src/HOL/Word/Bit_Representation.thy
author huffman
Tue, 27 Dec 2011 12:49:03 +0100
changeset 46870 cce7e6197a46
parent 46825 f67d3bb5f09c
child 46871 871bdab23f5c
permissions -rw-r--r--
removed unused lemmas
kleing@24333
     1
(* 
kleing@24333
     2
  Author: Jeremy Dawson, NICTA
kleing@24333
     3
kleing@45810
     4
  Basic definitions to do with integers, expressed using Pls, Min, BIT.
kleing@24333
     5
*) 
kleing@24333
     6
huffman@24350
     7
header {* Basic Definitions for Binary Integers *}
huffman@24350
     8
haftmann@37658
     9
theory Bit_Representation
wenzelm@41661
    10
imports Misc_Numeric "~~/src/HOL/Library/Bit"
kleing@24333
    11
begin
kleing@24333
    12
haftmann@26557
    13
subsection {* Further properties of numerals *}
huffman@24384
    14
haftmann@37667
    15
definition bitval :: "bit \<Rightarrow> 'a\<Colon>zero_neq_one" where
haftmann@37667
    16
  "bitval = bit_case 0 1"
haftmann@37667
    17
haftmann@37667
    18
lemma bitval_simps [simp]:
haftmann@37667
    19
  "bitval 0 = 0"
haftmann@37667
    20
  "bitval 1 = 1"
haftmann@37667
    21
  by (simp_all add: bitval_def)
haftmann@37667
    22
haftmann@37654
    23
definition Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where
haftmann@37667
    24
  "k BIT b = bitval b + k + k"
huffman@24350
    25
huffman@46714
    26
definition bin_last :: "int \<Rightarrow> bit" where
huffman@46714
    27
  "bin_last w = (if w mod 2 = 0 then (0::bit) else (1::bit))"
huffman@46714
    28
huffman@46714
    29
definition bin_rest :: "int \<Rightarrow> int" where
huffman@46714
    30
  "bin_rest w = w div 2"
huffman@46714
    31
huffman@46714
    32
lemma bin_rl_simp [simp]:
huffman@46714
    33
  "bin_rest w BIT bin_last w = w"
huffman@46714
    34
  unfolding bin_rest_def bin_last_def Bit_def
huffman@46714
    35
  using mod_div_equality [of w 2]
huffman@46714
    36
  by (cases "w mod 2 = 0", simp_all)
huffman@46714
    37
huffman@46714
    38
lemma bin_rest_BIT: "bin_rest (x BIT b) = x"
huffman@46714
    39
  unfolding bin_rest_def Bit_def
huffman@46714
    40
  by (cases b, simp_all)
huffman@46714
    41
huffman@46714
    42
lemma bin_last_BIT: "bin_last (x BIT b) = b"
huffman@46714
    43
  unfolding bin_last_def Bit_def
huffman@46714
    44
  by (cases b, simp_all add: z1pmod2)
huffman@46714
    45
huffman@46719
    46
lemma BIT_eq_iff [iff]: "u BIT b = v BIT c \<longleftrightarrow> u = v \<and> b = c"
huffman@46714
    47
  by (metis bin_rest_BIT bin_last_BIT)
huffman@46714
    48
huffman@46720
    49
lemma BIT_bin_simps [simp]:
huffman@46720
    50
  "number_of w BIT 0 = number_of (Int.Bit0 w)"
huffman@46720
    51
  "number_of w BIT 1 = number_of (Int.Bit1 w)"
huffman@46720
    52
  unfolding Bit_def number_of_is_id numeral_simps by simp_all
huffman@46720
    53
huffman@46720
    54
lemma BIT_special_simps [simp]:
huffman@46720
    55
  shows "0 BIT 0 = 0" and "0 BIT 1 = 1" and "1 BIT 0 = 2" and "1 BIT 1 = 3"
huffman@46720
    56
  unfolding Bit_def by simp_all
huffman@46720
    57
huffman@46722
    58
lemma bin_last_numeral_simps [simp]:
huffman@46722
    59
  "bin_last 0 = 0"
huffman@46722
    60
  "bin_last 1 = 1"
huffman@46722
    61
  "bin_last -1 = 1"
huffman@46722
    62
  "bin_last (number_of (Int.Bit0 w)) = 0"
huffman@46722
    63
  "bin_last (number_of (Int.Bit1 w)) = 1"
huffman@46722
    64
  unfolding bin_last_def by simp_all
huffman@46722
    65
huffman@46722
    66
lemma bin_rest_numeral_simps [simp]:
huffman@46722
    67
  "bin_rest 0 = 0"
huffman@46722
    68
  "bin_rest 1 = 0"
huffman@46722
    69
  "bin_rest -1 = -1"
huffman@46722
    70
  "bin_rest (number_of (Int.Bit0 w)) = number_of w"
huffman@46722
    71
  "bin_rest (number_of (Int.Bit1 w)) = number_of w"
huffman@46722
    72
  unfolding bin_rest_def by simp_all
huffman@46722
    73
huffman@46718
    74
lemma BIT_B0_eq_Bit0: "w BIT 0 = Int.Bit0 w"
haftmann@26557
    75
  unfolding Bit_def Bit0_def by simp
haftmann@26557
    76
huffman@46718
    77
lemma BIT_B1_eq_Bit1: "w BIT 1 = Int.Bit1 w"
haftmann@26557
    78
  unfolding Bit_def Bit1_def by simp
haftmann@26557
    79
haftmann@26557
    80
lemmas BIT_simps = BIT_B0_eq_Bit0 BIT_B1_eq_Bit1
haftmann@26557
    81
haftmann@26557
    82
lemma number_of_False_cong: 
haftmann@26557
    83
  "False \<Longrightarrow> number_of x = number_of y"
haftmann@26557
    84
  by (rule FalseE)
haftmann@26557
    85
haftmann@26557
    86
lemma less_Bits: 
haftmann@37654
    87
  "(v BIT b < w BIT c) = (v < w | v <= w & b = (0::bit) & c = (1::bit))"
haftmann@37667
    88
  unfolding Bit_def by (auto simp add: bitval_def split: bit.split)
haftmann@26557
    89
haftmann@26557
    90
lemma le_Bits: 
haftmann@37654
    91
  "(v BIT b <= w BIT c) = (v < w | v <= w & (b ~= (1::bit) | c ~= (0::bit)))" 
haftmann@37667
    92
  unfolding Bit_def by (auto simp add: bitval_def split: bit.split)
haftmann@26557
    93
haftmann@26557
    94
lemma Bit_B0:
haftmann@37654
    95
  "k BIT (0::bit) = k + k"
haftmann@26557
    96
   by (unfold Bit_def) simp
haftmann@26557
    97
haftmann@26557
    98
lemma Bit_B1:
haftmann@37654
    99
  "k BIT (1::bit) = k + k + 1"
haftmann@26557
   100
   by (unfold Bit_def) simp
haftmann@26557
   101
  
haftmann@37654
   102
lemma Bit_B0_2t: "k BIT (0::bit) = 2 * k"
haftmann@26557
   103
  by (rule trans, rule Bit_B0) simp
haftmann@26557
   104
haftmann@37654
   105
lemma Bit_B1_2t: "k BIT (1::bit) = 2 * k + 1"
haftmann@26557
   106
  by (rule trans, rule Bit_B1) simp
haftmann@26557
   107
haftmann@26557
   108
lemma B_mod_2': 
haftmann@37654
   109
  "X = 2 ==> (w BIT (1::bit)) mod X = 1 & (w BIT (0::bit)) mod X = 0"
haftmann@26557
   110
  apply (simp (no_asm) only: Bit_B0 Bit_B1)
haftmann@26557
   111
  apply (simp add: z1pmod2)
haftmann@26557
   112
  done
haftmann@26557
   113
haftmann@26557
   114
lemma B1_mod_2 [simp]: "(Int.Bit1 w) mod 2 = 1"
haftmann@26557
   115
  unfolding numeral_simps number_of_is_id by (simp add: z1pmod2)
haftmann@26557
   116
haftmann@26557
   117
lemma B0_mod_2 [simp]: "(Int.Bit0 w) mod 2 = 0"
haftmann@26557
   118
  unfolding numeral_simps number_of_is_id by simp
haftmann@26557
   119
haftmann@26557
   120
lemma neB1E [elim!]:
haftmann@37654
   121
  assumes ne: "y \<noteq> (1::bit)"
haftmann@37654
   122
  assumes y: "y = (0::bit) \<Longrightarrow> P"
haftmann@26557
   123
  shows "P"
haftmann@26557
   124
  apply (rule y)
haftmann@26557
   125
  apply (cases y rule: bit.exhaust, simp)
haftmann@26557
   126
  apply (simp add: ne)
haftmann@26557
   127
  done
haftmann@26557
   128
haftmann@26557
   129
lemma bin_ex_rl: "EX w b. w BIT b = bin"
haftmann@26557
   130
  apply (unfold Bit_def)
haftmann@26557
   131
  apply (cases "even bin")
haftmann@26557
   132
   apply (clarsimp simp: even_equiv_def)
haftmann@37667
   133
   apply (auto simp: odd_equiv_def bitval_def split: bit.split)
haftmann@26557
   134
  done
haftmann@26557
   135
haftmann@26557
   136
lemma bin_exhaust:
haftmann@26557
   137
  assumes Q: "\<And>x b. bin = x BIT b \<Longrightarrow> Q"
haftmann@26557
   138
  shows "Q"
haftmann@26557
   139
  apply (insert bin_ex_rl [of bin])  
haftmann@26557
   140
  apply (erule exE)+
haftmann@26557
   141
  apply (rule Q)
haftmann@26557
   142
  apply force
haftmann@26557
   143
  done
haftmann@26557
   144
haftmann@26557
   145
haftmann@26557
   146
subsection {* Destructors for binary integers *}
haftmann@26557
   147
haftmann@26557
   148
definition bin_rl :: "int \<Rightarrow> int \<times> bit" where 
haftmann@37542
   149
  "bin_rl w = (bin_rest w, bin_last w)"
haftmann@26557
   150
haftmann@37542
   151
lemma bin_rl_char: "bin_rl w = (r, l) \<longleftrightarrow> r BIT l = w"
huffman@46714
   152
  unfolding bin_rl_def by (auto simp: bin_rest_BIT bin_last_BIT)
kleing@24333
   153
haftmann@26514
   154
primrec bin_nth where
haftmann@37654
   155
  Z: "bin_nth w 0 = (bin_last w = (1::bit))"
haftmann@26557
   156
  | Suc: "bin_nth w (Suc n) = bin_nth (bin_rest w) n"
huffman@24364
   157
haftmann@26557
   158
lemma bin_rl_simps [simp]:
haftmann@37654
   159
  "bin_rl Int.Pls = (Int.Pls, (0::bit))"
haftmann@37654
   160
  "bin_rl Int.Min = (Int.Min, (1::bit))"
haftmann@37654
   161
  "bin_rl (Int.Bit0 r) = (r, (0::bit))"
haftmann@37654
   162
  "bin_rl (Int.Bit1 r) = (r, (1::bit))"
haftmann@26557
   163
  "bin_rl (r BIT b) = (r, b)"
huffman@46718
   164
  unfolding bin_rl_char by (simp_all add: BIT_simps)
haftmann@26557
   165
haftmann@26557
   166
lemma bin_abs_lem:
haftmann@26557
   167
  "bin = (w BIT b) ==> ~ bin = Int.Min --> ~ bin = Int.Pls -->
haftmann@26557
   168
    nat (abs w) < nat (abs bin)"
haftmann@26557
   169
  apply (clarsimp simp add: bin_rl_char)
haftmann@26557
   170
  apply (unfold Pls_def Min_def Bit_def)
haftmann@26557
   171
  apply (cases b)
haftmann@26557
   172
   apply (clarsimp, arith)
haftmann@26557
   173
  apply (clarsimp, arith)
haftmann@26557
   174
  done
haftmann@26557
   175
haftmann@26557
   176
lemma bin_induct:
haftmann@26557
   177
  assumes PPls: "P Int.Pls"
haftmann@26557
   178
    and PMin: "P Int.Min"
haftmann@26557
   179
    and PBit: "!!bin bit. P bin ==> P (bin BIT bit)"
haftmann@26557
   180
  shows "P bin"
haftmann@26557
   181
  apply (rule_tac P=P and a=bin and f1="nat o abs" 
haftmann@26557
   182
                  in wf_measure [THEN wf_induct])
haftmann@26557
   183
  apply (simp add: measure_def inv_image_def)
haftmann@26557
   184
  apply (case_tac x rule: bin_exhaust)
haftmann@26557
   185
  apply (frule bin_abs_lem)
haftmann@26557
   186
  apply (auto simp add : PPls PMin PBit)
haftmann@26557
   187
  done
haftmann@26557
   188
haftmann@26557
   189
lemma numeral_induct:
haftmann@26557
   190
  assumes Pls: "P Int.Pls"
haftmann@26557
   191
  assumes Min: "P Int.Min"
haftmann@26557
   192
  assumes Bit0: "\<And>w. \<lbrakk>P w; w \<noteq> Int.Pls\<rbrakk> \<Longrightarrow> P (Int.Bit0 w)"
haftmann@26557
   193
  assumes Bit1: "\<And>w. \<lbrakk>P w; w \<noteq> Int.Min\<rbrakk> \<Longrightarrow> P (Int.Bit1 w)"
haftmann@26557
   194
  shows "P x"
haftmann@26557
   195
  apply (induct x rule: bin_induct)
haftmann@26557
   196
    apply (rule Pls)
haftmann@26557
   197
   apply (rule Min)
haftmann@26557
   198
  apply (case_tac bit)
haftmann@26557
   199
   apply (case_tac "bin = Int.Pls")
huffman@46718
   200
    apply (simp add: BIT_simps)
huffman@46718
   201
   apply (simp add: Bit0 BIT_simps)
haftmann@26557
   202
  apply (case_tac "bin = Int.Min")
huffman@46718
   203
   apply (simp add: BIT_simps)
huffman@46718
   204
  apply (simp add: Bit1 BIT_simps)
haftmann@26557
   205
  done
haftmann@26557
   206
huffman@24465
   207
lemma bin_rest_simps [simp]: 
haftmann@25919
   208
  "bin_rest Int.Pls = Int.Pls"
haftmann@25919
   209
  "bin_rest Int.Min = Int.Min"
huffman@26086
   210
  "bin_rest (Int.Bit0 w) = w"
huffman@26086
   211
  "bin_rest (Int.Bit1 w) = w"
haftmann@26514
   212
  "bin_rest (w BIT b) = w"
haftmann@37542
   213
  using bin_rl_simps bin_rl_def by auto
huffman@24465
   214
huffman@24465
   215
lemma bin_last_simps [simp]: 
haftmann@37654
   216
  "bin_last Int.Pls = (0::bit)"
haftmann@37654
   217
  "bin_last Int.Min = (1::bit)"
haftmann@37654
   218
  "bin_last (Int.Bit0 w) = (0::bit)"
haftmann@37654
   219
  "bin_last (Int.Bit1 w) = (1::bit)"
haftmann@26514
   220
  "bin_last (w BIT b) = b"
haftmann@37542
   221
  using bin_rl_simps bin_rl_def by auto
huffman@26086
   222
kleing@24333
   223
lemma Bit_div2 [simp]: "(w BIT b) div 2 = w"
huffman@46400
   224
  unfolding bin_rest_def [symmetric] by auto
kleing@24333
   225
huffman@26086
   226
lemma Bit0_div2 [simp]: "(Int.Bit0 w) div 2 = w"
huffman@46718
   227
  using Bit_div2 [where b="(0::bit)"] by (simp add: BIT_simps)
huffman@26086
   228
huffman@26086
   229
lemma Bit1_div2 [simp]: "(Int.Bit1 w) div 2 = w"
huffman@46718
   230
  using Bit_div2 [where b="(1::bit)"] by (simp add: BIT_simps)
huffman@26086
   231
kleing@24333
   232
lemma bin_nth_lem [rule_format]:
kleing@24333
   233
  "ALL y. bin_nth x = bin_nth y --> x = y"
kleing@24333
   234
  apply (induct x rule: bin_induct)
kleing@24333
   235
    apply safe
kleing@24333
   236
    apply (erule rev_mp)
kleing@24333
   237
    apply (induct_tac y rule: bin_induct)
berghofe@26827
   238
      apply (safe del: subset_antisym)
kleing@24333
   239
      apply (drule_tac x=0 in fun_cong, force)
kleing@24333
   240
     apply (erule notE, rule ext, 
kleing@24333
   241
            drule_tac x="Suc x" in fun_cong, force)
huffman@46718
   242
    apply (drule_tac x=0 in fun_cong, force simp: BIT_simps)
kleing@24333
   243
   apply (erule rev_mp)
kleing@24333
   244
   apply (induct_tac y rule: bin_induct)
berghofe@26827
   245
     apply (safe del: subset_antisym)
kleing@24333
   246
     apply (drule_tac x=0 in fun_cong, force)
kleing@24333
   247
    apply (erule notE, rule ext, 
kleing@24333
   248
           drule_tac x="Suc x" in fun_cong, force)
huffman@46718
   249
   apply (drule_tac x=0 in fun_cong, force simp: BIT_simps)
kleing@24333
   250
  apply (case_tac y rule: bin_exhaust)
kleing@24333
   251
  apply clarify
kleing@24333
   252
  apply (erule allE)
kleing@24333
   253
  apply (erule impE)
kleing@24333
   254
   prefer 2
huffman@46719
   255
   apply (erule conjI)
kleing@24333
   256
   apply (drule_tac x=0 in fun_cong, force)
kleing@24333
   257
  apply (rule ext)
kleing@24333
   258
  apply (drule_tac x="Suc ?x" in fun_cong, force)
kleing@24333
   259
  done
kleing@24333
   260
kleing@24333
   261
lemma bin_nth_eq_iff: "(bin_nth x = bin_nth y) = (x = y)"
kleing@24333
   262
  by (auto elim: bin_nth_lem)
kleing@24333
   263
wenzelm@46475
   264
lemmas bin_eqI = ext [THEN bin_nth_eq_iff [THEN iffD1]]
kleing@24333
   265
huffman@46414
   266
lemma bin_eq_iff: "x = y \<longleftrightarrow> (\<forall>n. bin_nth x n = bin_nth y n)"
huffman@46414
   267
  by (auto intro!: bin_nth_lem del: equalityI)
huffman@46414
   268
huffman@46724
   269
lemma bin_nth_zero [simp]: "\<not> bin_nth 0 n"
huffman@46724
   270
  by (induct n) auto
huffman@46724
   271
haftmann@25919
   272
lemma bin_nth_Pls [simp]: "~ bin_nth Int.Pls n"
kleing@24333
   273
  by (induct n) auto
kleing@24333
   274
huffman@46823
   275
lemma bin_nth_minus1 [simp]: "bin_nth -1 n"
huffman@46823
   276
  by (induct n) auto
huffman@46823
   277
haftmann@25919
   278
lemma bin_nth_Min [simp]: "bin_nth Int.Min n"
kleing@24333
   279
  by (induct n) auto
kleing@24333
   280
haftmann@37654
   281
lemma bin_nth_0_BIT: "bin_nth (w BIT b) 0 = (b = (1::bit))"
kleing@24333
   282
  by auto
kleing@24333
   283
kleing@24333
   284
lemma bin_nth_Suc_BIT: "bin_nth (w BIT b) (Suc n) = bin_nth w n"
kleing@24333
   285
  by auto
kleing@24333
   286
kleing@24333
   287
lemma bin_nth_minus [simp]: "0 < n ==> bin_nth (w BIT b) n = bin_nth w (n - 1)"
kleing@24333
   288
  by (cases n) auto
kleing@24333
   289
huffman@26086
   290
lemma bin_nth_minus_Bit0 [simp]:
huffman@26086
   291
  "0 < n ==> bin_nth (Int.Bit0 w) n = bin_nth w (n - 1)"
huffman@46718
   292
  using bin_nth_minus [where b="(0::bit)"] by (simp add: BIT_simps)
huffman@26086
   293
huffman@26086
   294
lemma bin_nth_minus_Bit1 [simp]:
huffman@26086
   295
  "0 < n ==> bin_nth (Int.Bit1 w) n = bin_nth w (n - 1)"
huffman@46718
   296
  using bin_nth_minus [where b="(1::bit)"] by (simp add: BIT_simps)
huffman@26086
   297
kleing@24333
   298
lemmas bin_nth_0 = bin_nth.simps(1)
kleing@24333
   299
lemmas bin_nth_Suc = bin_nth.simps(2)
kleing@24333
   300
kleing@24333
   301
lemmas bin_nth_simps = 
kleing@24333
   302
  bin_nth_0 bin_nth_Suc bin_nth_Pls bin_nth_Min bin_nth_minus
huffman@26086
   303
  bin_nth_minus_Bit0 bin_nth_minus_Bit1
kleing@24333
   304
haftmann@26557
   305
haftmann@26557
   306
subsection {* Truncating binary integers *}
haftmann@26557
   307
huffman@46717
   308
definition bin_sign :: "int \<Rightarrow> int" where
haftmann@37667
   309
  bin_sign_def: "bin_sign k = (if k \<ge> 0 then 0 else - 1)"
haftmann@26557
   310
haftmann@26557
   311
lemma bin_sign_simps [simp]:
huffman@46721
   312
  "bin_sign 0 = 0"
huffman@46721
   313
  "bin_sign -1 = -1"
huffman@46721
   314
  "bin_sign (number_of (Int.Bit0 w)) = bin_sign (number_of w)"
huffman@46721
   315
  "bin_sign (number_of (Int.Bit1 w)) = bin_sign (number_of w)"
haftmann@26557
   316
  "bin_sign Int.Pls = Int.Pls"
haftmann@26557
   317
  "bin_sign Int.Min = Int.Min"
haftmann@26557
   318
  "bin_sign (Int.Bit0 w) = bin_sign w"
haftmann@26557
   319
  "bin_sign (Int.Bit1 w) = bin_sign w"
haftmann@26557
   320
  "bin_sign (w BIT b) = bin_sign w"
huffman@46721
   321
  unfolding bin_sign_def numeral_simps Bit_def bitval_def number_of_is_id
huffman@46721
   322
  by (simp_all split: bit.split)
haftmann@26557
   323
huffman@24364
   324
lemma bin_sign_rest [simp]: 
haftmann@37667
   325
  "bin_sign (bin_rest w) = bin_sign w"
haftmann@26557
   326
  by (cases w rule: bin_exhaust) auto
huffman@24364
   327
haftmann@37667
   328
primrec bintrunc :: "nat \<Rightarrow> int \<Rightarrow> int" where
haftmann@25919
   329
  Z : "bintrunc 0 bin = Int.Pls"
haftmann@37667
   330
| Suc : "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT (bin_last bin)"
huffman@24364
   331
haftmann@37667
   332
primrec sbintrunc :: "nat => int => int" where
huffman@24364
   333
  Z : "sbintrunc 0 bin = 
haftmann@37654
   334
    (case bin_last bin of (1::bit) => Int.Min | (0::bit) => Int.Pls)"
haftmann@37667
   335
| Suc : "sbintrunc (Suc n) bin = sbintrunc n (bin_rest bin) BIT (bin_last bin)"
haftmann@37667
   336
haftmann@37667
   337
lemma [code]:
haftmann@37667
   338
  "sbintrunc 0 bin = 
haftmann@37667
   339
    (case bin_last bin of (1::bit) => - 1 | (0::bit) => 0)"
haftmann@37667
   340
  "sbintrunc (Suc n) bin = sbintrunc n (bin_rest bin) BIT (bin_last bin)"
huffman@46716
   341
  apply simp_all
huffman@46716
   342
  apply (simp only: Pls_def Min_def)
huffman@46716
   343
  done
huffman@24364
   344
huffman@46825
   345
lemma sign_bintr: "bin_sign (bintrunc n w) = Int.Pls"
huffman@46825
   346
  by (induct n arbitrary: w) auto
kleing@24333
   347
huffman@46825
   348
lemma bintrunc_mod2p: "bintrunc n w = (w mod 2 ^ n)"
huffman@46825
   349
  apply (induct n arbitrary: w)
huffman@46716
   350
  apply (simp add: Pls_def)
huffman@46825
   351
  apply (simp add: bin_last_def bin_rest_def Bit_def zmod_zmult2_eq)
kleing@24333
   352
  done
kleing@24333
   353
huffman@46825
   354
lemma sbintrunc_mod2p: "sbintrunc n w = (w + 2 ^ n) mod 2 ^ (Suc n) - 2 ^ n"
huffman@46825
   355
  apply (induct n arbitrary: w)
kleing@24333
   356
   apply clarsimp
nipkow@29971
   357
   apply (subst mod_add_left_eq)
huffman@46400
   358
   apply (simp add: bin_last_def)
kleing@24333
   359
   apply (simp add: number_of_eq)
huffman@46716
   360
  apply (simp add: Pls_def)
huffman@46400
   361
  apply (simp add: bin_last_def bin_rest_def Bit_def 
kleing@24333
   362
              cong: number_of_False_cong)
haftmann@30940
   363
  apply (clarsimp simp: mod_mult_mult1 [symmetric] 
kleing@24333
   364
         zmod_zdiv_equality [THEN diff_eq_eq [THEN iffD2 [THEN sym]]])
kleing@24333
   365
  apply (rule trans [symmetric, OF _ emep1])
kleing@24333
   366
     apply auto
kleing@24333
   367
  apply (auto simp: even_def)
kleing@24333
   368
  done
kleing@24333
   369
huffman@24465
   370
subsection "Simplifications for (s)bintrunc"
huffman@24465
   371
huffman@46723
   372
lemma bintrunc_n_0 [simp]: "bintrunc n 0 = 0"
huffman@46723
   373
  by (induct n) (auto simp add: Int.Pls_def)
huffman@46723
   374
huffman@46726
   375
lemma sbintrunc_n_0 [simp]: "sbintrunc n 0 = 0"
huffman@46726
   376
  by (induct n) (auto simp add: Int.Pls_def)
huffman@46726
   377
huffman@46727
   378
lemma sbintrunc_n_minus1 [simp]: "sbintrunc n -1 = -1"
huffman@46727
   379
  by (induct n) (auto, simp add: number_of_is_id)
huffman@46727
   380
huffman@46723
   381
lemma bintrunc_Suc_numeral:
huffman@46723
   382
  "bintrunc (Suc n) 1 = 1"
huffman@46723
   383
  "bintrunc (Suc n) -1 = bintrunc n -1 BIT 1"
huffman@46723
   384
  "bintrunc (Suc n) (number_of (Int.Bit0 w)) = bintrunc n (number_of w) BIT 0"
huffman@46723
   385
  "bintrunc (Suc n) (number_of (Int.Bit1 w)) = bintrunc n (number_of w) BIT 1"
huffman@46723
   386
  by simp_all
huffman@46723
   387
huffman@46727
   388
lemma sbintrunc_0_numeral [simp]:
huffman@46727
   389
  "sbintrunc 0 1 = -1"
huffman@46727
   390
  "sbintrunc 0 (number_of (Int.Bit0 w)) = 0"
huffman@46727
   391
  "sbintrunc 0 (number_of (Int.Bit1 w)) = -1"
huffman@46727
   392
  by (simp_all, unfold Pls_def number_of_is_id, simp_all)
huffman@46727
   393
huffman@46726
   394
lemma sbintrunc_Suc_numeral:
huffman@46726
   395
  "sbintrunc (Suc n) 1 = 1"
huffman@46726
   396
  "sbintrunc (Suc n) (number_of (Int.Bit0 w)) = sbintrunc n (number_of w) BIT 0"
huffman@46726
   397
  "sbintrunc (Suc n) (number_of (Int.Bit1 w)) = sbintrunc n (number_of w) BIT 1"
huffman@46726
   398
  by simp_all
huffman@46726
   399
huffman@24465
   400
lemma bit_bool:
haftmann@37654
   401
  "(b = (b' = (1::bit))) = (b' = (if b then (1::bit) else (0::bit)))"
huffman@24465
   402
  by (cases b') auto
huffman@24465
   403
huffman@24465
   404
lemmas bit_bool1 [simp] = refl [THEN bit_bool [THEN iffD1], symmetric]
kleing@24333
   405
huffman@46825
   406
lemma bin_sign_lem: "(bin_sign (sbintrunc n bin) = Int.Min) = bin_nth bin n"
huffman@46825
   407
  apply (induct n arbitrary: bin)
kleing@24333
   408
   apply (case_tac bin rule: bin_exhaust, case_tac b, auto)+
kleing@24333
   409
  done
kleing@24333
   410
huffman@46825
   411
lemma nth_bintr: "bin_nth (bintrunc m w) n = (n < m & bin_nth w n)"
huffman@46825
   412
  apply (induct n arbitrary: w m)
kleing@24333
   413
   apply (case_tac m, auto)[1]
kleing@24333
   414
  apply (case_tac m, auto)[1]
kleing@24333
   415
  done
kleing@24333
   416
kleing@24333
   417
lemma nth_sbintr:
huffman@46825
   418
  "bin_nth (sbintrunc m w) n = 
kleing@24333
   419
          (if n < m then bin_nth w n else bin_nth w m)"
huffman@46825
   420
  apply (induct n arbitrary: w m)
kleing@24333
   421
   apply (case_tac m, simp_all split: bit.splits)[1]
kleing@24333
   422
  apply (case_tac m, simp_all split: bit.splits)[1]
kleing@24333
   423
  done
kleing@24333
   424
kleing@24333
   425
lemma bin_nth_Bit:
haftmann@37654
   426
  "bin_nth (w BIT b) n = (n = 0 & b = (1::bit) | (EX m. n = Suc m & bin_nth w m))"
kleing@24333
   427
  by (cases n) auto
kleing@24333
   428
huffman@26086
   429
lemma bin_nth_Bit0:
huffman@26086
   430
  "bin_nth (Int.Bit0 w) n = (EX m. n = Suc m & bin_nth w m)"
huffman@46718
   431
  using bin_nth_Bit [where b="(0::bit)"] by (simp add: BIT_simps)
huffman@26086
   432
huffman@26086
   433
lemma bin_nth_Bit1:
huffman@26086
   434
  "bin_nth (Int.Bit1 w) n = (n = 0 | (EX m. n = Suc m & bin_nth w m))"
huffman@46718
   435
  using bin_nth_Bit [where b="(1::bit)"] by (simp add: BIT_simps)
huffman@26086
   436
kleing@24333
   437
lemma bintrunc_bintrunc_l:
kleing@24333
   438
  "n <= m ==> (bintrunc m (bintrunc n w) = bintrunc n w)"
kleing@24333
   439
  by (rule bin_eqI) (auto simp add : nth_bintr)
kleing@24333
   440
kleing@24333
   441
lemma sbintrunc_sbintrunc_l:
kleing@24333
   442
  "n <= m ==> (sbintrunc m (sbintrunc n w) = sbintrunc n w)"
nipkow@32437
   443
  by (rule bin_eqI) (auto simp: nth_sbintr)
kleing@24333
   444
kleing@24333
   445
lemma bintrunc_bintrunc_ge:
kleing@24333
   446
  "n <= m ==> (bintrunc n (bintrunc m w) = bintrunc n w)"
kleing@24333
   447
  by (rule bin_eqI) (auto simp: nth_bintr)
kleing@24333
   448
kleing@24333
   449
lemma bintrunc_bintrunc_min [simp]:
kleing@24333
   450
  "bintrunc m (bintrunc n w) = bintrunc (min m n) w"
kleing@24333
   451
  apply (rule bin_eqI)
kleing@24333
   452
  apply (auto simp: nth_bintr)
kleing@24333
   453
  done
kleing@24333
   454
kleing@24333
   455
lemma sbintrunc_sbintrunc_min [simp]:
kleing@24333
   456
  "sbintrunc m (sbintrunc n w) = sbintrunc (min m n) w"
kleing@24333
   457
  apply (rule bin_eqI)
haftmann@32642
   458
  apply (auto simp: nth_sbintr min_max.inf_absorb1 min_max.inf_absorb2)
kleing@24333
   459
  done
kleing@24333
   460
kleing@24333
   461
lemmas bintrunc_Pls = 
wenzelm@46475
   462
  bintrunc.Suc [where bin="Int.Pls", simplified bin_last_simps bin_rest_simps]
kleing@24333
   463
kleing@24333
   464
lemmas bintrunc_Min [simp] = 
wenzelm@46475
   465
  bintrunc.Suc [where bin="Int.Min", simplified bin_last_simps bin_rest_simps]
kleing@24333
   466
kleing@24333
   467
lemmas bintrunc_BIT  [simp] = 
wenzelm@46475
   468
  bintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps] for w b
kleing@24333
   469
huffman@26086
   470
lemma bintrunc_Bit0 [simp]:
huffman@26086
   471
  "bintrunc (Suc n) (Int.Bit0 w) = Int.Bit0 (bintrunc n w)"
huffman@46718
   472
  using bintrunc_BIT [where b="(0::bit)"] by (simp add: BIT_simps)
huffman@26086
   473
huffman@26086
   474
lemma bintrunc_Bit1 [simp]:
huffman@26086
   475
  "bintrunc (Suc n) (Int.Bit1 w) = Int.Bit1 (bintrunc n w)"
huffman@46718
   476
  using bintrunc_BIT [where b="(1::bit)"] by (simp add: BIT_simps)
huffman@26086
   477
kleing@24333
   478
lemmas bintrunc_Sucs = bintrunc_Pls bintrunc_Min bintrunc_BIT
huffman@26086
   479
  bintrunc_Bit0 bintrunc_Bit1
huffman@46723
   480
  bintrunc_Suc_numeral
kleing@24333
   481
kleing@24333
   482
lemmas sbintrunc_Suc_Pls = 
wenzelm@46475
   483
  sbintrunc.Suc [where bin="Int.Pls", simplified bin_last_simps bin_rest_simps]
kleing@24333
   484
kleing@24333
   485
lemmas sbintrunc_Suc_Min = 
wenzelm@46475
   486
  sbintrunc.Suc [where bin="Int.Min", simplified bin_last_simps bin_rest_simps]
kleing@24333
   487
kleing@24333
   488
lemmas sbintrunc_Suc_BIT [simp] = 
wenzelm@46475
   489
  sbintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps] for w b
kleing@24333
   490
huffman@26086
   491
lemma sbintrunc_Suc_Bit0 [simp]:
huffman@26086
   492
  "sbintrunc (Suc n) (Int.Bit0 w) = Int.Bit0 (sbintrunc n w)"
huffman@46718
   493
  using sbintrunc_Suc_BIT [where b="(0::bit)"] by (simp add: BIT_simps)
huffman@26086
   494
huffman@26086
   495
lemma sbintrunc_Suc_Bit1 [simp]:
huffman@26086
   496
  "sbintrunc (Suc n) (Int.Bit1 w) = Int.Bit1 (sbintrunc n w)"
huffman@46718
   497
  using sbintrunc_Suc_BIT [where b="(1::bit)"] by (simp add: BIT_simps)
huffman@26086
   498
kleing@24333
   499
lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_BIT
huffman@26086
   500
  sbintrunc_Suc_Bit0 sbintrunc_Suc_Bit1
huffman@46726
   501
  sbintrunc_Suc_numeral
kleing@24333
   502
kleing@24333
   503
lemmas sbintrunc_Pls = 
haftmann@25919
   504
  sbintrunc.Z [where bin="Int.Pls", 
wenzelm@46475
   505
               simplified bin_last_simps bin_rest_simps bit.simps]
kleing@24333
   506
kleing@24333
   507
lemmas sbintrunc_Min = 
haftmann@25919
   508
  sbintrunc.Z [where bin="Int.Min", 
wenzelm@46475
   509
               simplified bin_last_simps bin_rest_simps bit.simps]
kleing@24333
   510
kleing@24333
   511
lemmas sbintrunc_0_BIT_B0 [simp] = 
haftmann@37654
   512
  sbintrunc.Z [where bin="w BIT (0::bit)", 
wenzelm@46475
   513
               simplified bin_last_simps bin_rest_simps bit.simps] for w
kleing@24333
   514
kleing@24333
   515
lemmas sbintrunc_0_BIT_B1 [simp] = 
haftmann@37654
   516
  sbintrunc.Z [where bin="w BIT (1::bit)", 
wenzelm@46475
   517
               simplified bin_last_simps bin_rest_simps bit.simps] for w
kleing@24333
   518
huffman@26086
   519
lemma sbintrunc_0_Bit0 [simp]: "sbintrunc 0 (Int.Bit0 w) = Int.Pls"
huffman@26086
   520
  using sbintrunc_0_BIT_B0 by simp
huffman@26086
   521
huffman@26086
   522
lemma sbintrunc_0_Bit1 [simp]: "sbintrunc 0 (Int.Bit1 w) = Int.Min"
huffman@26086
   523
  using sbintrunc_0_BIT_B1 by simp
huffman@26086
   524
kleing@24333
   525
lemmas sbintrunc_0_simps =
kleing@24333
   526
  sbintrunc_Pls sbintrunc_Min sbintrunc_0_BIT_B0 sbintrunc_0_BIT_B1
huffman@26086
   527
  sbintrunc_0_Bit0 sbintrunc_0_Bit1
kleing@24333
   528
kleing@24333
   529
lemmas bintrunc_simps = bintrunc.Z bintrunc_Sucs
kleing@24333
   530
lemmas sbintrunc_simps = sbintrunc_0_simps sbintrunc_Sucs
kleing@24333
   531
kleing@24333
   532
lemma bintrunc_minus:
kleing@24333
   533
  "0 < n ==> bintrunc (Suc (n - 1)) w = bintrunc n w"
kleing@24333
   534
  by auto
kleing@24333
   535
kleing@24333
   536
lemma sbintrunc_minus:
kleing@24333
   537
  "0 < n ==> sbintrunc (Suc (n - 1)) w = sbintrunc n w"
kleing@24333
   538
  by auto
kleing@24333
   539
kleing@24333
   540
lemmas bintrunc_minus_simps = 
wenzelm@46475
   541
  bintrunc_Sucs [THEN [2] bintrunc_minus [symmetric, THEN trans]]
kleing@24333
   542
lemmas sbintrunc_minus_simps = 
wenzelm@46475
   543
  sbintrunc_Sucs [THEN [2] sbintrunc_minus [symmetric, THEN trans]]
kleing@24333
   544
kleing@24333
   545
lemma bintrunc_n_Pls [simp]:
haftmann@25919
   546
  "bintrunc n Int.Pls = Int.Pls"
huffman@46718
   547
  by (induct n) (auto simp: BIT_simps)
kleing@24333
   548
kleing@24333
   549
lemma sbintrunc_n_PM [simp]:
haftmann@25919
   550
  "sbintrunc n Int.Pls = Int.Pls"
haftmann@25919
   551
  "sbintrunc n Int.Min = Int.Min"
huffman@46718
   552
  by (induct n) (auto simp: BIT_simps)
kleing@24333
   553
wenzelm@46475
   554
lemmas thobini1 = arg_cong [where f = "%w. w BIT b"] for b
kleing@24333
   555
kleing@24333
   556
lemmas bintrunc_BIT_I = trans [OF bintrunc_BIT thobini1]
kleing@24333
   557
lemmas bintrunc_Min_I = trans [OF bintrunc_Min thobini1]
kleing@24333
   558
wenzelm@46475
   559
lemmas bmsts = bintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans]]
kleing@24333
   560
lemmas bintrunc_Pls_minus_I = bmsts(1)
kleing@24333
   561
lemmas bintrunc_Min_minus_I = bmsts(2)
kleing@24333
   562
lemmas bintrunc_BIT_minus_I = bmsts(3)
kleing@24333
   563
kleing@24333
   564
lemma bintrunc_Suc_lem:
kleing@24333
   565
  "bintrunc (Suc n) x = y ==> m = Suc n ==> bintrunc m x = y"
kleing@24333
   566
  by auto
kleing@24333
   567
kleing@24333
   568
lemmas bintrunc_Suc_Ialts = 
wenzelm@46475
   569
  bintrunc_Min_I [THEN bintrunc_Suc_lem]
wenzelm@46475
   570
  bintrunc_BIT_I [THEN bintrunc_Suc_lem]
kleing@24333
   571
kleing@24333
   572
lemmas sbintrunc_BIT_I = trans [OF sbintrunc_Suc_BIT thobini1]
kleing@24333
   573
kleing@24333
   574
lemmas sbintrunc_Suc_Is = 
wenzelm@46475
   575
  sbintrunc_Sucs(1-3) [THEN thobini1 [THEN [2] trans]]
kleing@24333
   576
kleing@24333
   577
lemmas sbintrunc_Suc_minus_Is = 
wenzelm@46475
   578
  sbintrunc_minus_simps(1-3) [THEN thobini1 [THEN [2] trans]]
kleing@24333
   579
kleing@24333
   580
lemma sbintrunc_Suc_lem:
kleing@24333
   581
  "sbintrunc (Suc n) x = y ==> m = Suc n ==> sbintrunc m x = y"
kleing@24333
   582
  by auto
kleing@24333
   583
kleing@24333
   584
lemmas sbintrunc_Suc_Ialts = 
wenzelm@46475
   585
  sbintrunc_Suc_Is [THEN sbintrunc_Suc_lem]
kleing@24333
   586
kleing@24333
   587
lemma sbintrunc_bintrunc_lt:
kleing@24333
   588
  "m > n ==> sbintrunc n (bintrunc m w) = sbintrunc n w"
kleing@24333
   589
  by (rule bin_eqI) (auto simp: nth_sbintr nth_bintr)
kleing@24333
   590
kleing@24333
   591
lemma bintrunc_sbintrunc_le:
kleing@24333
   592
  "m <= Suc n ==> bintrunc m (sbintrunc n w) = bintrunc m w"
kleing@24333
   593
  apply (rule bin_eqI)
kleing@24333
   594
  apply (auto simp: nth_sbintr nth_bintr)
kleing@24333
   595
   apply (subgoal_tac "x=n", safe, arith+)[1]
kleing@24333
   596
  apply (subgoal_tac "x=n", safe, arith+)[1]
kleing@24333
   597
  done
kleing@24333
   598
kleing@24333
   599
lemmas bintrunc_sbintrunc [simp] = order_refl [THEN bintrunc_sbintrunc_le]
kleing@24333
   600
lemmas sbintrunc_bintrunc [simp] = lessI [THEN sbintrunc_bintrunc_lt]
kleing@24333
   601
lemmas bintrunc_bintrunc [simp] = order_refl [THEN bintrunc_bintrunc_l]
kleing@24333
   602
lemmas sbintrunc_sbintrunc [simp] = order_refl [THEN sbintrunc_sbintrunc_l] 
kleing@24333
   603
kleing@24333
   604
lemma bintrunc_sbintrunc' [simp]:
kleing@24333
   605
  "0 < n \<Longrightarrow> bintrunc n (sbintrunc (n - 1) w) = bintrunc n w"
kleing@24333
   606
  by (cases n) (auto simp del: bintrunc.Suc)
kleing@24333
   607
kleing@24333
   608
lemma sbintrunc_bintrunc' [simp]:
kleing@24333
   609
  "0 < n \<Longrightarrow> sbintrunc (n - 1) (bintrunc n w) = sbintrunc (n - 1) w"
kleing@24333
   610
  by (cases n) (auto simp del: bintrunc.Suc)
kleing@24333
   611
kleing@24333
   612
lemma bin_sbin_eq_iff: 
kleing@24333
   613
  "bintrunc (Suc n) x = bintrunc (Suc n) y <-> 
kleing@24333
   614
   sbintrunc n x = sbintrunc n y"
kleing@24333
   615
  apply (rule iffI)
kleing@24333
   616
   apply (rule box_equals [OF _ sbintrunc_bintrunc sbintrunc_bintrunc])
kleing@24333
   617
   apply simp
kleing@24333
   618
  apply (rule box_equals [OF _ bintrunc_sbintrunc bintrunc_sbintrunc])
kleing@24333
   619
  apply simp
kleing@24333
   620
  done
kleing@24333
   621
kleing@24333
   622
lemma bin_sbin_eq_iff':
kleing@24333
   623
  "0 < n \<Longrightarrow> bintrunc n x = bintrunc n y <-> 
kleing@24333
   624
            sbintrunc (n - 1) x = sbintrunc (n - 1) y"
kleing@24333
   625
  by (cases n) (simp_all add: bin_sbin_eq_iff del: bintrunc.Suc)
kleing@24333
   626
kleing@24333
   627
lemmas bintrunc_sbintruncS0 [simp] = bintrunc_sbintrunc' [unfolded One_nat_def]
kleing@24333
   628
lemmas sbintrunc_bintruncS0 [simp] = sbintrunc_bintrunc' [unfolded One_nat_def]
kleing@24333
   629
kleing@24333
   630
lemmas bintrunc_bintrunc_l' = le_add1 [THEN bintrunc_bintrunc_l]
kleing@24333
   631
lemmas sbintrunc_sbintrunc_l' = le_add1 [THEN sbintrunc_sbintrunc_l]
kleing@24333
   632
kleing@24333
   633
(* although bintrunc_minus_simps, if added to default simpset,
kleing@24333
   634
  tends to get applied where it's not wanted in developing the theories,
kleing@24333
   635
  we get a version for when the word length is given literally *)
kleing@24333
   636
kleing@24333
   637
lemmas nat_non0_gr = 
wenzelm@46475
   638
  trans [OF iszero_def [THEN Not_eq_iff [THEN iffD2]] refl]
kleing@24333
   639
kleing@24333
   640
lemmas bintrunc_pred_simps [simp] = 
wenzelm@46475
   641
  bintrunc_minus_simps [of "number_of bin", simplified nobm1] for bin
kleing@24333
   642
kleing@24333
   643
lemmas sbintrunc_pred_simps [simp] = 
wenzelm@46475
   644
  sbintrunc_minus_simps [of "number_of bin", simplified nobm1] for bin
kleing@24333
   645
kleing@24333
   646
lemma no_bintr_alt:
kleing@24333
   647
  "number_of (bintrunc n w) = w mod 2 ^ n"
kleing@24333
   648
  by (simp add: number_of_eq bintrunc_mod2p)
kleing@24333
   649
kleing@24333
   650
lemma no_bintr_alt1: "bintrunc n = (%w. w mod 2 ^ n :: int)"
kleing@24333
   651
  by (rule ext) (rule bintrunc_mod2p)
kleing@24333
   652
kleing@24333
   653
lemma range_bintrunc: "range (bintrunc n) = {i. 0 <= i & i < 2 ^ n}"
kleing@24333
   654
  apply (unfold no_bintr_alt1)
kleing@24333
   655
  apply (auto simp add: image_iff)
kleing@24333
   656
  apply (rule exI)
kleing@24333
   657
  apply (auto intro: int_mod_lem [THEN iffD1, symmetric])
kleing@24333
   658
  done
kleing@24333
   659
kleing@24333
   660
lemma no_bintr: 
kleing@24333
   661
  "number_of (bintrunc n w) = (number_of w mod 2 ^ n :: int)"
kleing@24333
   662
  by (simp add : bintrunc_mod2p number_of_eq)
kleing@24333
   663
kleing@24333
   664
lemma no_sbintr_alt2: 
kleing@24333
   665
  "sbintrunc n = (%w. (w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)"
kleing@24333
   666
  by (rule ext) (simp add : sbintrunc_mod2p)
kleing@24333
   667
kleing@24333
   668
lemma no_sbintr: 
kleing@24333
   669
  "number_of (sbintrunc n w) = 
kleing@24333
   670
   ((number_of w + 2 ^ n) mod 2 ^ Suc n - 2 ^ n :: int)"
kleing@24333
   671
  by (simp add : no_sbintr_alt2 number_of_eq)
kleing@24333
   672
kleing@24333
   673
lemma range_sbintrunc: 
kleing@24333
   674
  "range (sbintrunc n) = {i. - (2 ^ n) <= i & i < 2 ^ n}"
kleing@24333
   675
  apply (unfold no_sbintr_alt2)
kleing@24333
   676
  apply (auto simp add: image_iff eq_diff_eq)
kleing@24333
   677
  apply (rule exI)
kleing@24333
   678
  apply (auto intro: int_mod_lem [THEN iffD1, symmetric])
kleing@24333
   679
  done
kleing@24333
   680
wenzelm@25349
   681
lemma sb_inc_lem:
wenzelm@25349
   682
  "(a::int) + 2^k < 0 \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)"
wenzelm@25349
   683
  apply (erule int_mod_ge' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", simplified zless2p])
wenzelm@25349
   684
  apply (rule TrueI)
wenzelm@25349
   685
  done
kleing@24333
   686
wenzelm@25349
   687
lemma sb_inc_lem':
wenzelm@25349
   688
  "(a::int) < - (2^k) \<Longrightarrow> a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)"
haftmann@35048
   689
  by (rule sb_inc_lem) simp
kleing@24333
   690
kleing@24333
   691
lemma sbintrunc_inc:
wenzelm@25349
   692
  "x < - (2^n) ==> x + 2^(Suc n) <= sbintrunc n x"
kleing@24333
   693
  unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp
kleing@24333
   694
wenzelm@25349
   695
lemma sb_dec_lem:
wenzelm@25349
   696
  "(0::int) <= - (2^k) + a ==> (a + 2^k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
wenzelm@25349
   697
  by (rule int_mod_le' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k",
wenzelm@25349
   698
    simplified zless2p, OF _ TrueI, simplified])
kleing@24333
   699
wenzelm@25349
   700
lemma sb_dec_lem':
wenzelm@25349
   701
  "(2::int) ^ k <= a ==> (a + 2 ^ k) mod (2 * 2 ^ k) <= - (2 ^ k) + a"
wenzelm@25349
   702
  by (rule iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified])
kleing@24333
   703
kleing@24333
   704
lemma sbintrunc_dec:
kleing@24333
   705
  "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x"
kleing@24333
   706
  unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp
kleing@24333
   707
wenzelm@46475
   708
lemmas zmod_uminus' = zmod_uminus [where b=c] for c
wenzelm@46475
   709
lemmas zpower_zmod' = zpower_zmod [where m=c and y=k] for c k
kleing@24333
   710
kleing@24333
   711
lemmas brdmod1s' [symmetric] = 
nipkow@29971
   712
  mod_add_left_eq mod_add_right_eq 
kleing@24333
   713
  zmod_zsub_left_eq zmod_zsub_right_eq 
kleing@24333
   714
  zmod_zmult1_eq zmod_zmult1_eq_rev 
kleing@24333
   715
kleing@24333
   716
lemmas brdmods' [symmetric] = 
kleing@24333
   717
  zpower_zmod' [symmetric]
nipkow@29971
   718
  trans [OF mod_add_left_eq mod_add_right_eq] 
kleing@24333
   719
  trans [OF zmod_zsub_left_eq zmod_zsub_right_eq] 
kleing@24333
   720
  trans [OF zmod_zmult1_eq zmod_zmult1_eq_rev] 
kleing@24333
   721
  zmod_uminus' [symmetric]
nipkow@29971
   722
  mod_add_left_eq [where b = "1::int"]
kleing@24333
   723
  zmod_zsub_left_eq [where b = "1"]
kleing@24333
   724
kleing@24333
   725
lemmas bintr_arith1s =
wenzelm@46475
   726
  brdmod1s' [where c="2^n::int", folded pred_def succ_def bintrunc_mod2p] for n
kleing@24333
   727
lemmas bintr_ariths =
wenzelm@46475
   728
  brdmods' [where c="2^n::int", folded pred_def succ_def bintrunc_mod2p] for n
kleing@24333
   729
wenzelm@46475
   730
lemmas m2pths = pos_mod_sign pos_mod_bound [OF zless2p]
huffman@24364
   731
kleing@24333
   732
lemma bintr_ge0: "(0 :: int) <= number_of (bintrunc n w)"
kleing@24333
   733
  by (simp add : no_bintr m2pths)
kleing@24333
   734
kleing@24333
   735
lemma bintr_lt2p: "number_of (bintrunc n w) < (2 ^ n :: int)"
kleing@24333
   736
  by (simp add : no_bintr m2pths)
kleing@24333
   737
kleing@24333
   738
lemma bintr_Min: 
haftmann@25919
   739
  "number_of (bintrunc n Int.Min) = (2 ^ n :: int) - 1"
kleing@24333
   740
  by (simp add : no_bintr m1mod2k)
kleing@24333
   741
kleing@24333
   742
lemma sbintr_ge: "(- (2 ^ n) :: int) <= number_of (sbintrunc n w)"
kleing@24333
   743
  by (simp add : no_sbintr m2pths)
kleing@24333
   744
kleing@24333
   745
lemma sbintr_lt: "number_of (sbintrunc n w) < (2 ^ n :: int)"
kleing@24333
   746
  by (simp add : no_sbintr m2pths)
kleing@24333
   747
kleing@24333
   748
lemma bintrunc_Suc:
kleing@24333
   749
  "bintrunc (Suc n) bin = bintrunc n (bin_rest bin) BIT bin_last bin"
kleing@24333
   750
  by (case_tac bin rule: bin_exhaust) auto
kleing@24333
   751
kleing@24333
   752
lemma sign_Pls_ge_0: 
haftmann@25919
   753
  "(bin_sign bin = Int.Pls) = (number_of bin >= (0 :: int))"
huffman@26086
   754
  by (induct bin rule: numeral_induct) auto
kleing@24333
   755
kleing@24333
   756
lemma sign_Min_lt_0: 
haftmann@25919
   757
  "(bin_sign bin = Int.Min) = (number_of bin < (0 :: int))"
huffman@26086
   758
  by (induct bin rule: numeral_induct) auto
kleing@24333
   759
kleing@24333
   760
lemmas sign_Min_neg = trans [OF sign_Min_lt_0 neg_def [symmetric]] 
kleing@24333
   761
kleing@24333
   762
lemma bin_rest_trunc:
huffman@46825
   763
  "(bin_rest (bintrunc n bin)) = bintrunc (n - 1) (bin_rest bin)"
huffman@46825
   764
  by (induct n arbitrary: bin) auto
kleing@24333
   765
kleing@24333
   766
lemma bin_rest_power_trunc [rule_format] :
haftmann@30971
   767
  "(bin_rest ^^ k) (bintrunc n bin) = 
haftmann@30971
   768
    bintrunc (n - k) ((bin_rest ^^ k) bin)"
kleing@24333
   769
  by (induct k) (auto simp: bin_rest_trunc)
kleing@24333
   770
kleing@24333
   771
lemma bin_rest_trunc_i:
kleing@24333
   772
  "bintrunc n (bin_rest bin) = bin_rest (bintrunc (Suc n) bin)"
kleing@24333
   773
  by auto
kleing@24333
   774
kleing@24333
   775
lemma bin_rest_strunc:
huffman@46825
   776
  "bin_rest (sbintrunc (Suc n) bin) = sbintrunc n (bin_rest bin)"
huffman@46825
   777
  by (induct n arbitrary: bin) auto
kleing@24333
   778
kleing@24333
   779
lemma bintrunc_rest [simp]: 
huffman@46825
   780
  "bintrunc n (bin_rest (bintrunc n bin)) = bin_rest (bintrunc n bin)"
huffman@46825
   781
  apply (induct n arbitrary: bin, simp)
kleing@24333
   782
  apply (case_tac bin rule: bin_exhaust)
kleing@24333
   783
  apply (auto simp: bintrunc_bintrunc_l)
kleing@24333
   784
  done
kleing@24333
   785
kleing@24333
   786
lemma sbintrunc_rest [simp]:
huffman@46825
   787
  "sbintrunc n (bin_rest (sbintrunc n bin)) = bin_rest (sbintrunc n bin)"
huffman@46825
   788
  apply (induct n arbitrary: bin, simp)
kleing@24333
   789
  apply (case_tac bin rule: bin_exhaust)
kleing@24333
   790
  apply (auto simp: bintrunc_bintrunc_l split: bit.splits)
kleing@24333
   791
  done
kleing@24333
   792
kleing@24333
   793
lemma bintrunc_rest':
kleing@24333
   794
  "bintrunc n o bin_rest o bintrunc n = bin_rest o bintrunc n"
kleing@24333
   795
  by (rule ext) auto
kleing@24333
   796
kleing@24333
   797
lemma sbintrunc_rest' :
kleing@24333
   798
  "sbintrunc n o bin_rest o sbintrunc n = bin_rest o sbintrunc n"
kleing@24333
   799
  by (rule ext) auto
kleing@24333
   800
kleing@24333
   801
lemma rco_lem:
haftmann@30971
   802
  "f o g o f = g o f ==> f o (g o f) ^^ n = g ^^ n o f"
kleing@24333
   803
  apply (rule ext)
kleing@24333
   804
  apply (induct_tac n)
kleing@24333
   805
   apply (simp_all (no_asm))
kleing@24333
   806
  apply (drule fun_cong)
kleing@24333
   807
  apply (unfold o_def)
kleing@24333
   808
  apply (erule trans)
kleing@24333
   809
  apply simp
kleing@24333
   810
  done
kleing@24333
   811
haftmann@30971
   812
lemma rco_alt: "(f o g) ^^ n o f = f o (g o f) ^^ n"
kleing@24333
   813
  apply (rule ext)
kleing@24333
   814
  apply (induct n)
kleing@24333
   815
   apply (simp_all add: o_def)
kleing@24333
   816
  done
kleing@24333
   817
kleing@24333
   818
lemmas rco_bintr = bintrunc_rest' 
kleing@24333
   819
  [THEN rco_lem [THEN fun_cong], unfolded o_def]
kleing@24333
   820
lemmas rco_sbintr = sbintrunc_rest' 
kleing@24333
   821
  [THEN rco_lem [THEN fun_cong], unfolded o_def]
kleing@24333
   822
huffman@24364
   823
subsection {* Splitting and concatenation *}
huffman@24364
   824
haftmann@26557
   825
primrec bin_split :: "nat \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@26557
   826
  Z: "bin_split 0 w = (w, Int.Pls)"
haftmann@26557
   827
  | Suc: "bin_split (Suc n) w = (let (w1, w2) = bin_split n (bin_rest w)
haftmann@26557
   828
        in (w1, w2 BIT bin_last w))"
huffman@24364
   829
haftmann@37667
   830
lemma [code]:
haftmann@37667
   831
  "bin_split (Suc n) w = (let (w1, w2) = bin_split n (bin_rest w) in (w1, w2 BIT bin_last w))"
haftmann@37667
   832
  "bin_split 0 w = (w, 0)"
haftmann@37667
   833
  by (simp_all add: Pls_def)
haftmann@37667
   834
haftmann@26557
   835
primrec bin_cat :: "int \<Rightarrow> nat \<Rightarrow> int \<Rightarrow> int" where
haftmann@26557
   836
  Z: "bin_cat w 0 v = w"
haftmann@26557
   837
  | Suc: "bin_cat w (Suc n) v = bin_cat w n (bin_rest v) BIT bin_last v"
huffman@24364
   838
huffman@24364
   839
subsection {* Miscellaneous lemmas *}
huffman@24364
   840
haftmann@30952
   841
lemma funpow_minus_simp:
haftmann@30971
   842
  "0 < n \<Longrightarrow> f ^^ n = f \<circ> f ^^ (n - 1)"
haftmann@30952
   843
  by (cases n) simp_all
huffman@24364
   844
huffman@24364
   845
lemmas funpow_pred_simp [simp] =
wenzelm@46475
   846
  funpow_minus_simp [of "number_of bin", simplified nobm1] for bin
huffman@24364
   847
huffman@24364
   848
lemmas replicate_minus_simp = 
wenzelm@46475
   849
  trans [OF gen_minus [where f = "%n. replicate n x"] replicate.replicate_Suc] for x
huffman@24364
   850
huffman@24364
   851
lemmas replicate_pred_simp [simp] =
wenzelm@46475
   852
  replicate_minus_simp [of "number_of bin", simplified nobm1] for bin
huffman@24364
   853
wenzelm@46475
   854
lemmas power_Suc_no [simp] = power_Suc [of "number_of a"] for a
huffman@24364
   855
huffman@24364
   856
lemmas power_minus_simp = 
wenzelm@46475
   857
  trans [OF gen_minus [where f = "power f"] power_Suc] for f
huffman@24364
   858
huffman@24364
   859
lemmas power_pred_simp = 
wenzelm@46475
   860
  power_minus_simp [of "number_of bin", simplified nobm1] for bin
wenzelm@46475
   861
lemmas power_pred_simp_no [simp] = power_pred_simp [where f= "number_of f"] for f
huffman@24364
   862
huffman@24364
   863
lemma list_exhaust_size_gt0:
huffman@24364
   864
  assumes y: "\<And>a list. y = a # list \<Longrightarrow> P"
huffman@24364
   865
  shows "0 < length y \<Longrightarrow> P"
huffman@24364
   866
  apply (cases y, simp)
huffman@24364
   867
  apply (rule y)
nipkow@45761
   868
  apply fastforce
huffman@24364
   869
  done
huffman@24364
   870
huffman@24364
   871
lemma list_exhaust_size_eq0:
huffman@24364
   872
  assumes y: "y = [] \<Longrightarrow> P"
huffman@24364
   873
  shows "length y = 0 \<Longrightarrow> P"
huffman@24364
   874
  apply (cases y)
huffman@24364
   875
   apply (rule y, simp)
huffman@24364
   876
  apply simp
huffman@24364
   877
  done
huffman@24364
   878
huffman@24364
   879
lemma size_Cons_lem_eq:
huffman@24364
   880
  "y = xa # list ==> size y = Suc k ==> size list = k"
huffman@24364
   881
  by auto
huffman@24364
   882
huffman@24364
   883
lemma size_Cons_lem_eq_bin:
haftmann@25919
   884
  "y = xa # list ==> size y = number_of (Int.succ k) ==> 
huffman@24364
   885
    size list = number_of k"
huffman@24364
   886
  by (auto simp: pred_def succ_def split add : split_if_asm)
huffman@24364
   887
kleing@45810
   888
lemmas ls_splits = prod.split prod.split_asm split_if_asm
kleing@24333
   889
haftmann@37654
   890
lemma not_B1_is_B0: "y \<noteq> (1::bit) \<Longrightarrow> y = (0::bit)"
kleing@24333
   891
  by (cases y) auto
kleing@24333
   892
kleing@24333
   893
lemma B1_ass_B0: 
haftmann@37654
   894
  assumes y: "y = (0::bit) \<Longrightarrow> y = (1::bit)"
haftmann@37654
   895
  shows "y = (1::bit)"
kleing@24333
   896
  apply (rule classical)
kleing@24333
   897
  apply (drule not_B1_is_B0)
kleing@24333
   898
  apply (erule y)
kleing@24333
   899
  done
kleing@24333
   900
kleing@24333
   901
-- "simplifications for specific word lengths"
kleing@24333
   902
lemmas n2s_ths [THEN eq_reflection] = add_2_eq_Suc add_2_eq_Suc'
kleing@24333
   903
kleing@24333
   904
lemmas s2n_ths = n2s_ths [symmetric]
kleing@24333
   905
kleing@24333
   906
end