       
   126 fun strictify_const T = Const (@{const_name strictify}, T ->> T);
       
   127 fun mk_strictify t = strictify_const (fastype_of t) ` t;
       
   128 
       
   129 fun mk_strict t =
       
   130   let val (T, U) = dest_cfunT (fastype_of t);
       
   131   in mk_eq (t ` mk_bottom T, mk_bottom U) end;
       
   132 
       
   133 
       
   134 (*** Product type ***)
       
   135 
       
   136 val mk_prodT = HOLogic.mk_prodT
       
   137 
       
   138 fun mk_tupleT [] = HOLogic.unitT
       
   139   | mk_tupleT [T] = T
       
   140   | mk_tupleT (T :: Ts) = mk_prodT (T, mk_tupleT Ts);
       
   141 
       
   142 (* builds the expression (v1,v2,..,vn) *)
       
   143 fun mk_tuple [] = HOLogic.unit
       
   144   | mk_tuple (t::[]) = t
       
   145   | mk_tuple (t::ts) = HOLogic.mk_prod (t, mk_tuple ts);
       
   146 
       
   147 (* builds the expression (%(v1,v2,..,vn). rhs) *)
       
   148 fun lambda_tuple [] rhs = Term.lambda (Free("unit", HOLogic.unitT)) rhs
       
   149   | lambda_tuple (v::[]) rhs = Term.lambda v rhs
       
   150   | lambda_tuple (v::vs) rhs =
       
   151       HOLogic.mk_split (Term.lambda v (lambda_tuple vs rhs));
       
   152 
       
   153 
       
   154 (*** Lifted cpo type ***)
       
   155 
       
   156 fun mk_upT T = Type(@{type_name "u"}, [T]);
       
   157 
       
   158 fun dest_upT (Type(@{type_name "u"}, [T])) = T
       
   159   | dest_upT T = raise TYPE ("dest_upT", [T], []);
       
   160 
       
   161 fun up_const T = Const(@{const_name up}, T ->> mk_upT T);
       
   162 
       
   163 fun mk_up t = up_const (fastype_of t) ` t;
       
   164 
       
   165 fun fup_const (T, U) =
       
   166   Const(@{const_name fup}, (T ->> U) ->> mk_upT T ->> U);
       
   167 
       
   168 fun mk_fup t = fup_const (dest_cfunT (fastype_of t)) ` t;
       
   169 
       
   170 fun from_up T = fup_const (T, T) ` mk_ID T;
       
   171 
       
   172 
       
   173 (*** Lifted unit type ***)
       
   174 
       
   175 val oneT = @{typ "one"};
       
   176 
       
   177 fun one_case_const T = Const (@{const_name one_case}, T ->> oneT ->> T);
       
   178 fun mk_one_case t = one_case_const (fastype_of t) ` t;
       
   179 
       
   180 
       
   181 (*** Strict product type ***)
       
   182 
       
   183 fun mk_sprodT (T, U) = Type(@{type_name sprod}, [T, U]);
       
   184 
       
   185 fun dest_sprodT (Type(@{type_name sprod}, [T, U])) = (T, U)
       
   186   | dest_sprodT T = raise TYPE ("dest_sprodT", [T], []);
       
   187 
       
   188 fun spair_const (T, U) =
       
   189   Const(@{const_name spair}, T ->> U ->> mk_sprodT (T, U));
       
   190 
       
   191 (* builds the expression (:t, u:) *)
       
   192 fun mk_spair (t, u) =
       
   193   spair_const (fastype_of t, fastype_of u) ` t ` u;
       
   194 
       
   195 (* builds the expression (:t1,t2,..,tn:) *)
       
   196 fun mk_stuple [] = @{term "ONE"}
       
   197   | mk_stuple (t::[]) = t
       
   198   | mk_stuple (t::ts) = mk_spair (t, mk_stuple ts);
       
   199 
       
   200 fun sfst_const (T, U) =
       
   201   Const(@{const_name sfst}, mk_sprodT (T, U) ->> T);
       
   202 
       
   203 fun ssnd_const (T, U) =
       
   204   Const(@{const_name ssnd}, mk_sprodT (T, U) ->> U);
       
   205 
       
   206 fun ssplit_const (T, U, V) =
       
   207   Const (@{const_name ssplit}, (T ->> U ->> V) ->> mk_sprodT (T, U) ->> V);
       
   208 
       
   209 fun mk_ssplit t =
       
   210   let val (T, (U, V)) = apsnd dest_cfunT (dest_cfunT (fastype_of t));
       
   211   in ssplit_const (T, U, V) ` t end;
       
   212 
       
   213 
       
   214 (*** Strict sum type ***)
       
   215 
       
   216 fun mk_ssumT (T, U) = Type(@{type_name ssum}, [T, U]);
       
   217 
       
   218 fun dest_ssumT (Type(@{type_name ssum}, [T, U])) = (T, U)
       
   219   | dest_ssumT T = raise TYPE ("dest_ssumT", [T], []);
       
   220 
       
   221 fun sinl_const (T, U) = Const(@{const_name sinl}, T ->> mk_ssumT (T, U));
       
   222 fun sinr_const (T, U) = Const(@{const_name sinr}, U ->> mk_ssumT (T, U));
       
   223 
       
   224 (* builds the list [sinl(t1), sinl(sinr(t2)), ... sinr(...sinr(tn))] *)
       
   225 fun mk_sinjects ts =
       
   226   let
       
   227     val Ts = map fastype_of ts;
       
   228     fun combine (t, T) (us, U) =
       
   229       let
       
   230         val v = sinl_const (T, U) ` t;
       
   231         val vs = map (fn u => sinr_const (T, U) ` u) us;
       
   232       in
       
   233         (v::vs, mk_ssumT (T, U))
       
   234       end
       
   235     fun inj [] = raise Fail "mk_sinjects: empty list"
       
   236       | inj ((t, T)::[]) = ([t], T)
       
   237       | inj ((t, T)::ts) = combine (t, T) (inj ts);
       
   238   in
       
   239     fst (inj (ts ~~ Ts))
       
   240   end;
       
   241 
       
   242 fun sscase_const (T, U, V) =
       
   243   Const(@{const_name sscase},
       
   244     (T ->> V) ->> (U ->> V) ->> mk_ssumT (T, U) ->> V);
       
   245 
       
   246 fun mk_sscase (t, u) =
       
   247   let val (T, V) = dest_cfunT (fastype_of t);
       
   248       val (U, V) = dest_cfunT (fastype_of u);
       
   249   in sscase_const (T, U, V) ` t ` u end;
       
   250 
       
   251 fun from_sinl (T, U) =
       
   252   sscase_const (T, U, T) ` mk_ID T ` mk_bottom (U ->> T);
       
   253 
       
   254 fun from_sinr (T, U) =
       
   255   sscase_const (T, U, U) ` mk_bottom (T ->> U) ` mk_ID U;
       
   256 
       
   257 
       
   258 (*** pattern match monad type ***)
       
   259 
       
   260 fun mk_matchT T = Type (@{type_name "match"}, [T]);
       
   261 
       
   262 fun dest_matchT (Type(@{type_name "match"}, [T])) = T
       
   263   | dest_matchT T = raise TYPE ("dest_matchT", [T], []);
       
   264 
       
   265 fun mk_fail T = Const (@{const_name "Fixrec.fail"}, mk_matchT T);
       
   266 
       
   267 fun succeed_const T = Const (@{const_name "Fixrec.succeed"}, T ->> mk_matchT T);
       
   268 fun mk_succeed t = succeed_const (fastype_of t) ` t;
       
   269 
       
   270 
       
   271 (*** lifted boolean type ***)
       
   272 
       
   273 val trT = @{typ "tr"};
       
   274 
       
   275 
       
   276 (*** theory of fixed points ***)
       
   277 
       
   278 fun mk_fix t =
       
   279   let val (T, _) = dest_cfunT (fastype_of t)
       
   280   in mk_capply (Const(@{const_name fix}, (T ->> T) ->> T), t) end;
       
   281 
       
   282 fun iterate_const T =
       
   283   Const (@{const_name iterate}, natT --> (T ->> T) ->> (T ->> T));
       
   284 
       
   285 fun mk_iterate (n, f) =
       
   286   let val (T, _) = dest_cfunT (Term.fastype_of f);
       
   287   in (iterate_const T $ n) ` f ` mk_bottom T end;
       
   288 
       
   289 end;