src/ZF/AC.thy
author wenzelm
Thu, 07 Jul 2011 23:55:15 +0200
changeset 44572 91c4d7397f0e
parent 35762 af3ff2ba4c54
child 47691 c656222c4dc1
permissions -rw-r--r--
simplified make_option/dest_option;
added make_variant/dest_variant -- usual representation of datatypes;
clasohm@1478
     1
(*  Title:      ZF/AC.thy
clasohm@1478
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
lcp@484
     3
    Copyright   1994  University of Cambridge
paulson@13328
     4
*)
lcp@484
     5
paulson@13328
     6
header{*The Axiom of Choice*}
lcp@484
     7
krauss@26056
     8
theory AC imports Main_ZF begin
paulson@6053
     9
paulson@13328
    10
text{*This definition comes from Halmos (1960), page 59.*}
wenzelm@24893
    11
axiomatization where
wenzelm@24893
    12
  AC: "[| a: A;  !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
paulson@6053
    13
paulson@13134
    14
(*The same as AC, but no premise a \<in> A*)
paulson@13134
    15
lemma AC_Pi: "[| !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"
paulson@13134
    16
apply (case_tac "A=0")
paulson@13149
    17
apply (simp add: Pi_empty1)
paulson@13134
    18
(*The non-trivial case*)
paulson@13134
    19
apply (blast intro: AC)
paulson@13134
    20
done
paulson@13134
    21
paulson@13134
    22
(*Using dtac, this has the advantage of DELETING the universal quantifier*)
paulson@13134
    23
lemma AC_ball_Pi: "\<forall>x \<in> A. \<exists>y. y \<in> B(x) ==> \<exists>y. y \<in> Pi(A,B)"
paulson@13134
    24
apply (rule AC_Pi)
paulson@13269
    25
apply (erule bspec, assumption)
paulson@13134
    26
done
paulson@13134
    27
skalberg@14171
    28
lemma AC_Pi_Pow: "\<exists>f. f \<in> (\<Pi> X \<in> Pow(C)-{0}. X)"
paulson@13134
    29
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
paulson@13269
    30
apply (erule_tac [2] exI, blast)
paulson@13134
    31
done
paulson@13134
    32
paulson@13134
    33
lemma AC_func:
paulson@13134
    34
     "[| !!x. x \<in> A ==> (\<exists>y. y \<in> x) |] ==> \<exists>f \<in> A->Union(A). \<forall>x \<in> A. f`x \<in> x"
paulson@13134
    35
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
paulson@13269
    36
prefer 2 apply (blast dest: apply_type intro: Pi_type, blast) 
paulson@13134
    37
done
paulson@13134
    38
paulson@13134
    39
lemma non_empty_family: "[| 0 \<notin> A;  x \<in> A |] ==> \<exists>y. y \<in> x"
paulson@13269
    40
by (subgoal_tac "x \<noteq> 0", blast+)
paulson@13134
    41
paulson@13134
    42
lemma AC_func0: "0 \<notin> A ==> \<exists>f \<in> A->Union(A). \<forall>x \<in> A. f`x \<in> x"
paulson@13134
    43
apply (rule AC_func)
paulson@13134
    44
apply (simp_all add: non_empty_family) 
paulson@13134
    45
done
paulson@13134
    46
paulson@13134
    47
lemma AC_func_Pow: "\<exists>f \<in> (Pow(C)-{0}) -> C. \<forall>x \<in> Pow(C)-{0}. f`x \<in> x"
paulson@13134
    48
apply (rule AC_func0 [THEN bexE])
paulson@13134
    49
apply (rule_tac [2] bexI)
paulson@13269
    50
prefer 2 apply assumption
paulson@13269
    51
apply (erule_tac [2] fun_weaken_type, blast+)
paulson@13134
    52
done
paulson@13134
    53
skalberg@14171
    54
lemma AC_Pi0: "0 \<notin> A ==> \<exists>f. f \<in> (\<Pi> x \<in> A. x)"
paulson@13134
    55
apply (rule AC_Pi)
paulson@13134
    56
apply (simp_all add: non_empty_family) 
paulson@13134
    57
done
paulson@13134
    58
lcp@484
    59
end