src/HOL/HahnBanach/ZornLemma.thy
author ballarin
Tue, 30 Dec 2008 11:10:01 +0100
changeset 29252 ea97aa6aeba2
parent 29234 src/HOL/Real/HahnBanach/ZornLemma.thy@60f7fb56f8cd
parent 29197 src/HOL/Real/HahnBanach/ZornLemma.thy@6d4cb27ed19c
permissions -rw-r--r--
Merged.
wenzelm@7917
     1
(*  Title:      HOL/Real/HahnBanach/ZornLemma.thy
wenzelm@7917
     2
    Author:     Gertrud Bauer, TU Munich
wenzelm@7917
     3
*)
wenzelm@7917
     4
wenzelm@9035
     5
header {* Zorn's Lemma *}
wenzelm@7917
     6
wenzelm@27612
     7
theory ZornLemma
wenzelm@27612
     8
imports Zorn
wenzelm@27612
     9
begin
wenzelm@7917
    10
wenzelm@10687
    11
text {*
wenzelm@10687
    12
  Zorn's Lemmas states: if every linear ordered subset of an ordered
wenzelm@10687
    13
  set @{text S} has an upper bound in @{text S}, then there exists a
wenzelm@10687
    14
  maximal element in @{text S}.  In our application, @{text S} is a
wenzelm@10687
    15
  set of sets ordered by set inclusion. Since the union of a chain of
wenzelm@10687
    16
  sets is an upper bound for all elements of the chain, the conditions
wenzelm@10687
    17
  of Zorn's lemma can be modified: if @{text S} is non-empty, it
wenzelm@10687
    18
  suffices to show that for every non-empty chain @{text c} in @{text
wenzelm@10687
    19
  S} the union of @{text c} also lies in @{text S}.
wenzelm@10687
    20
*}
wenzelm@7917
    21
wenzelm@10687
    22
theorem Zorn's_Lemma:
wenzelm@13515
    23
  assumes r: "\<And>c. c \<in> chain S \<Longrightarrow> \<exists>x. x \<in> c \<Longrightarrow> \<Union>c \<in> S"
wenzelm@13515
    24
    and aS: "a \<in> S"
wenzelm@13515
    25
  shows "\<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z \<longrightarrow> y = z"
wenzelm@9035
    26
proof (rule Zorn_Lemma2)
wenzelm@10687
    27
  show "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
wenzelm@9035
    28
  proof
wenzelm@10687
    29
    fix c assume "c \<in> chain S"
wenzelm@10687
    30
    show "\<exists>y \<in> S. \<forall>z \<in> c. z \<subseteq> y"
wenzelm@9035
    31
    proof cases
wenzelm@13515
    32
wenzelm@10687
    33
      txt {* If @{text c} is an empty chain, then every element in
wenzelm@27612
    34
	@{text S} is an upper bound of @{text c}. *}
wenzelm@7917
    35
wenzelm@13515
    36
      assume "c = {}"
wenzelm@9035
    37
      with aS show ?thesis by fast
wenzelm@7917
    38
wenzelm@10687
    39
      txt {* If @{text c} is non-empty, then @{text "\<Union>c"} is an upper
wenzelm@27612
    40
	bound of @{text c}, lying in @{text S}. *}
wenzelm@7917
    41
wenzelm@9035
    42
    next
wenzelm@27612
    43
      assume "c \<noteq> {}"
wenzelm@13515
    44
      show ?thesis
wenzelm@13515
    45
      proof
wenzelm@10687
    46
        show "\<forall>z \<in> c. z \<subseteq> \<Union>c" by fast
wenzelm@13515
    47
        show "\<Union>c \<in> S"
wenzelm@9035
    48
        proof (rule r)
wenzelm@27612
    49
          from `c \<noteq> {}` show "\<exists>x. x \<in> c" by fast
wenzelm@23378
    50
	  show "c \<in> chain S" by fact
wenzelm@9035
    51
        qed
wenzelm@9035
    52
      qed
wenzelm@9035
    53
    qed
wenzelm@9035
    54
  qed
wenzelm@9035
    55
qed
wenzelm@7917
    56
wenzelm@10687
    57
end