src/HOL/Transcendental.thy
author huffman
Fri, 19 Aug 2011 08:40:15 -0700
changeset 45167 6a383003d0a9
parent 45165 3bdc02eb1637
child 45168 d2a6f9af02f4
permissions -rw-r--r--
remove unused lemmas
wenzelm@32962
     1
(*  Title:      HOL/Transcendental.thy
wenzelm@32962
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, University of Edinburgh
wenzelm@32962
     3
    Author:     Lawrence C Paulson
paulson@12196
     4
*)
paulson@12196
     5
paulson@15077
     6
header{*Power Series, Transcendental Functions etc.*}
paulson@15077
     7
nipkow@15131
     8
theory Transcendental
haftmann@25600
     9
imports Fact Series Deriv NthRoot
nipkow@15131
    10
begin
paulson@15077
    11
huffman@29164
    12
subsection {* Properties of Power Series *}
paulson@15077
    13
huffman@23082
    14
lemma lemma_realpow_diff:
haftmann@31017
    15
  fixes y :: "'a::monoid_mult"
huffman@23082
    16
  shows "p \<le> n \<Longrightarrow> y ^ (Suc n - p) = (y ^ (n - p)) * y"
huffman@23082
    17
proof -
huffman@23082
    18
  assume "p \<le> n"
huffman@23082
    19
  hence "Suc n - p = Suc (n - p)" by (rule Suc_diff_le)
huffman@30269
    20
  thus ?thesis by (simp add: power_commutes)
huffman@23082
    21
qed
paulson@15077
    22
paulson@15077
    23
lemma lemma_realpow_diff_sumr:
haftmann@31017
    24
  fixes y :: "'a::{comm_semiring_0,monoid_mult}" shows
hoelzl@42841
    25
     "(\<Sum>p=0..<Suc n. (x ^ p) * y ^ (Suc n - p)) =
huffman@23082
    26
      y * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
huffman@29163
    27
by (simp add: setsum_right_distrib lemma_realpow_diff mult_ac
wenzelm@33591
    28
         del: setsum_op_ivl_Suc)
paulson@15077
    29
paulson@15229
    30
lemma lemma_realpow_diff_sumr2:
haftmann@31017
    31
  fixes y :: "'a::{comm_ring,monoid_mult}" shows
hoelzl@42841
    32
     "x ^ (Suc n) - y ^ (Suc n) =
huffman@23082
    33
      (x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * y ^ (n - p))"
huffman@30269
    34
apply (induct n, simp)
huffman@30269
    35
apply (simp del: setsum_op_ivl_Suc)
nipkow@15561
    36
apply (subst setsum_op_ivl_Suc)
huffman@23082
    37
apply (subst lemma_realpow_diff_sumr)
huffman@23082
    38
apply (simp add: right_distrib del: setsum_op_ivl_Suc)
haftmann@34961
    39
apply (subst mult_left_commute [of "x - y"])
huffman@23082
    40
apply (erule subst)
huffman@30269
    41
apply (simp add: algebra_simps)
paulson@15077
    42
done
paulson@15077
    43
paulson@15229
    44
lemma lemma_realpow_rev_sumr:
hoelzl@42841
    45
     "(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) =
huffman@23082
    46
      (\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p))"
huffman@23082
    47
apply (rule setsum_reindex_cong [where f="\<lambda>i. n - i"])
huffman@23082
    48
apply (rule inj_onI, simp)
huffman@23082
    49
apply auto
huffman@23082
    50
apply (rule_tac x="n - x" in image_eqI, simp, simp)
paulson@15077
    51
done
paulson@15077
    52
paulson@15077
    53
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term
paulson@15077
    54
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*}
paulson@15077
    55
paulson@15077
    56
lemma powser_insidea:
haftmann@31017
    57
  fixes x z :: "'a::{real_normed_field,banach}"
huffman@20849
    58
  assumes 1: "summable (\<lambda>n. f n * x ^ n)"
huffman@23082
    59
  assumes 2: "norm z < norm x"
huffman@23082
    60
  shows "summable (\<lambda>n. norm (f n * z ^ n))"
huffman@20849
    61
proof -
huffman@20849
    62
  from 2 have x_neq_0: "x \<noteq> 0" by clarsimp
huffman@20849
    63
  from 1 have "(\<lambda>n. f n * x ^ n) ----> 0"
huffman@20849
    64
    by (rule summable_LIMSEQ_zero)
huffman@20849
    65
  hence "convergent (\<lambda>n. f n * x ^ n)"
huffman@20849
    66
    by (rule convergentI)
huffman@20849
    67
  hence "Cauchy (\<lambda>n. f n * x ^ n)"
huffman@20849
    68
    by (simp add: Cauchy_convergent_iff)
huffman@20849
    69
  hence "Bseq (\<lambda>n. f n * x ^ n)"
huffman@20849
    70
    by (rule Cauchy_Bseq)
huffman@23082
    71
  then obtain K where 3: "0 < K" and 4: "\<forall>n. norm (f n * x ^ n) \<le> K"
huffman@20849
    72
    by (simp add: Bseq_def, safe)
huffman@23082
    73
  have "\<exists>N. \<forall>n\<ge>N. norm (norm (f n * z ^ n)) \<le>
huffman@23082
    74
                   K * norm (z ^ n) * inverse (norm (x ^ n))"
huffman@20849
    75
  proof (intro exI allI impI)
huffman@20849
    76
    fix n::nat assume "0 \<le> n"
huffman@23082
    77
    have "norm (norm (f n * z ^ n)) * norm (x ^ n) =
huffman@23082
    78
          norm (f n * x ^ n) * norm (z ^ n)"
huffman@23082
    79
      by (simp add: norm_mult abs_mult)
huffman@23082
    80
    also have "\<dots> \<le> K * norm (z ^ n)"
huffman@23082
    81
      by (simp only: mult_right_mono 4 norm_ge_zero)
huffman@23082
    82
    also have "\<dots> = K * norm (z ^ n) * (inverse (norm (x ^ n)) * norm (x ^ n))"
huffman@20849
    83
      by (simp add: x_neq_0)
huffman@23082
    84
    also have "\<dots> = K * norm (z ^ n) * inverse (norm (x ^ n)) * norm (x ^ n)"
huffman@20849
    85
      by (simp only: mult_assoc)
huffman@23082
    86
    finally show "norm (norm (f n * z ^ n)) \<le>
huffman@23082
    87
                  K * norm (z ^ n) * inverse (norm (x ^ n))"
huffman@20849
    88
      by (simp add: mult_le_cancel_right x_neq_0)
huffman@20849
    89
  qed
huffman@23082
    90
  moreover have "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
huffman@20849
    91
  proof -
huffman@23082
    92
    from 2 have "norm (norm (z * inverse x)) < 1"
huffman@23082
    93
      using x_neq_0
huffman@23082
    94
      by (simp add: nonzero_norm_divide divide_inverse [symmetric])
huffman@23082
    95
    hence "summable (\<lambda>n. norm (z * inverse x) ^ n)"
huffman@20849
    96
      by (rule summable_geometric)
huffman@23082
    97
    hence "summable (\<lambda>n. K * norm (z * inverse x) ^ n)"
huffman@20849
    98
      by (rule summable_mult)
huffman@23082
    99
    thus "summable (\<lambda>n. K * norm (z ^ n) * inverse (norm (x ^ n)))"
huffman@23082
   100
      using x_neq_0
huffman@23082
   101
      by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
huffman@23082
   102
                    power_inverse norm_power mult_assoc)
huffman@20849
   103
  qed
huffman@23082
   104
  ultimately show "summable (\<lambda>n. norm (f n * z ^ n))"
huffman@20849
   105
    by (rule summable_comparison_test)
huffman@20849
   106
qed
paulson@15077
   107
paulson@15229
   108
lemma powser_inside:
haftmann@31017
   109
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_field,banach}" shows
hoelzl@42841
   110
     "[| summable (%n. f(n) * (x ^ n)); norm z < norm x |]
paulson@15077
   111
      ==> summable (%n. f(n) * (z ^ n))"
huffman@23082
   112
by (rule powser_insidea [THEN summable_norm_cancel])
paulson@15077
   113
hoelzl@29740
   114
lemma sum_split_even_odd: fixes f :: "nat \<Rightarrow> real" shows
hoelzl@42841
   115
  "(\<Sum> i = 0 ..< 2 * n. if even i then f i else g i) =
hoelzl@29740
   116
   (\<Sum> i = 0 ..< n. f (2 * i)) + (\<Sum> i = 0 ..< n. g (2 * i + 1))"
hoelzl@29740
   117
proof (induct n)
hoelzl@29740
   118
  case (Suc n)
hoelzl@42841
   119
  have "(\<Sum> i = 0 ..< 2 * Suc n. if even i then f i else g i) =
hoelzl@29740
   120
        (\<Sum> i = 0 ..< n. f (2 * i)) + (\<Sum> i = 0 ..< n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
huffman@30019
   121
    using Suc.hyps unfolding One_nat_def by auto
hoelzl@29740
   122
  also have "\<dots> = (\<Sum> i = 0 ..< Suc n. f (2 * i)) + (\<Sum> i = 0 ..< Suc n. g (2 * i + 1))" by auto
hoelzl@29740
   123
  finally show ?case .
hoelzl@29740
   124
qed auto
hoelzl@29740
   125
hoelzl@29740
   126
lemma sums_if': fixes g :: "nat \<Rightarrow> real" assumes "g sums x"
hoelzl@29740
   127
  shows "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x"
hoelzl@29740
   128
  unfolding sums_def
hoelzl@29740
   129
proof (rule LIMSEQ_I)
hoelzl@29740
   130
  fix r :: real assume "0 < r"
hoelzl@29740
   131
  from `g sums x`[unfolded sums_def, THEN LIMSEQ_D, OF this]
hoelzl@29740
   132
  obtain no where no_eq: "\<And> n. n \<ge> no \<Longrightarrow> (norm (setsum g { 0..<n } - x) < r)" by blast
hoelzl@29740
   133
hoelzl@29740
   134
  let ?SUM = "\<lambda> m. \<Sum> i = 0 ..< m. if even i then 0 else g ((i - 1) div 2)"
hoelzl@29740
   135
  { fix m assume "m \<ge> 2 * no" hence "m div 2 \<ge> no" by auto
hoelzl@42841
   136
    have sum_eq: "?SUM (2 * (m div 2)) = setsum g { 0 ..< m div 2 }"
hoelzl@29740
   137
      using sum_split_even_odd by auto
hoelzl@29740
   138
    hence "(norm (?SUM (2 * (m div 2)) - x) < r)" using no_eq unfolding sum_eq using `m div 2 \<ge> no` by auto
hoelzl@29740
   139
    moreover
hoelzl@29740
   140
    have "?SUM (2 * (m div 2)) = ?SUM m"
hoelzl@29740
   141
    proof (cases "even m")
hoelzl@29740
   142
      case True show ?thesis unfolding even_nat_div_two_times_two[OF True, unfolded numeral_2_eq_2[symmetric]] ..
hoelzl@29740
   143
    next
hoelzl@29740
   144
      case False hence "even (Suc m)" by auto
hoelzl@29740
   145
      from even_nat_div_two_times_two[OF this, unfolded numeral_2_eq_2[symmetric]] odd_nat_plus_one_div_two[OF False, unfolded numeral_2_eq_2[symmetric]]
hoelzl@29740
   146
      have eq: "Suc (2 * (m div 2)) = m" by auto
hoelzl@29740
   147
      hence "even (2 * (m div 2))" using `odd m` by auto
hoelzl@29740
   148
      have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
hoelzl@29740
   149
      also have "\<dots> = ?SUM (2 * (m div 2))" using `even (2 * (m div 2))` by auto
hoelzl@29740
   150
      finally show ?thesis by auto
hoelzl@29740
   151
    qed
hoelzl@29740
   152
    ultimately have "(norm (?SUM m - x) < r)" by auto
hoelzl@29740
   153
  }
hoelzl@29740
   154
  thus "\<exists> no. \<forall> m \<ge> no. norm (?SUM m - x) < r" by blast
hoelzl@29740
   155
qed
hoelzl@29740
   156
hoelzl@29740
   157
lemma sums_if: fixes g :: "nat \<Rightarrow> real" assumes "g sums x" and "f sums y"
hoelzl@29740
   158
  shows "(\<lambda> n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
hoelzl@29740
   159
proof -
hoelzl@29740
   160
  let ?s = "\<lambda> n. if even n then 0 else f ((n - 1) div 2)"
hoelzl@29740
   161
  { fix B T E have "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
hoelzl@29740
   162
      by (cases B) auto } note if_sum = this
hoelzl@29740
   163
  have g_sums: "(\<lambda> n. if even n then 0 else g ((n - 1) div 2)) sums x" using sums_if'[OF `g sums x`] .
hoelzl@42841
   164
  {
hoelzl@29740
   165
    have "?s 0 = 0" by auto
hoelzl@29740
   166
    have Suc_m1: "\<And> n. Suc n - 1 = n" by auto
wenzelm@41798
   167
    have if_eq: "\<And>B T E. (if \<not> B then T else E) = (if B then E else T)" by auto
hoelzl@29740
   168
hoelzl@29740
   169
    have "?s sums y" using sums_if'[OF `f sums y`] .
hoelzl@42841
   170
    from this[unfolded sums_def, THEN LIMSEQ_Suc]
hoelzl@29740
   171
    have "(\<lambda> n. if even n then f (n div 2) else 0) sums y"
hoelzl@29740
   172
      unfolding sums_def setsum_shift_lb_Suc0_0_upt[where f="?s", OF `?s 0 = 0`, symmetric]
hoelzl@29740
   173
                image_Suc_atLeastLessThan[symmetric] setsum_reindex[OF inj_Suc, unfolded comp_def]
nipkow@31148
   174
                even_Suc Suc_m1 if_eq .
hoelzl@29740
   175
  } from sums_add[OF g_sums this]
hoelzl@29740
   176
  show ?thesis unfolding if_sum .
hoelzl@29740
   177
qed
hoelzl@29740
   178
hoelzl@29740
   179
subsection {* Alternating series test / Leibniz formula *}
hoelzl@29740
   180
hoelzl@29740
   181
lemma sums_alternating_upper_lower:
hoelzl@29740
   182
  fixes a :: "nat \<Rightarrow> real"
hoelzl@29740
   183
  assumes mono: "\<And>n. a (Suc n) \<le> a n" and a_pos: "\<And>n. 0 \<le> a n" and "a ----> 0"
hoelzl@42841
   184
  shows "\<exists>l. ((\<forall>n. (\<Sum>i=0..<2*n. -1^i*a i) \<le> l) \<and> (\<lambda> n. \<Sum>i=0..<2*n. -1^i*a i) ----> l) \<and>
hoelzl@29740
   185
             ((\<forall>n. l \<le> (\<Sum>i=0..<2*n + 1. -1^i*a i)) \<and> (\<lambda> n. \<Sum>i=0..<2*n + 1. -1^i*a i) ----> l)"
hoelzl@29740
   186
  (is "\<exists>l. ((\<forall>n. ?f n \<le> l) \<and> _) \<and> ((\<forall>n. l \<le> ?g n) \<and> _)")
hoelzl@29740
   187
proof -
huffman@30019
   188
  have fg_diff: "\<And>n. ?f n - ?g n = - a (2 * n)" unfolding One_nat_def by auto
hoelzl@29740
   189
hoelzl@29740
   190
  have "\<forall> n. ?f n \<le> ?f (Suc n)"
hoelzl@29740
   191
  proof fix n show "?f n \<le> ?f (Suc n)" using mono[of "2*n"] by auto qed
hoelzl@29740
   192
  moreover
hoelzl@29740
   193
  have "\<forall> n. ?g (Suc n) \<le> ?g n"
huffman@30019
   194
  proof fix n show "?g (Suc n) \<le> ?g n" using mono[of "Suc (2*n)"]
huffman@30019
   195
    unfolding One_nat_def by auto qed
hoelzl@29740
   196
  moreover
hoelzl@42841
   197
  have "\<forall> n. ?f n \<le> ?g n"
huffman@30019
   198
  proof fix n show "?f n \<le> ?g n" using fg_diff a_pos
huffman@30019
   199
    unfolding One_nat_def by auto qed
hoelzl@29740
   200
  moreover
hoelzl@29740
   201
  have "(\<lambda> n. ?f n - ?g n) ----> 0" unfolding fg_diff
hoelzl@29740
   202
  proof (rule LIMSEQ_I)
hoelzl@29740
   203
    fix r :: real assume "0 < r"
hoelzl@42841
   204
    with `a ----> 0`[THEN LIMSEQ_D]
hoelzl@29740
   205
    obtain N where "\<And> n. n \<ge> N \<Longrightarrow> norm (a n - 0) < r" by auto
hoelzl@29740
   206
    hence "\<forall> n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
hoelzl@29740
   207
    thus "\<exists> N. \<forall> n \<ge> N. norm (- a (2 * n) - 0) < r" by auto
hoelzl@29740
   208
  qed
hoelzl@29740
   209
  ultimately
hoelzl@29740
   210
  show ?thesis by (rule lemma_nest_unique)
hoelzl@42841
   211
qed
hoelzl@29740
   212
hoelzl@29740
   213
lemma summable_Leibniz': fixes a :: "nat \<Rightarrow> real"
hoelzl@29740
   214
  assumes a_zero: "a ----> 0" and a_pos: "\<And> n. 0 \<le> a n"
hoelzl@29740
   215
  and a_monotone: "\<And> n. a (Suc n) \<le> a n"
hoelzl@29740
   216
  shows summable: "summable (\<lambda> n. (-1)^n * a n)"
hoelzl@29740
   217
  and "\<And>n. (\<Sum>i=0..<2*n. (-1)^i*a i) \<le> (\<Sum>i. (-1)^i*a i)"
hoelzl@29740
   218
  and "(\<lambda>n. \<Sum>i=0..<2*n. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
hoelzl@29740
   219
  and "\<And>n. (\<Sum>i. (-1)^i*a i) \<le> (\<Sum>i=0..<2*n+1. (-1)^i*a i)"
hoelzl@29740
   220
  and "(\<lambda>n. \<Sum>i=0..<2*n+1. (-1)^i*a i) ----> (\<Sum>i. (-1)^i*a i)"
hoelzl@29740
   221
proof -
hoelzl@29740
   222
  let "?S n" = "(-1)^n * a n"
hoelzl@29740
   223
  let "?P n" = "\<Sum>i=0..<n. ?S i"
hoelzl@29740
   224
  let "?f n" = "?P (2 * n)"
hoelzl@29740
   225
  let "?g n" = "?P (2 * n + 1)"
hoelzl@29740
   226
  obtain l :: real where below_l: "\<forall> n. ?f n \<le> l" and "?f ----> l" and above_l: "\<forall> n. l \<le> ?g n" and "?g ----> l"
hoelzl@29740
   227
    using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
hoelzl@42841
   228
hoelzl@29740
   229
  let ?Sa = "\<lambda> m. \<Sum> n = 0..<m. ?S n"
hoelzl@29740
   230
  have "?Sa ----> l"
hoelzl@29740
   231
  proof (rule LIMSEQ_I)
hoelzl@29740
   232
    fix r :: real assume "0 < r"
hoelzl@29740
   233
hoelzl@42841
   234
    with `?f ----> l`[THEN LIMSEQ_D]
hoelzl@29740
   235
    obtain f_no where f: "\<And> n. n \<ge> f_no \<Longrightarrow> norm (?f n - l) < r" by auto
hoelzl@29740
   236
hoelzl@42841
   237
    from `0 < r` `?g ----> l`[THEN LIMSEQ_D]
hoelzl@29740
   238
    obtain g_no where g: "\<And> n. n \<ge> g_no \<Longrightarrow> norm (?g n - l) < r" by auto
hoelzl@29740
   239
hoelzl@29740
   240
    { fix n :: nat
hoelzl@29740
   241
      assume "n \<ge> (max (2 * f_no) (2 * g_no))" hence "n \<ge> 2 * f_no" and "n \<ge> 2 * g_no" by auto
hoelzl@29740
   242
      have "norm (?Sa n - l) < r"
hoelzl@29740
   243
      proof (cases "even n")
wenzelm@32962
   244
        case True from even_nat_div_two_times_two[OF this]
wenzelm@32962
   245
        have n_eq: "2 * (n div 2) = n" unfolding numeral_2_eq_2[symmetric] by auto
wenzelm@32962
   246
        with `n \<ge> 2 * f_no` have "n div 2 \<ge> f_no" by auto
wenzelm@32962
   247
        from f[OF this]
wenzelm@32962
   248
        show ?thesis unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
hoelzl@29740
   249
      next
huffman@35205
   250
        case False hence "even (n - 1)" by simp
wenzelm@32962
   251
        from even_nat_div_two_times_two[OF this]
wenzelm@32962
   252
        have n_eq: "2 * ((n - 1) div 2) = n - 1" unfolding numeral_2_eq_2[symmetric] by auto
wenzelm@32962
   253
        hence range_eq: "n - 1 + 1 = n" using odd_pos[OF False] by auto
wenzelm@32962
   254
wenzelm@32962
   255
        from n_eq `n \<ge> 2 * g_no` have "(n - 1) div 2 \<ge> g_no" by auto
wenzelm@32962
   256
        from g[OF this]
wenzelm@32962
   257
        show ?thesis unfolding n_eq atLeastLessThanSuc_atLeastAtMost range_eq .
hoelzl@29740
   258
      qed
hoelzl@29740
   259
    }
hoelzl@29740
   260
    thus "\<exists> no. \<forall> n \<ge> no. norm (?Sa n - l) < r" by blast
hoelzl@29740
   261
  qed
hoelzl@29740
   262
  hence sums_l: "(\<lambda>i. (-1)^i * a i) sums l" unfolding sums_def atLeastLessThanSuc_atLeastAtMost[symmetric] .
hoelzl@29740
   263
  thus "summable ?S" using summable_def by auto
hoelzl@29740
   264
hoelzl@29740
   265
  have "l = suminf ?S" using sums_unique[OF sums_l] .
hoelzl@29740
   266
hoelzl@29740
   267
  { fix n show "suminf ?S \<le> ?g n" unfolding sums_unique[OF sums_l, symmetric] using above_l by auto }
hoelzl@29740
   268
  { fix n show "?f n \<le> suminf ?S" unfolding sums_unique[OF sums_l, symmetric] using below_l by auto }
hoelzl@29740
   269
  show "?g ----> suminf ?S" using `?g ----> l` `l = suminf ?S` by auto
hoelzl@29740
   270
  show "?f ----> suminf ?S" using `?f ----> l` `l = suminf ?S` by auto
hoelzl@29740
   271
qed
hoelzl@29740
   272
hoelzl@29740
   273
theorem summable_Leibniz: fixes a :: "nat \<Rightarrow> real"
hoelzl@29740
   274
  assumes a_zero: "a ----> 0" and "monoseq a"
hoelzl@29740
   275
  shows "summable (\<lambda> n. (-1)^n * a n)" (is "?summable")
hoelzl@29740
   276
  and "0 < a 0 \<longrightarrow> (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i=0..<2*n. -1^i * a i .. \<Sum>i=0..<2*n+1. -1^i * a i})" (is "?pos")
hoelzl@29740
   277
  and "a 0 < 0 \<longrightarrow> (\<forall>n. (\<Sum>i. -1^i*a i) \<in> { \<Sum>i=0..<2*n+1. -1^i * a i .. \<Sum>i=0..<2*n. -1^i * a i})" (is "?neg")
hoelzl@29740
   278
  and "(\<lambda>n. \<Sum>i=0..<2*n. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?f")
hoelzl@29740
   279
  and "(\<lambda>n. \<Sum>i=0..<2*n+1. -1^i*a i) ----> (\<Sum>i. -1^i*a i)" (is "?g")
hoelzl@29740
   280
proof -
hoelzl@29740
   281
  have "?summable \<and> ?pos \<and> ?neg \<and> ?f \<and> ?g"
hoelzl@29740
   282
  proof (cases "(\<forall> n. 0 \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)")
hoelzl@29740
   283
    case True
hoelzl@29740
   284
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> a n \<le> a m" and ge0: "\<And> n. 0 \<le> a n" by auto
hoelzl@29740
   285
    { fix n have "a (Suc n) \<le> a n" using ord[where n="Suc n" and m=n] by auto }
hoelzl@29740
   286
    note leibniz = summable_Leibniz'[OF `a ----> 0` ge0] and mono = this
hoelzl@29740
   287
    from leibniz[OF mono]
hoelzl@29740
   288
    show ?thesis using `0 \<le> a 0` by auto
hoelzl@29740
   289
  next
hoelzl@29740
   290
    let ?a = "\<lambda> n. - a n"
hoelzl@29740
   291
    case False
hoelzl@29740
   292
    with monoseq_le[OF `monoseq a` `a ----> 0`]
hoelzl@29740
   293
    have "(\<forall> n. a n \<le> 0) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)" by auto
hoelzl@29740
   294
    hence ord: "\<And>n m. m \<le> n \<Longrightarrow> ?a n \<le> ?a m" and ge0: "\<And> n. 0 \<le> ?a n" by auto
hoelzl@29740
   295
    { fix n have "?a (Suc n) \<le> ?a n" using ord[where n="Suc n" and m=n] by auto }
hoelzl@29740
   296
    note monotone = this
hoelzl@29740
   297
    note leibniz = summable_Leibniz'[OF _ ge0, of "\<lambda>x. x", OF LIMSEQ_minus[OF `a ----> 0`, unfolded minus_zero] monotone]
hoelzl@29740
   298
    have "summable (\<lambda> n. (-1)^n * ?a n)" using leibniz(1) by auto
hoelzl@29740
   299
    then obtain l where "(\<lambda> n. (-1)^n * ?a n) sums l" unfolding summable_def by auto
hoelzl@29740
   300
    from this[THEN sums_minus]
hoelzl@29740
   301
    have "(\<lambda> n. (-1)^n * a n) sums -l" by auto
hoelzl@29740
   302
    hence ?summable unfolding summable_def by auto
hoelzl@29740
   303
    moreover
hoelzl@29740
   304
    have "\<And> a b :: real. \<bar> - a - - b \<bar> = \<bar>a - b\<bar>" unfolding minus_diff_minus by auto
hoelzl@42841
   305
hoelzl@29740
   306
    from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
hoelzl@29740
   307
    have move_minus: "(\<Sum>n. - (-1 ^ n * a n)) = - (\<Sum>n. -1 ^ n * a n)" by auto
hoelzl@29740
   308
hoelzl@29740
   309
    have ?pos using `0 \<le> ?a 0` by auto
hoelzl@29740
   310
    moreover have ?neg using leibniz(2,4) unfolding mult_minus_right setsum_negf move_minus neg_le_iff_le by auto
hoelzl@29740
   311
    moreover have ?f and ?g using leibniz(3,5)[unfolded mult_minus_right setsum_negf move_minus, THEN LIMSEQ_minus_cancel] by auto
hoelzl@29740
   312
    ultimately show ?thesis by auto
hoelzl@29740
   313
  qed
hoelzl@29740
   314
  from this[THEN conjunct1] this[THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct1] this[THEN conjunct2, THEN conjunct2, THEN conjunct2, THEN conjunct1]
hoelzl@29740
   315
       this[THEN conjunct2, THEN conjunct2, THEN conjunct2, THEN conjunct2]
hoelzl@29740
   316
  show ?summable and ?pos and ?neg and ?f and ?g .
hoelzl@29740
   317
qed
paulson@15077
   318
huffman@29164
   319
subsection {* Term-by-Term Differentiability of Power Series *}
huffman@23043
   320
huffman@23043
   321
definition
huffman@23082
   322
  diffs :: "(nat => 'a::ring_1) => nat => 'a" where
huffman@23082
   323
  "diffs c = (%n. of_nat (Suc n) * c(Suc n))"
paulson@15077
   324
paulson@15077
   325
text{*Lemma about distributing negation over it*}
paulson@15077
   326
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)"
paulson@15077
   327
by (simp add: diffs_def)
paulson@15077
   328
huffman@29163
   329
lemma sums_Suc_imp:
huffman@29163
   330
  assumes f: "f 0 = 0"
huffman@29163
   331
  shows "(\<lambda>n. f (Suc n)) sums s \<Longrightarrow> (\<lambda>n. f n) sums s"
huffman@29163
   332
unfolding sums_def
huffman@29163
   333
apply (rule LIMSEQ_imp_Suc)
huffman@29163
   334
apply (subst setsum_shift_lb_Suc0_0_upt [where f=f, OF f, symmetric])
huffman@29163
   335
apply (simp only: setsum_shift_bounds_Suc_ivl)
paulson@15077
   336
done
paulson@15077
   337
paulson@15229
   338
lemma diffs_equiv:
hoelzl@42841
   339
  fixes x :: "'a::{real_normed_vector, ring_1}"
hoelzl@42841
   340
  shows "summable (%n. (diffs c)(n) * (x ^ n)) ==>
hoelzl@42841
   341
      (%n. of_nat n * c(n) * (x ^ (n - Suc 0))) sums
nipkow@15546
   342
         (\<Sum>n. (diffs c)(n) * (x ^ n))"
huffman@29163
   343
unfolding diffs_def
huffman@29163
   344
apply (drule summable_sums)
huffman@29163
   345
apply (rule sums_Suc_imp, simp_all)
paulson@15077
   346
done
paulson@15077
   347
paulson@15077
   348
lemma lemma_termdiff1:
haftmann@31017
   349
  fixes z :: "'a :: {monoid_mult,comm_ring}" shows
hoelzl@42841
   350
  "(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
huffman@23082
   351
   (\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
wenzelm@41798
   352
by(auto simp add: algebra_simps power_add [symmetric])
paulson@15077
   353
huffman@23082
   354
lemma sumr_diff_mult_const2:
huffman@23082
   355
  "setsum f {0..<n} - of_nat n * (r::'a::ring_1) = (\<Sum>i = 0..<n. f i - r)"
huffman@23082
   356
by (simp add: setsum_subtractf)
huffman@23082
   357
huffman@20860
   358
lemma lemma_termdiff2:
haftmann@31017
   359
  fixes h :: "'a :: {field}"
huffman@20860
   360
  assumes h: "h \<noteq> 0" shows
huffman@23082
   361
  "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
huffman@20860
   362
   h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p.
huffman@23082
   363
        (z + h) ^ q * z ^ (n - 2 - q))" (is "?lhs = ?rhs")
huffman@23082
   364
apply (subgoal_tac "h * ?lhs = h * ?rhs", simp add: h)
huffman@20860
   365
apply (simp add: right_diff_distrib diff_divide_distrib h)
huffman@20860
   366
apply (simp add: mult_assoc [symmetric])
huffman@20860
   367
apply (cases "n", simp)
huffman@20860
   368
apply (simp add: lemma_realpow_diff_sumr2 h
huffman@20860
   369
                 right_diff_distrib [symmetric] mult_assoc
huffman@30269
   370
            del: power_Suc setsum_op_ivl_Suc of_nat_Suc)
huffman@20860
   371
apply (subst lemma_realpow_rev_sumr)
huffman@23082
   372
apply (subst sumr_diff_mult_const2)
huffman@20860
   373
apply simp
huffman@20860
   374
apply (simp only: lemma_termdiff1 setsum_right_distrib)
huffman@20860
   375
apply (rule setsum_cong [OF refl])
huffman@20860
   376
apply (simp add: diff_minus [symmetric] less_iff_Suc_add)
huffman@20860
   377
apply (clarify)
huffman@20860
   378
apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac
huffman@30269
   379
            del: setsum_op_ivl_Suc power_Suc)
huffman@20860
   380
apply (subst mult_assoc [symmetric], subst power_add [symmetric])
huffman@20860
   381
apply (simp add: mult_ac)
huffman@20860
   382
done
paulson@15077
   383
huffman@20860
   384
lemma real_setsum_nat_ivl_bounded2:
haftmann@35028
   385
  fixes K :: "'a::linordered_semidom"
huffman@23082
   386
  assumes f: "\<And>p::nat. p < n \<Longrightarrow> f p \<le> K"
huffman@23082
   387
  assumes K: "0 \<le> K"
huffman@23082
   388
  shows "setsum f {0..<n-k} \<le> of_nat n * K"
huffman@23082
   389
apply (rule order_trans [OF setsum_mono])
huffman@23082
   390
apply (rule f, simp)
huffman@23082
   391
apply (simp add: mult_right_mono K)
paulson@15077
   392
done
paulson@15077
   393
paulson@15229
   394
lemma lemma_termdiff3:
haftmann@31017
   395
  fixes h z :: "'a::{real_normed_field}"
huffman@20860
   396
  assumes 1: "h \<noteq> 0"
huffman@23082
   397
  assumes 2: "norm z \<le> K"
huffman@23082
   398
  assumes 3: "norm (z + h) \<le> K"
huffman@23082
   399
  shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0))
huffman@23082
   400
          \<le> of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
huffman@20860
   401
proof -
huffman@23082
   402
  have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
huffman@23082
   403
        norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
huffman@23082
   404
          (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
huffman@20860
   405
    apply (subst lemma_termdiff2 [OF 1])
huffman@23082
   406
    apply (subst norm_mult)
huffman@20860
   407
    apply (rule mult_commute)
huffman@20860
   408
    done
huffman@23082
   409
  also have "\<dots> \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
huffman@23082
   410
  proof (rule mult_right_mono [OF _ norm_ge_zero])
huffman@23082
   411
    from norm_ge_zero 2 have K: "0 \<le> K" by (rule order_trans)
huffman@23082
   412
    have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> norm ((z + h) ^ i * z ^ j) \<le> K ^ n"
huffman@20860
   413
      apply (erule subst)
huffman@23082
   414
      apply (simp only: norm_mult norm_power power_add)
huffman@23082
   415
      apply (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
huffman@20860
   416
      done
huffman@23082
   417
    show "norm (\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p.
huffman@23082
   418
              (z + h) ^ q * z ^ (n - 2 - q))
huffman@23082
   419
          \<le> of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
huffman@20860
   420
      apply (intro
huffman@23082
   421
         order_trans [OF norm_setsum]
huffman@20860
   422
         real_setsum_nat_ivl_bounded2
huffman@20860
   423
         mult_nonneg_nonneg
huffman@23082
   424
         zero_le_imp_of_nat
huffman@20860
   425
         zero_le_power K)
huffman@20860
   426
      apply (rule le_Kn, simp)
huffman@20860
   427
      done
huffman@20860
   428
  qed
huffman@23082
   429
  also have "\<dots> = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
huffman@20860
   430
    by (simp only: mult_assoc)
huffman@20860
   431
  finally show ?thesis .
huffman@20860
   432
qed
paulson@15077
   433
huffman@20860
   434
lemma lemma_termdiff4:
haftmann@31017
   435
  fixes f :: "'a::{real_normed_field} \<Rightarrow>
huffman@23082
   436
              'b::real_normed_vector"
huffman@20860
   437
  assumes k: "0 < (k::real)"
huffman@23082
   438
  assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (f h) \<le> K * norm h"
huffman@20860
   439
  shows "f -- 0 --> 0"
huffman@31325
   440
unfolding LIM_eq diff_0_right
huffman@29163
   441
proof (safe)
huffman@29163
   442
  let ?h = "of_real (k / 2)::'a"
huffman@29163
   443
  have "?h \<noteq> 0" and "norm ?h < k" using k by simp_all
huffman@29163
   444
  hence "norm (f ?h) \<le> K * norm ?h" by (rule le)
huffman@29163
   445
  hence "0 \<le> K * norm ?h" by (rule order_trans [OF norm_ge_zero])
huffman@29163
   446
  hence zero_le_K: "0 \<le> K" using k by (simp add: zero_le_mult_iff)
huffman@29163
   447
huffman@20860
   448
  fix r::real assume r: "0 < r"
huffman@23082
   449
  show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)"
huffman@20860
   450
  proof (cases)
huffman@20860
   451
    assume "K = 0"
huffman@23082
   452
    with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < k \<longrightarrow> norm (f x) < r)"
huffman@20860
   453
      by simp
huffman@23082
   454
    thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)" ..
huffman@20860
   455
  next
huffman@20860
   456
    assume K_neq_zero: "K \<noteq> 0"
huffman@20860
   457
    with zero_le_K have K: "0 < K" by simp
huffman@23082
   458
    show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> norm x < s \<longrightarrow> norm (f x) < r)"
huffman@20860
   459
    proof (rule exI, safe)
huffman@20860
   460
      from k r K show "0 < min k (r * inverse K / 2)"
huffman@20860
   461
        by (simp add: mult_pos_pos positive_imp_inverse_positive)
huffman@20860
   462
    next
huffman@23082
   463
      fix x::'a
huffman@23082
   464
      assume x1: "x \<noteq> 0" and x2: "norm x < min k (r * inverse K / 2)"
huffman@23082
   465
      from x2 have x3: "norm x < k" and x4: "norm x < r * inverse K / 2"
huffman@20860
   466
        by simp_all
huffman@23082
   467
      from x1 x3 le have "norm (f x) \<le> K * norm x" by simp
huffman@23082
   468
      also from x4 K have "K * norm x < K * (r * inverse K / 2)"
huffman@20860
   469
        by (rule mult_strict_left_mono)
huffman@20860
   470
      also have "\<dots> = r / 2"
huffman@20860
   471
        using K_neq_zero by simp
huffman@20860
   472
      also have "r / 2 < r"
huffman@20860
   473
        using r by simp
huffman@23082
   474
      finally show "norm (f x) < r" .
huffman@20860
   475
    qed
huffman@20860
   476
  qed
huffman@20860
   477
qed
paulson@15077
   478
paulson@15229
   479
lemma lemma_termdiff5:
haftmann@31017
   480
  fixes g :: "'a::{real_normed_field} \<Rightarrow>
huffman@23082
   481
              nat \<Rightarrow> 'b::banach"
huffman@20860
   482
  assumes k: "0 < (k::real)"
huffman@20860
   483
  assumes f: "summable f"
huffman@23082
   484
  assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; norm h < k\<rbrakk> \<Longrightarrow> norm (g h n) \<le> f n * norm h"
huffman@20860
   485
  shows "(\<lambda>h. suminf (g h)) -- 0 --> 0"
huffman@20860
   486
proof (rule lemma_termdiff4 [OF k])
huffman@23082
   487
  fix h::'a assume "h \<noteq> 0" and "norm h < k"
huffman@23082
   488
  hence A: "\<forall>n. norm (g h n) \<le> f n * norm h"
huffman@20860
   489
    by (simp add: le)
huffman@23082
   490
  hence "\<exists>N. \<forall>n\<ge>N. norm (norm (g h n)) \<le> f n * norm h"
huffman@20860
   491
    by simp
huffman@23082
   492
  moreover from f have B: "summable (\<lambda>n. f n * norm h)"
huffman@20860
   493
    by (rule summable_mult2)
huffman@23082
   494
  ultimately have C: "summable (\<lambda>n. norm (g h n))"
huffman@20860
   495
    by (rule summable_comparison_test)
huffman@23082
   496
  hence "norm (suminf (g h)) \<le> (\<Sum>n. norm (g h n))"
huffman@23082
   497
    by (rule summable_norm)
huffman@23082
   498
  also from A C B have "(\<Sum>n. norm (g h n)) \<le> (\<Sum>n. f n * norm h)"
huffman@20860
   499
    by (rule summable_le)
huffman@23082
   500
  also from f have "(\<Sum>n. f n * norm h) = suminf f * norm h"
huffman@20860
   501
    by (rule suminf_mult2 [symmetric])
huffman@23082
   502
  finally show "norm (suminf (g h)) \<le> suminf f * norm h" .
huffman@20860
   503
qed
paulson@15077
   504
paulson@15077
   505
paulson@15077
   506
text{* FIXME: Long proofs*}
paulson@15077
   507
paulson@15077
   508
lemma termdiffs_aux:
haftmann@31017
   509
  fixes x :: "'a::{real_normed_field,banach}"
huffman@20849
   510
  assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)"
huffman@23082
   511
  assumes 2: "norm x < norm K"
huffman@20860
   512
  shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h
huffman@23082
   513
             - of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
huffman@20849
   514
proof -
huffman@20860
   515
  from dense [OF 2]
huffman@23082
   516
  obtain r where r1: "norm x < r" and r2: "r < norm K" by fast
huffman@23082
   517
  from norm_ge_zero r1 have r: "0 < r"
huffman@20860
   518
    by (rule order_le_less_trans)
huffman@20860
   519
  hence r_neq_0: "r \<noteq> 0" by simp
huffman@20860
   520
  show ?thesis
huffman@20849
   521
  proof (rule lemma_termdiff5)
huffman@23082
   522
    show "0 < r - norm x" using r1 by simp
huffman@20849
   523
  next
huffman@23082
   524
    from r r2 have "norm (of_real r::'a) < norm K"
huffman@23082
   525
      by simp
huffman@23082
   526
    with 1 have "summable (\<lambda>n. norm (diffs (diffs c) n * (of_real r ^ n)))"
huffman@20860
   527
      by (rule powser_insidea)
huffman@23082
   528
    hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. norm (c n))) n * r ^ n)"
huffman@23082
   529
      using r
huffman@23082
   530
      by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
huffman@23082
   531
    hence "summable (\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))"
huffman@20860
   532
      by (rule diffs_equiv [THEN sums_summable])
huffman@23082
   533
    also have "(\<lambda>n. of_nat n * diffs (\<lambda>n. norm (c n)) n * r ^ (n - Suc 0))
huffman@23082
   534
      = (\<lambda>n. diffs (%m. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
huffman@20849
   535
      apply (rule ext)
huffman@20849
   536
      apply (simp add: diffs_def)
huffman@20849
   537
      apply (case_tac n, simp_all add: r_neq_0)
huffman@20849
   538
      done
hoelzl@42841
   539
    finally have "summable
huffman@23082
   540
      (\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
huffman@20860
   541
      by (rule diffs_equiv [THEN sums_summable])
huffman@20860
   542
    also have
huffman@23082
   543
      "(\<lambda>n. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) *
huffman@20860
   544
           r ^ (n - Suc 0)) =
huffman@23082
   545
       (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
huffman@20849
   546
      apply (rule ext)
huffman@20849
   547
      apply (case_tac "n", simp)
huffman@20849
   548
      apply (case_tac "nat", simp)
huffman@20849
   549
      apply (simp add: r_neq_0)
huffman@20849
   550
      done
huffman@20860
   551
    finally show
huffman@23082
   552
      "summable (\<lambda>n. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
huffman@20860
   553
  next
huffman@23082
   554
    fix h::'a and n::nat
huffman@20860
   555
    assume h: "h \<noteq> 0"
huffman@23082
   556
    assume "norm h < r - norm x"
huffman@23082
   557
    hence "norm x + norm h < r" by simp
huffman@23082
   558
    with norm_triangle_ineq have xh: "norm (x + h) < r"
huffman@20860
   559
      by (rule order_le_less_trans)
huffman@23082
   560
    show "norm (c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))
huffman@23082
   561
          \<le> norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
huffman@23082
   562
      apply (simp only: norm_mult mult_assoc)
huffman@23082
   563
      apply (rule mult_left_mono [OF _ norm_ge_zero])
huffman@20860
   564
      apply (simp (no_asm) add: mult_assoc [symmetric])
huffman@20860
   565
      apply (rule lemma_termdiff3)
huffman@20860
   566
      apply (rule h)
huffman@20860
   567
      apply (rule r1 [THEN order_less_imp_le])
huffman@20860
   568
      apply (rule xh [THEN order_less_imp_le])
huffman@20849
   569
      done
huffman@20849
   570
  qed
huffman@20849
   571
qed
webertj@20217
   572
huffman@20860
   573
lemma termdiffs:
haftmann@31017
   574
  fixes K x :: "'a::{real_normed_field,banach}"
huffman@20860
   575
  assumes 1: "summable (\<lambda>n. c n * K ^ n)"
huffman@20860
   576
  assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)"
huffman@20860
   577
  assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)"
huffman@23082
   578
  assumes 4: "norm x < norm K"
huffman@20860
   579
  shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)"
huffman@29163
   580
unfolding deriv_def
huffman@29163
   581
proof (rule LIM_zero_cancel)
huffman@20860
   582
  show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h
huffman@20860
   583
            - suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0"
huffman@20860
   584
  proof (rule LIM_equal2)
huffman@29163
   585
    show "0 < norm K - norm x" using 4 by (simp add: less_diff_eq)
huffman@20860
   586
  next
huffman@23082
   587
    fix h :: 'a
huffman@20860
   588
    assume "h \<noteq> 0"
huffman@23082
   589
    assume "norm (h - 0) < norm K - norm x"
huffman@23082
   590
    hence "norm x + norm h < norm K" by simp
huffman@23082
   591
    hence 5: "norm (x + h) < norm K"
huffman@23082
   592
      by (rule norm_triangle_ineq [THEN order_le_less_trans])
huffman@20860
   593
    have A: "summable (\<lambda>n. c n * x ^ n)"
huffman@20860
   594
      by (rule powser_inside [OF 1 4])
huffman@20860
   595
    have B: "summable (\<lambda>n. c n * (x + h) ^ n)"
huffman@20860
   596
      by (rule powser_inside [OF 1 5])
huffman@20860
   597
    have C: "summable (\<lambda>n. diffs c n * x ^ n)"
huffman@20860
   598
      by (rule powser_inside [OF 2 4])
huffman@20860
   599
    show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h
hoelzl@42841
   600
             - (\<Sum>n. diffs c n * x ^ n) =
huffman@23082
   601
          (\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0)))"
huffman@20860
   602
      apply (subst sums_unique [OF diffs_equiv [OF C]])
huffman@20860
   603
      apply (subst suminf_diff [OF B A])
huffman@20860
   604
      apply (subst suminf_divide [symmetric])
huffman@20860
   605
      apply (rule summable_diff [OF B A])
huffman@20860
   606
      apply (subst suminf_diff)
huffman@20860
   607
      apply (rule summable_divide)
huffman@20860
   608
      apply (rule summable_diff [OF B A])
huffman@20860
   609
      apply (rule sums_summable [OF diffs_equiv [OF C]])
huffman@29163
   610
      apply (rule arg_cong [where f="suminf"], rule ext)
nipkow@29667
   611
      apply (simp add: algebra_simps)
huffman@20860
   612
      done
huffman@20860
   613
  next
huffman@20860
   614
    show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h -
huffman@23082
   615
               of_nat n * x ^ (n - Suc 0))) -- 0 --> 0"
huffman@20860
   616
        by (rule termdiffs_aux [OF 3 4])
huffman@20860
   617
  qed
huffman@20860
   618
qed
huffman@20860
   619
paulson@15077
   620
hoelzl@29740
   621
subsection {* Derivability of power series *}
hoelzl@29740
   622
hoelzl@29740
   623
lemma DERIV_series': fixes f :: "real \<Rightarrow> nat \<Rightarrow> real"
hoelzl@29740
   624
  assumes DERIV_f: "\<And> n. DERIV (\<lambda> x. f x n) x0 :> (f' x0 n)"
hoelzl@29740
   625
  and allf_summable: "\<And> x. x \<in> {a <..< b} \<Longrightarrow> summable (f x)" and x0_in_I: "x0 \<in> {a <..< b}"
hoelzl@29740
   626
  and "summable (f' x0)"
hoelzl@29740
   627
  and "summable L" and L_def: "\<And> n x y. \<lbrakk> x \<in> { a <..< b} ; y \<in> { a <..< b} \<rbrakk> \<Longrightarrow> \<bar> f x n - f y n \<bar> \<le> L n * \<bar> x - y \<bar>"
hoelzl@29740
   628
  shows "DERIV (\<lambda> x. suminf (f x)) x0 :> (suminf (f' x0))"
hoelzl@29740
   629
  unfolding deriv_def
hoelzl@29740
   630
proof (rule LIM_I)
hoelzl@29740
   631
  fix r :: real assume "0 < r" hence "0 < r/3" by auto
hoelzl@29740
   632
hoelzl@42841
   633
  obtain N_L where N_L: "\<And> n. N_L \<le> n \<Longrightarrow> \<bar> \<Sum> i. L (i + n) \<bar> < r/3"
hoelzl@29740
   634
    using suminf_exist_split[OF `0 < r/3` `summable L`] by auto
hoelzl@29740
   635
hoelzl@42841
   636
  obtain N_f' where N_f': "\<And> n. N_f' \<le> n \<Longrightarrow> \<bar> \<Sum> i. f' x0 (i + n) \<bar> < r/3"
hoelzl@29740
   637
    using suminf_exist_split[OF `0 < r/3` `summable (f' x0)`] by auto
hoelzl@29740
   638
hoelzl@29740
   639
  let ?N = "Suc (max N_L N_f')"
hoelzl@29740
   640
  have "\<bar> \<Sum> i. f' x0 (i + ?N) \<bar> < r/3" (is "?f'_part < r/3") and
hoelzl@29740
   641
    L_estimate: "\<bar> \<Sum> i. L (i + ?N) \<bar> < r/3" using N_L[of "?N"] and N_f' [of "?N"] by auto
hoelzl@29740
   642
hoelzl@29740
   643
  let "?diff i x" = "(f (x0 + x) i - f x0 i) / x"
hoelzl@29740
   644
hoelzl@29740
   645
  let ?r = "r / (3 * real ?N)"
hoelzl@29740
   646
  have "0 < 3 * real ?N" by auto
hoelzl@29740
   647
  from divide_pos_pos[OF `0 < r` this]
hoelzl@29740
   648
  have "0 < ?r" .
hoelzl@29740
   649
hoelzl@29740
   650
  let "?s n" = "SOME s. 0 < s \<and> (\<forall> x. x \<noteq> 0 \<and> \<bar> x \<bar> < s \<longrightarrow> \<bar> ?diff n x - f' x0 n \<bar> < ?r)"
hoelzl@29740
   651
  def S' \<equiv> "Min (?s ` { 0 ..< ?N })"
hoelzl@29740
   652
hoelzl@29740
   653
  have "0 < S'" unfolding S'_def
hoelzl@29740
   654
  proof (rule iffD2[OF Min_gr_iff])
hoelzl@29740
   655
    show "\<forall> x \<in> (?s ` { 0 ..< ?N }). 0 < x"
hoelzl@29740
   656
    proof (rule ballI)
hoelzl@29740
   657
      fix x assume "x \<in> ?s ` {0..<?N}"
hoelzl@29740
   658
      then obtain n where "x = ?s n" and "n \<in> {0..<?N}" using image_iff[THEN iffD1] by blast
hoelzl@42841
   659
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def]
hoelzl@29740
   660
      obtain s where s_bound: "0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r)" by auto
hoelzl@29740
   661
      have "0 < ?s n" by (rule someI2[where a=s], auto simp add: s_bound)
hoelzl@29740
   662
      thus "0 < x" unfolding `x = ?s n` .
hoelzl@29740
   663
    qed
hoelzl@29740
   664
  qed auto
hoelzl@29740
   665
hoelzl@29740
   666
  def S \<equiv> "min (min (x0 - a) (b - x0)) S'"
hoelzl@29740
   667
  hence "0 < S" and S_a: "S \<le> x0 - a" and S_b: "S \<le> b - x0" and "S \<le> S'" using x0_in_I and `0 < S'`
hoelzl@29740
   668
    by auto
hoelzl@29740
   669
hoelzl@29740
   670
  { fix x assume "x \<noteq> 0" and "\<bar> x \<bar> < S"
hoelzl@29740
   671
    hence x_in_I: "x0 + x \<in> { a <..< b }" using S_a S_b by auto
hoelzl@42841
   672
hoelzl@29740
   673
    note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
hoelzl@29740
   674
    note div_smbl = summable_divide[OF diff_smbl]
hoelzl@29740
   675
    note all_smbl = summable_diff[OF div_smbl `summable (f' x0)`]
hoelzl@29740
   676
    note ign = summable_ignore_initial_segment[where k="?N"]
hoelzl@29740
   677
    note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
hoelzl@29740
   678
    note div_shft_smbl = summable_divide[OF diff_shft_smbl]
hoelzl@29740
   679
    note all_shft_smbl = summable_diff[OF div_smbl ign[OF `summable (f' x0)`]]
hoelzl@29740
   680
hoelzl@29740
   681
    { fix n
hoelzl@42841
   682
      have "\<bar> ?diff (n + ?N) x \<bar> \<le> L (n + ?N) * \<bar> (x0 + x) - x0 \<bar> / \<bar> x \<bar>"
wenzelm@32962
   683
        using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero] unfolding abs_divide .
hoelzl@29740
   684
      hence "\<bar> ( \<bar> ?diff (n + ?N) x \<bar>) \<bar> \<le> L (n + ?N)" using `x \<noteq> 0` by auto
hoelzl@29740
   685
    } note L_ge = summable_le2[OF allI[OF this] ign[OF `summable L`]]
hoelzl@29740
   686
    from order_trans[OF summable_rabs[OF conjunct1[OF L_ge]] L_ge[THEN conjunct2]]
hoelzl@29740
   687
    have "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> (\<Sum> i. L (i + ?N))" .
hoelzl@29740
   688
    hence "\<bar> \<Sum> i. ?diff (i + ?N) x \<bar> \<le> r / 3" (is "?L_part \<le> r/3") using L_estimate by auto
hoelzl@29740
   689
hoelzl@29740
   690
    have "\<bar>\<Sum>n \<in> { 0 ..< ?N}. ?diff n x - f' x0 n \<bar> \<le> (\<Sum>n \<in> { 0 ..< ?N}. \<bar>?diff n x - f' x0 n \<bar>)" ..
hoelzl@29740
   691
    also have "\<dots> < (\<Sum>n \<in> { 0 ..< ?N}. ?r)"
hoelzl@29740
   692
    proof (rule setsum_strict_mono)
hoelzl@29740
   693
      fix n assume "n \<in> { 0 ..< ?N}"
hoelzl@29740
   694
      have "\<bar> x \<bar> < S" using `\<bar> x \<bar> < S` .
hoelzl@29740
   695
      also have "S \<le> S'" using `S \<le> S'` .
hoelzl@42841
   696
      also have "S' \<le> ?s n" unfolding S'_def
hoelzl@29740
   697
      proof (rule Min_le_iff[THEN iffD2])
wenzelm@32962
   698
        have "?s n \<in> (?s ` {0..<?N}) \<and> ?s n \<le> ?s n" using `n \<in> { 0 ..< ?N}` by auto
wenzelm@32962
   699
        thus "\<exists> a \<in> (?s ` {0..<?N}). a \<le> ?s n" by blast
hoelzl@29740
   700
      qed auto
hoelzl@29740
   701
      finally have "\<bar> x \<bar> < ?s n" .
hoelzl@29740
   702
hoelzl@29740
   703
      from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF `0 < ?r`, unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
hoelzl@29740
   704
      have "\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < ?s n \<longrightarrow> \<bar>?diff n x - f' x0 n\<bar> < ?r" .
hoelzl@29740
   705
      with `x \<noteq> 0` and `\<bar>x\<bar> < ?s n`
hoelzl@29740
   706
      show "\<bar>?diff n x - f' x0 n\<bar> < ?r" by blast
hoelzl@29740
   707
    qed auto
hoelzl@29740
   708
    also have "\<dots> = of_nat (card {0 ..< ?N}) * ?r" by (rule setsum_constant)
hoelzl@29740
   709
    also have "\<dots> = real ?N * ?r" unfolding real_eq_of_nat by auto
hoelzl@29740
   710
    also have "\<dots> = r/3" by auto
hoelzl@29740
   711
    finally have "\<bar>\<Sum>n \<in> { 0 ..< ?N}. ?diff n x - f' x0 n \<bar> < r / 3" (is "?diff_part < r / 3") .
hoelzl@29740
   712
hoelzl@29740
   713
    from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
hoelzl@42841
   714
    have "\<bar> (suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0) \<bar> =
hoelzl@29740
   715
                    \<bar> \<Sum>n. ?diff n x - f' x0 n \<bar>" unfolding suminf_diff[OF div_smbl `summable (f' x0)`, symmetric] using suminf_divide[OF diff_smbl, symmetric] by auto
hoelzl@29740
   716
    also have "\<dots> \<le> ?diff_part + \<bar> (\<Sum>n. ?diff (n + ?N) x) - (\<Sum> n. f' x0 (n + ?N)) \<bar>" unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"] unfolding suminf_diff[OF div_shft_smbl ign[OF `summable (f' x0)`]] by (rule abs_triangle_ineq)
hoelzl@29740
   717
    also have "\<dots> \<le> ?diff_part + ?L_part + ?f'_part" using abs_triangle_ineq4 by auto
hoelzl@42841
   718
    also have "\<dots> < r /3 + r/3 + r/3"
huffman@36837
   719
      using `?diff_part < r/3` `?L_part \<le> r/3` and `?f'_part < r/3`
huffman@36837
   720
      by (rule add_strict_mono [OF add_less_le_mono])
hoelzl@29740
   721
    finally have "\<bar> (suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0) \<bar> < r"
hoelzl@29740
   722
      by auto
hoelzl@42841
   723
  } thus "\<exists> s > 0. \<forall> x. x \<noteq> 0 \<and> norm (x - 0) < s \<longrightarrow>
hoelzl@29740
   724
      norm (((\<Sum>n. f (x0 + x) n) - (\<Sum>n. f x0 n)) / x - (\<Sum>n. f' x0 n)) < r" using `0 < S`
hoelzl@29740
   725
    unfolding real_norm_def diff_0_right by blast
hoelzl@29740
   726
qed
hoelzl@29740
   727
hoelzl@29740
   728
lemma DERIV_power_series': fixes f :: "nat \<Rightarrow> real"
hoelzl@29740
   729
  assumes converges: "\<And> x. x \<in> {-R <..< R} \<Longrightarrow> summable (\<lambda> n. f n * real (Suc n) * x^n)"
hoelzl@29740
   730
  and x0_in_I: "x0 \<in> {-R <..< R}" and "0 < R"
hoelzl@29740
   731
  shows "DERIV (\<lambda> x. (\<Sum> n. f n * x^(Suc n))) x0 :> (\<Sum> n. f n * real (Suc n) * x0^n)"
hoelzl@29740
   732
  (is "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))")
hoelzl@29740
   733
proof -
hoelzl@29740
   734
  { fix R' assume "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'"
hoelzl@29740
   735
    hence "x0 \<in> {-R' <..< R'}" and "R' \<in> {-R <..< R}" and "x0 \<in> {-R <..< R}" by auto
hoelzl@29740
   736
    have "DERIV (\<lambda> x. (suminf (?f x))) x0 :> (suminf (?f' x0))"
hoelzl@29740
   737
    proof (rule DERIV_series')
hoelzl@29740
   738
      show "summable (\<lambda> n. \<bar>f n * real (Suc n) * R'^n\<bar>)"
hoelzl@29740
   739
      proof -
wenzelm@32962
   740
        have "(R' + R) / 2 < R" and "0 < (R' + R) / 2" using `0 < R'` `0 < R` `R' < R` by auto
wenzelm@32962
   741
        hence in_Rball: "(R' + R) / 2 \<in> {-R <..< R}" using `R' < R` by auto
wenzelm@32962
   742
        have "norm R' < norm ((R' + R) / 2)" using `0 < R'` `0 < R` `R' < R` by auto
wenzelm@32962
   743
        from powser_insidea[OF converges[OF in_Rball] this] show ?thesis by auto
hoelzl@29740
   744
      qed
hoelzl@29740
   745
      { fix n x y assume "x \<in> {-R' <..< R'}" and "y \<in> {-R' <..< R'}"
wenzelm@32962
   746
        show "\<bar>?f x n - ?f y n\<bar> \<le> \<bar>f n * real (Suc n) * R'^n\<bar> * \<bar>x-y\<bar>"
wenzelm@32962
   747
        proof -
hoelzl@42841
   748
          have "\<bar>f n * x ^ (Suc n) - f n * y ^ (Suc n)\<bar> = (\<bar>f n\<bar> * \<bar>x-y\<bar>) * \<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar>"
wenzelm@32962
   749
            unfolding right_diff_distrib[symmetric] lemma_realpow_diff_sumr2 abs_mult by auto
hoelzl@42841
   750
          also have "\<dots> \<le> (\<bar>f n\<bar> * \<bar>x-y\<bar>) * (\<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>)"
wenzelm@32962
   751
          proof (rule mult_left_mono)
wenzelm@32962
   752
            have "\<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> (\<Sum>p = 0..<Suc n. \<bar>x ^ p * y ^ (n - p)\<bar>)" by (rule setsum_abs)
wenzelm@32962
   753
            also have "\<dots> \<le> (\<Sum>p = 0..<Suc n. R' ^ n)"
wenzelm@32962
   754
            proof (rule setsum_mono)
wenzelm@32962
   755
              fix p assume "p \<in> {0..<Suc n}" hence "p \<le> n" by auto
wenzelm@32962
   756
              { fix n fix x :: real assume "x \<in> {-R'<..<R'}"
wenzelm@32962
   757
                hence "\<bar>x\<bar> \<le> R'"  by auto
wenzelm@32962
   758
                hence "\<bar>x^n\<bar> \<le> R'^n" unfolding power_abs by (rule power_mono, auto)
wenzelm@32962
   759
              } from mult_mono[OF this[OF `x \<in> {-R'<..<R'}`, of p] this[OF `y \<in> {-R'<..<R'}`, of "n-p"]] `0 < R'`
wenzelm@32962
   760
              have "\<bar>x^p * y^(n-p)\<bar> \<le> R'^p * R'^(n-p)" unfolding abs_mult by auto
wenzelm@32962
   761
              thus "\<bar>x^p * y^(n-p)\<bar> \<le> R'^n" unfolding power_add[symmetric] using `p \<le> n` by auto
wenzelm@32962
   762
            qed
wenzelm@32962
   763
            also have "\<dots> = real (Suc n) * R' ^ n" unfolding setsum_constant card_atLeastLessThan real_of_nat_def by auto
wenzelm@32962
   764
            finally show "\<bar>\<Sum>p = 0..<Suc n. x ^ p * y ^ (n - p)\<bar> \<le> \<bar>real (Suc n)\<bar> * \<bar>R' ^ n\<bar>" unfolding abs_real_of_nat_cancel abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF `0 < R'`]]] .
wenzelm@32962
   765
            show "0 \<le> \<bar>f n\<bar> * \<bar>x - y\<bar>" unfolding abs_mult[symmetric] by auto
wenzelm@32962
   766
          qed
huffman@36769
   767
          also have "\<dots> = \<bar>f n * real (Suc n) * R' ^ n\<bar> * \<bar>x - y\<bar>" unfolding abs_mult mult_assoc[symmetric] by algebra
wenzelm@32962
   768
          finally show ?thesis .
wenzelm@32962
   769
        qed }
hoelzl@31880
   770
      { fix n show "DERIV (\<lambda> x. ?f x n) x0 :> (?f' x0 n)"
wenzelm@32962
   771
          by (auto intro!: DERIV_intros simp del: power_Suc) }
hoelzl@29740
   772
      { fix x assume "x \<in> {-R' <..< R'}" hence "R' \<in> {-R <..< R}" and "norm x < norm R'" using assms `R' < R` by auto
wenzelm@32962
   773
        have "summable (\<lambda> n. f n * x^n)"
wenzelm@32962
   774
        proof (rule summable_le2[THEN conjunct1, OF _ powser_insidea[OF converges[OF `R' \<in> {-R <..< R}`] `norm x < norm R'`]], rule allI)
wenzelm@32962
   775
          fix n
wenzelm@32962
   776
          have le: "\<bar>f n\<bar> * 1 \<le> \<bar>f n\<bar> * real (Suc n)" by (rule mult_left_mono, auto)
wenzelm@32962
   777
          show "\<bar>f n * x ^ n\<bar> \<le> norm (f n * real (Suc n) * x ^ n)" unfolding real_norm_def abs_mult
wenzelm@32962
   778
            by (rule mult_right_mono, auto simp add: le[unfolded mult_1_right])
wenzelm@32962
   779
        qed
huffman@36769
   780
        from this[THEN summable_mult2[where c=x], unfolded mult_assoc, unfolded mult_commute]
wenzelm@32962
   781
        show "summable (?f x)" by auto }
hoelzl@29740
   782
      show "summable (?f' x0)" using converges[OF `x0 \<in> {-R <..< R}`] .
hoelzl@29740
   783
      show "x0 \<in> {-R' <..< R'}" using `x0 \<in> {-R' <..< R'}` .
hoelzl@29740
   784
    qed
hoelzl@29740
   785
  } note for_subinterval = this
hoelzl@29740
   786
  let ?R = "(R + \<bar>x0\<bar>) / 2"
hoelzl@29740
   787
  have "\<bar>x0\<bar> < ?R" using assms by auto
hoelzl@29740
   788
  hence "- ?R < x0"
hoelzl@29740
   789
  proof (cases "x0 < 0")
hoelzl@29740
   790
    case True
hoelzl@29740
   791
    hence "- x0 < ?R" using `\<bar>x0\<bar> < ?R` by auto
hoelzl@29740
   792
    thus ?thesis unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
hoelzl@29740
   793
  next
hoelzl@29740
   794
    case False
hoelzl@29740
   795
    have "- ?R < 0" using assms by auto
hoelzl@42841
   796
    also have "\<dots> \<le> x0" using False by auto
hoelzl@29740
   797
    finally show ?thesis .
hoelzl@29740
   798
  qed
hoelzl@29740
   799
  hence "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R" using assms by auto
hoelzl@29740
   800
  from for_subinterval[OF this]
hoelzl@29740
   801
  show ?thesis .
hoelzl@29740
   802
qed
chaieb@29695
   803
huffman@29164
   804
subsection {* Exponential Function *}
huffman@23043
   805
huffman@23043
   806
definition
haftmann@31017
   807
  exp :: "'a \<Rightarrow> 'a::{real_normed_field,banach}" where
haftmann@25062
   808
  "exp x = (\<Sum>n. x ^ n /\<^sub>R real (fact n))"
huffman@23043
   809
huffman@23115
   810
lemma summable_exp_generic:
haftmann@31017
   811
  fixes x :: "'a::{real_normed_algebra_1,banach}"
haftmann@25062
   812
  defines S_def: "S \<equiv> \<lambda>n. x ^ n /\<^sub>R real (fact n)"
huffman@23115
   813
  shows "summable S"
huffman@23115
   814
proof -
haftmann@25062
   815
  have S_Suc: "\<And>n. S (Suc n) = (x * S n) /\<^sub>R real (Suc n)"
huffman@30269
   816
    unfolding S_def by (simp del: mult_Suc)
huffman@23115
   817
  obtain r :: real where r0: "0 < r" and r1: "r < 1"
huffman@23115
   818
    using dense [OF zero_less_one] by fast
huffman@23115
   819
  obtain N :: nat where N: "norm x < real N * r"
huffman@23115
   820
    using reals_Archimedean3 [OF r0] by fast
huffman@23115
   821
  from r1 show ?thesis
huffman@23115
   822
  proof (rule ratio_test [rule_format])
huffman@23115
   823
    fix n :: nat
huffman@23115
   824
    assume n: "N \<le> n"
huffman@23115
   825
    have "norm x \<le> real N * r"
huffman@23115
   826
      using N by (rule order_less_imp_le)
huffman@23115
   827
    also have "real N * r \<le> real (Suc n) * r"
huffman@23115
   828
      using r0 n by (simp add: mult_right_mono)
huffman@23115
   829
    finally have "norm x * norm (S n) \<le> real (Suc n) * r * norm (S n)"
huffman@23115
   830
      using norm_ge_zero by (rule mult_right_mono)
huffman@23115
   831
    hence "norm (x * S n) \<le> real (Suc n) * r * norm (S n)"
huffman@23115
   832
      by (rule order_trans [OF norm_mult_ineq])
huffman@23115
   833
    hence "norm (x * S n) / real (Suc n) \<le> r * norm (S n)"
huffman@23115
   834
      by (simp add: pos_divide_le_eq mult_ac)
huffman@23115
   835
    thus "norm (S (Suc n)) \<le> r * norm (S n)"
huffman@35208
   836
      by (simp add: S_Suc inverse_eq_divide)
huffman@23115
   837
  qed
huffman@23115
   838
qed
huffman@23115
   839
huffman@23115
   840
lemma summable_norm_exp:
haftmann@31017
   841
  fixes x :: "'a::{real_normed_algebra_1,banach}"
haftmann@25062
   842
  shows "summable (\<lambda>n. norm (x ^ n /\<^sub>R real (fact n)))"
huffman@23115
   843
proof (rule summable_norm_comparison_test [OF exI, rule_format])
haftmann@25062
   844
  show "summable (\<lambda>n. norm x ^ n /\<^sub>R real (fact n))"
huffman@23115
   845
    by (rule summable_exp_generic)
huffman@23115
   846
next
haftmann@25062
   847
  fix n show "norm (x ^ n /\<^sub>R real (fact n)) \<le> norm x ^ n /\<^sub>R real (fact n)"
huffman@35208
   848
    by (simp add: norm_power_ineq)
huffman@23115
   849
qed
huffman@23115
   850
huffman@23043
   851
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)"
huffman@23115
   852
by (insert summable_exp_generic [where x=x], simp)
huffman@23043
   853
haftmann@25062
   854
lemma exp_converges: "(\<lambda>n. x ^ n /\<^sub>R real (fact n)) sums exp x"
huffman@23115
   855
unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
huffman@23043
   856
huffman@23043
   857
hoelzl@42841
   858
lemma exp_fdiffs:
paulson@15077
   859
      "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))"
huffman@23431
   860
by (simp add: diffs_def mult_assoc [symmetric] real_of_nat_def of_nat_mult
huffman@23082
   861
         del: mult_Suc of_nat_Suc)
paulson@15077
   862
huffman@23115
   863
lemma diffs_of_real: "diffs (\<lambda>n. of_real (f n)) = (\<lambda>n. of_real (diffs f n))"
huffman@23115
   864
by (simp add: diffs_def)
huffman@23115
   865
haftmann@25062
   866
lemma lemma_exp_ext: "exp = (\<lambda>x. \<Sum>n. x ^ n /\<^sub>R real (fact n))"
huffman@45160
   867
by (auto simp add: exp_def)
paulson@15077
   868
paulson@15077
   869
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)"
paulson@15229
   870
apply (simp add: exp_def)
paulson@15077
   871
apply (subst lemma_exp_ext)
huffman@23115
   872
apply (subgoal_tac "DERIV (\<lambda>u. \<Sum>n. of_real (inverse (real (fact n))) * u ^ n) x :> (\<Sum>n. diffs (\<lambda>n. of_real (inverse (real (fact n)))) n * x ^ n)")
huffman@23115
   873
apply (rule_tac [2] K = "of_real (1 + norm x)" in termdiffs)
huffman@23115
   874
apply (simp_all only: diffs_of_real scaleR_conv_of_real exp_fdiffs)
huffman@23115
   875
apply (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])+
huffman@23115
   876
apply (simp del: of_real_add)
paulson@15077
   877
done
paulson@15077
   878
huffman@23045
   879
lemma isCont_exp [simp]: "isCont exp x"
huffman@23045
   880
by (rule DERIV_exp [THEN DERIV_isCont])
huffman@23045
   881
huffman@23045
   882
huffman@29167
   883
subsubsection {* Properties of the Exponential Function *}
paulson@15077
   884
huffman@23278
   885
lemma powser_zero:
haftmann@31017
   886
  fixes f :: "nat \<Rightarrow> 'a::{real_normed_algebra_1}"
huffman@23278
   887
  shows "(\<Sum>n. f n * 0 ^ n) = f 0"
huffman@23278
   888
proof -
huffman@23278
   889
  have "(\<Sum>n = 0..<1. f n * 0 ^ n) = (\<Sum>n. f n * 0 ^ n)"
huffman@23278
   890
    by (rule sums_unique [OF series_zero], simp add: power_0_left)
huffman@30019
   891
  thus ?thesis unfolding One_nat_def by simp
huffman@23278
   892
qed
huffman@23278
   893
paulson@15077
   894
lemma exp_zero [simp]: "exp 0 = 1"
huffman@23278
   895
unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero)
paulson@15077
   896
huffman@23115
   897
lemma setsum_cl_ivl_Suc2:
huffman@23115
   898
  "(\<Sum>i=m..Suc n. f i) = (if Suc n < m then 0 else f m + (\<Sum>i=m..n. f (Suc i)))"
nipkow@28069
   899
by (simp add: setsum_head_Suc setsum_shift_bounds_cl_Suc_ivl
huffman@23115
   900
         del: setsum_cl_ivl_Suc)
huffman@23115
   901
huffman@23115
   902
lemma exp_series_add:
haftmann@31017
   903
  fixes x y :: "'a::{real_field}"
haftmann@25062
   904
  defines S_def: "S \<equiv> \<lambda>x n. x ^ n /\<^sub>R real (fact n)"
huffman@23115
   905
  shows "S (x + y) n = (\<Sum>i=0..n. S x i * S y (n - i))"
huffman@23115
   906
proof (induct n)
huffman@23115
   907
  case 0
huffman@23115
   908
  show ?case
huffman@23115
   909
    unfolding S_def by simp
huffman@23115
   910
next
huffman@23115
   911
  case (Suc n)
haftmann@25062
   912
  have S_Suc: "\<And>x n. S x (Suc n) = (x * S x n) /\<^sub>R real (Suc n)"
huffman@30269
   913
    unfolding S_def by (simp del: mult_Suc)
haftmann@25062
   914
  hence times_S: "\<And>x n. x * S x n = real (Suc n) *\<^sub>R S x (Suc n)"
huffman@23115
   915
    by simp
huffman@23115
   916
haftmann@25062
   917
  have "real (Suc n) *\<^sub>R S (x + y) (Suc n) = (x + y) * S (x + y) n"
huffman@23115
   918
    by (simp only: times_S)
huffman@23115
   919
  also have "\<dots> = (x + y) * (\<Sum>i=0..n. S x i * S y (n-i))"
huffman@23115
   920
    by (simp only: Suc)
huffman@23115
   921
  also have "\<dots> = x * (\<Sum>i=0..n. S x i * S y (n-i))
huffman@23115
   922
                + y * (\<Sum>i=0..n. S x i * S y (n-i))"
huffman@23115
   923
    by (rule left_distrib)
huffman@23115
   924
  also have "\<dots> = (\<Sum>i=0..n. (x * S x i) * S y (n-i))
huffman@23115
   925
                + (\<Sum>i=0..n. S x i * (y * S y (n-i)))"
huffman@23115
   926
    by (simp only: setsum_right_distrib mult_ac)
haftmann@25062
   927
  also have "\<dots> = (\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i)))
haftmann@25062
   928
                + (\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
huffman@23115
   929
    by (simp add: times_S Suc_diff_le)
haftmann@25062
   930
  also have "(\<Sum>i=0..n. real (Suc i) *\<^sub>R (S x (Suc i) * S y (n-i))) =
haftmann@25062
   931
             (\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i)))"
huffman@23115
   932
    by (subst setsum_cl_ivl_Suc2, simp)
haftmann@25062
   933
  also have "(\<Sum>i=0..n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
haftmann@25062
   934
             (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i)))"
huffman@23115
   935
    by (subst setsum_cl_ivl_Suc, simp)
haftmann@25062
   936
  also have "(\<Sum>i=0..Suc n. real i *\<^sub>R (S x i * S y (Suc n-i))) +
haftmann@25062
   937
             (\<Sum>i=0..Suc n. real (Suc n-i) *\<^sub>R (S x i * S y (Suc n-i))) =
haftmann@25062
   938
             (\<Sum>i=0..Suc n. real (Suc n) *\<^sub>R (S x i * S y (Suc n-i)))"
huffman@23115
   939
    by (simp only: setsum_addf [symmetric] scaleR_left_distrib [symmetric]
huffman@23115
   940
              real_of_nat_add [symmetric], simp)
haftmann@25062
   941
  also have "\<dots> = real (Suc n) *\<^sub>R (\<Sum>i=0..Suc n. S x i * S y (Suc n-i))"
huffman@23127
   942
    by (simp only: scaleR_right.setsum)
huffman@23115
   943
  finally show
huffman@23115
   944
    "S (x + y) (Suc n) = (\<Sum>i=0..Suc n. S x i * S y (Suc n - i))"
huffman@35208
   945
    by (simp del: setsum_cl_ivl_Suc)
huffman@23115
   946
qed
huffman@23115
   947
huffman@23115
   948
lemma exp_add: "exp (x + y) = exp x * exp y"
huffman@23115
   949
unfolding exp_def
huffman@23115
   950
by (simp only: Cauchy_product summable_norm_exp exp_series_add)
huffman@23115
   951
huffman@29170
   952
lemma mult_exp_exp: "exp x * exp y = exp (x + y)"
huffman@29170
   953
by (rule exp_add [symmetric])
huffman@29170
   954
huffman@23241
   955
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
huffman@23241
   956
unfolding exp_def
huffman@45145
   957
apply (subst suminf_of_real)
huffman@23241
   958
apply (rule summable_exp_generic)
huffman@23241
   959
apply (simp add: scaleR_conv_of_real)
huffman@23241
   960
done
huffman@23241
   961
huffman@29170
   962
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0"
huffman@29170
   963
proof
huffman@29170
   964
  have "exp x * exp (- x) = 1" by (simp add: mult_exp_exp)
huffman@29170
   965
  also assume "exp x = 0"
huffman@29170
   966
  finally show "False" by simp
paulson@15077
   967
qed
paulson@15077
   968
huffman@29170
   969
lemma exp_minus: "exp (- x) = inverse (exp x)"
huffman@29170
   970
by (rule inverse_unique [symmetric], simp add: mult_exp_exp)
paulson@15077
   971
huffman@29170
   972
lemma exp_diff: "exp (x - y) = exp x / exp y"
huffman@29170
   973
  unfolding diff_minus divide_inverse
huffman@29170
   974
  by (simp add: exp_add exp_minus)
paulson@15077
   975
huffman@29167
   976
huffman@29167
   977
subsubsection {* Properties of the Exponential Function on Reals *}
huffman@29167
   978
huffman@29170
   979
text {* Comparisons of @{term "exp x"} with zero. *}
huffman@29167
   980
huffman@29167
   981
text{*Proof: because every exponential can be seen as a square.*}
huffman@29167
   982
lemma exp_ge_zero [simp]: "0 \<le> exp (x::real)"
huffman@29167
   983
proof -
huffman@29167
   984
  have "0 \<le> exp (x/2) * exp (x/2)" by simp
huffman@29167
   985
  thus ?thesis by (simp add: exp_add [symmetric])
huffman@29167
   986
qed
huffman@29167
   987
huffman@23115
   988
lemma exp_gt_zero [simp]: "0 < exp (x::real)"
paulson@15077
   989
by (simp add: order_less_le)
paulson@15077
   990
huffman@29170
   991
lemma not_exp_less_zero [simp]: "\<not> exp (x::real) < 0"
huffman@29170
   992
by (simp add: not_less)
huffman@29170
   993
huffman@29170
   994
lemma not_exp_le_zero [simp]: "\<not> exp (x::real) \<le> 0"
huffman@29170
   995
by (simp add: not_le)
paulson@15077
   996
huffman@23115
   997
lemma abs_exp_cancel [simp]: "\<bar>exp x::real\<bar> = exp x"
huffman@29165
   998
by simp
paulson@15077
   999
paulson@15077
  1000
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n"
paulson@15251
  1001
apply (induct "n")
paulson@15077
  1002
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute)
paulson@15077
  1003
done
paulson@15077
  1004
huffman@29170
  1005
text {* Strict monotonicity of exponential. *}
huffman@29170
  1006
huffman@29170
  1007
lemma exp_ge_add_one_self_aux: "0 \<le> (x::real) ==> (1 + x) \<le> exp(x)"
huffman@29170
  1008
apply (drule order_le_imp_less_or_eq, auto)
huffman@29170
  1009
apply (simp add: exp_def)
huffman@36769
  1010
apply (rule order_trans)
huffman@29170
  1011
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le)
huffman@29170
  1012
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_mult_iff)
huffman@29170
  1013
done
huffman@29170
  1014
huffman@29170
  1015
lemma exp_gt_one: "0 < (x::real) \<Longrightarrow> 1 < exp x"
huffman@29170
  1016
proof -
huffman@29170
  1017
  assume x: "0 < x"
huffman@29170
  1018
  hence "1 < 1 + x" by simp
huffman@29170
  1019
  also from x have "1 + x \<le> exp x"
huffman@29170
  1020
    by (simp add: exp_ge_add_one_self_aux)
huffman@29170
  1021
  finally show ?thesis .
huffman@29170
  1022
qed
huffman@29170
  1023
paulson@15077
  1024
lemma exp_less_mono:
huffman@23115
  1025
  fixes x y :: real
huffman@29165
  1026
  assumes "x < y" shows "exp x < exp y"
paulson@15077
  1027
proof -
huffman@29165
  1028
  from `x < y` have "0 < y - x" by simp
huffman@29165
  1029
  hence "1 < exp (y - x)" by (rule exp_gt_one)
huffman@29165
  1030
  hence "1 < exp y / exp x" by (simp only: exp_diff)
huffman@29165
  1031
  thus "exp x < exp y" by simp
paulson@15077
  1032
qed
paulson@15077
  1033
huffman@23115
  1034
lemma exp_less_cancel: "exp (x::real) < exp y ==> x < y"
huffman@29170
  1035
apply (simp add: linorder_not_le [symmetric])
huffman@29170
  1036
apply (auto simp add: order_le_less exp_less_mono)
paulson@15077
  1037
done
paulson@15077
  1038
huffman@29170
  1039
lemma exp_less_cancel_iff [iff]: "exp (x::real) < exp y \<longleftrightarrow> x < y"
paulson@15077
  1040
by (auto intro: exp_less_mono exp_less_cancel)
paulson@15077
  1041
huffman@29170
  1042
lemma exp_le_cancel_iff [iff]: "exp (x::real) \<le> exp y \<longleftrightarrow> x \<le> y"
paulson@15077
  1043
by (auto simp add: linorder_not_less [symmetric])
paulson@15077
  1044
huffman@29170
  1045
lemma exp_inj_iff [iff]: "exp (x::real) = exp y \<longleftrightarrow> x = y"
paulson@15077
  1046
by (simp add: order_eq_iff)
paulson@15077
  1047
huffman@29170
  1048
text {* Comparisons of @{term "exp x"} with one. *}
huffman@29170
  1049
huffman@29170
  1050
lemma one_less_exp_iff [simp]: "1 < exp (x::real) \<longleftrightarrow> 0 < x"
huffman@29170
  1051
  using exp_less_cancel_iff [where x=0 and y=x] by simp
huffman@29170
  1052
huffman@29170
  1053
lemma exp_less_one_iff [simp]: "exp (x::real) < 1 \<longleftrightarrow> x < 0"
huffman@29170
  1054
  using exp_less_cancel_iff [where x=x and y=0] by simp
huffman@29170
  1055
huffman@29170
  1056
lemma one_le_exp_iff [simp]: "1 \<le> exp (x::real) \<longleftrightarrow> 0 \<le> x"
huffman@29170
  1057
  using exp_le_cancel_iff [where x=0 and y=x] by simp
huffman@29170
  1058
huffman@29170
  1059
lemma exp_le_one_iff [simp]: "exp (x::real) \<le> 1 \<longleftrightarrow> x \<le> 0"
huffman@29170
  1060
  using exp_le_cancel_iff [where x=x and y=0] by simp
huffman@29170
  1061
huffman@29170
  1062
lemma exp_eq_one_iff [simp]: "exp (x::real) = 1 \<longleftrightarrow> x = 0"
huffman@29170
  1063
  using exp_inj_iff [where x=x and y=0] by simp
huffman@29170
  1064
huffman@23115
  1065
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x::real) = y"
paulson@15077
  1066
apply (rule IVT)
huffman@23045
  1067
apply (auto intro: isCont_exp simp add: le_diff_eq)
hoelzl@42841
  1068
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)")
huffman@29165
  1069
apply simp
avigad@17014
  1070
apply (rule exp_ge_add_one_self_aux, simp)
paulson@15077
  1071
done
paulson@15077
  1072
huffman@23115
  1073
lemma exp_total: "0 < (y::real) ==> \<exists>x. exp x = y"
paulson@15077
  1074
apply (rule_tac x = 1 and y = y in linorder_cases)
paulson@15077
  1075
apply (drule order_less_imp_le [THEN lemma_exp_total])
paulson@15077
  1076
apply (rule_tac [2] x = 0 in exI)
huffman@36768
  1077
apply (frule_tac [3] one_less_inverse)
paulson@15077
  1078
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto)
paulson@15077
  1079
apply (rule_tac x = "-x" in exI)
paulson@15077
  1080
apply (simp add: exp_minus)
paulson@15077
  1081
done
paulson@15077
  1082
paulson@15077
  1083
huffman@29164
  1084
subsection {* Natural Logarithm *}
paulson@15077
  1085
huffman@23043
  1086
definition
huffman@23043
  1087
  ln :: "real => real" where
huffman@23043
  1088
  "ln x = (THE u. exp u = x)"
huffman@23043
  1089
huffman@23043
  1090
lemma ln_exp [simp]: "ln (exp x) = x"
paulson@15077
  1091
by (simp add: ln_def)
paulson@15077
  1092
huffman@22654
  1093
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x"
huffman@22654
  1094
by (auto dest: exp_total)
huffman@22654
  1095
huffman@29171
  1096
lemma exp_ln_iff [simp]: "exp (ln x) = x \<longleftrightarrow> 0 < x"
huffman@29171
  1097
apply (rule iffI)
huffman@29171
  1098
apply (erule subst, rule exp_gt_zero)
huffman@29171
  1099
apply (erule exp_ln)
paulson@15077
  1100
done
paulson@15077
  1101
huffman@29171
  1102
lemma ln_unique: "exp y = x \<Longrightarrow> ln x = y"
huffman@29171
  1103
by (erule subst, rule ln_exp)
huffman@29171
  1104
huffman@29171
  1105
lemma ln_one [simp]: "ln 1 = 0"
huffman@29171
  1106
by (rule ln_unique, simp)
huffman@29171
  1107
huffman@29171
  1108
lemma ln_mult: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x * y) = ln x + ln y"
huffman@29171
  1109
by (rule ln_unique, simp add: exp_add)
huffman@29171
  1110
huffman@29171
  1111
lemma ln_inverse: "0 < x \<Longrightarrow> ln (inverse x) = - ln x"
huffman@29171
  1112
by (rule ln_unique, simp add: exp_minus)
huffman@29171
  1113
huffman@29171
  1114
lemma ln_div: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln (x / y) = ln x - ln y"
huffman@29171
  1115
by (rule ln_unique, simp add: exp_diff)
huffman@29171
  1116
huffman@29171
  1117
lemma ln_realpow: "0 < x \<Longrightarrow> ln (x ^ n) = real n * ln x"
huffman@29171
  1118
by (rule ln_unique, simp add: exp_real_of_nat_mult)
huffman@29171
  1119
huffman@29171
  1120
lemma ln_less_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x < ln y \<longleftrightarrow> x < y"
huffman@29171
  1121
by (subst exp_less_cancel_iff [symmetric], simp)
huffman@29171
  1122
huffman@29171
  1123
lemma ln_le_cancel_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x \<le> ln y \<longleftrightarrow> x \<le> y"
huffman@29171
  1124
by (simp add: linorder_not_less [symmetric])
huffman@29171
  1125
huffman@29171
  1126
lemma ln_inj_iff [simp]: "\<lbrakk>0 < x; 0 < y\<rbrakk> \<Longrightarrow> ln x = ln y \<longleftrightarrow> x = y"
huffman@29171
  1127
by (simp add: order_eq_iff)
huffman@29171
  1128
huffman@29171
  1129
lemma ln_add_one_self_le_self [simp]: "0 \<le> x \<Longrightarrow> ln (1 + x) \<le> x"
huffman@29171
  1130
apply (rule exp_le_cancel_iff [THEN iffD1])
huffman@29171
  1131
apply (simp add: exp_ge_add_one_self_aux)
paulson@15077
  1132
done
paulson@15077
  1133
huffman@29171
  1134
lemma ln_less_self [simp]: "0 < x \<Longrightarrow> ln x < x"
huffman@29171
  1135
by (rule order_less_le_trans [where y="ln (1 + x)"]) simp_all
paulson@15077
  1136
paulson@15234
  1137
lemma ln_ge_zero [simp]:
paulson@15077
  1138
  assumes x: "1 \<le> x" shows "0 \<le> ln x"
paulson@15077
  1139
proof -
paulson@15077
  1140
  have "0 < x" using x by arith
paulson@15077
  1141
  hence "exp 0 \<le> exp (ln x)"
huffman@22915
  1142
    by (simp add: x)
paulson@15077
  1143
  thus ?thesis by (simp only: exp_le_cancel_iff)
paulson@15077
  1144
qed
paulson@15077
  1145
paulson@15077
  1146
lemma ln_ge_zero_imp_ge_one:
hoelzl@42841
  1147
  assumes ln: "0 \<le> ln x"
paulson@15077
  1148
      and x:  "0 < x"
paulson@15077
  1149
  shows "1 \<le> x"
paulson@15077
  1150
proof -
paulson@15077
  1151
  from ln have "ln 1 \<le> ln x" by simp
hoelzl@42841
  1152
  thus ?thesis by (simp add: x del: ln_one)
paulson@15077
  1153
qed
paulson@15077
  1154
paulson@15077
  1155
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)"
paulson@15077
  1156
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one)
paulson@15077
  1157
paulson@15234
  1158
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)"
paulson@15234
  1159
by (insert ln_ge_zero_iff [of x], arith)
paulson@15234
  1160
paulson@15077
  1161
lemma ln_gt_zero:
paulson@15077
  1162
  assumes x: "1 < x" shows "0 < ln x"
paulson@15077
  1163
proof -
paulson@15077
  1164
  have "0 < x" using x by arith
huffman@22915
  1165
  hence "exp 0 < exp (ln x)" by (simp add: x)
paulson@15077
  1166
  thus ?thesis  by (simp only: exp_less_cancel_iff)
paulson@15077
  1167
qed
paulson@15077
  1168
paulson@15077
  1169
lemma ln_gt_zero_imp_gt_one:
hoelzl@42841
  1170
  assumes ln: "0 < ln x"
paulson@15077
  1171
      and x:  "0 < x"
paulson@15077
  1172
  shows "1 < x"
paulson@15077
  1173
proof -
paulson@15077
  1174
  from ln have "ln 1 < ln x" by simp
hoelzl@42841
  1175
  thus ?thesis by (simp add: x del: ln_one)
paulson@15077
  1176
qed
paulson@15077
  1177
paulson@15077
  1178
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)"
paulson@15077
  1179
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one)
paulson@15077
  1180
paulson@15234
  1181
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)"
paulson@15234
  1182
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith)
paulson@15077
  1183
paulson@15077
  1184
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0"
paulson@15234
  1185
by simp
paulson@15077
  1186
paulson@15077
  1187
lemma exp_ln_eq: "exp u = x ==> ln x = u"
paulson@15077
  1188
by auto
paulson@15077
  1189
huffman@23045
  1190
lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x"
huffman@23045
  1191
apply (subgoal_tac "isCont ln (exp (ln x))", simp)
huffman@23045
  1192
apply (rule isCont_inverse_function [where f=exp], simp_all)
huffman@23045
  1193
done
huffman@23045
  1194
huffman@23045
  1195
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x"
huffman@23045
  1196
apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
huffman@23045
  1197
apply (erule lemma_DERIV_subst [OF DERIV_exp exp_ln])
huffman@23045
  1198
apply (simp_all add: abs_if isCont_ln)
huffman@23045
  1199
done
huffman@23045
  1200
paulson@33667
  1201
lemma DERIV_ln_divide: "0 < x ==> DERIV ln x :> 1 / x"
paulson@33667
  1202
  by (rule DERIV_ln[THEN DERIV_cong], simp, simp add: divide_inverse)
paulson@33667
  1203
hoelzl@29740
  1204
lemma ln_series: assumes "0 < x" and "x < 2"
hoelzl@29740
  1205
  shows "ln x = (\<Sum> n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))" (is "ln x = suminf (?f (x - 1))")
hoelzl@29740
  1206
proof -
hoelzl@29740
  1207
  let "?f' x n" = "(-1)^n * (x - 1)^n"
hoelzl@29740
  1208
hoelzl@29740
  1209
  have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
hoelzl@29740
  1210
  proof (rule DERIV_isconst3[where x=x])
hoelzl@29740
  1211
    fix x :: real assume "x \<in> {0 <..< 2}" hence "0 < x" and "x < 2" by auto
hoelzl@29740
  1212
    have "norm (1 - x) < 1" using `0 < x` and `x < 2` by auto
hoelzl@29740
  1213
    have "1 / x = 1 / (1 - (1 - x))" by auto
hoelzl@29740
  1214
    also have "\<dots> = (\<Sum> n. (1 - x)^n)" using geometric_sums[OF `norm (1 - x) < 1`] by (rule sums_unique)
hoelzl@29740
  1215
    also have "\<dots> = suminf (?f' x)" unfolding power_mult_distrib[symmetric] by (rule arg_cong[where f=suminf], rule arg_cong[where f="op ^"], auto)
huffman@36769
  1216
    finally have "DERIV ln x :> suminf (?f' x)" using DERIV_ln[OF `0 < x`] unfolding divide_inverse by auto
hoelzl@29740
  1217
    moreover
hoelzl@29740
  1218
    have repos: "\<And> h x :: real. h - 1 + x = h + x - 1" by auto
hoelzl@29740
  1219
    have "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> (\<Sum>n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
hoelzl@29740
  1220
    proof (rule DERIV_power_series')
hoelzl@29740
  1221
      show "x - 1 \<in> {- 1<..<1}" and "(0 :: real) < 1" using `0 < x` `x < 2` by auto
hoelzl@29740
  1222
      { fix x :: real assume "x \<in> {- 1<..<1}" hence "norm (-x) < 1" by auto
wenzelm@32962
  1223
        show "summable (\<lambda>n. -1 ^ n * (1 / real (n + 1)) * real (Suc n) * x ^ n)"
huffman@30019
  1224
          unfolding One_nat_def
huffman@35208
  1225
          by (auto simp add: power_mult_distrib[symmetric] summable_geometric[OF `norm (-x) < 1`])
hoelzl@29740
  1226
      }
hoelzl@29740
  1227
    qed
huffman@30019
  1228
    hence "DERIV (\<lambda>x. suminf (?f x)) (x - 1) :> suminf (?f' x)" unfolding One_nat_def by auto
hoelzl@29740
  1229
    hence "DERIV (\<lambda>x. suminf (?f (x - 1))) x :> suminf (?f' x)" unfolding DERIV_iff repos .
hoelzl@29740
  1230
    ultimately have "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> (suminf (?f' x) - suminf (?f' x))"
hoelzl@29740
  1231
      by (rule DERIV_diff)
hoelzl@29740
  1232
    thus "DERIV (\<lambda>x. ln x - suminf (?f (x - 1))) x :> 0" by auto
hoelzl@29740
  1233
  qed (auto simp add: assms)
huffman@45160
  1234
  thus ?thesis by auto
hoelzl@29740
  1235
qed
paulson@15077
  1236
huffman@29164
  1237
subsection {* Sine and Cosine *}
huffman@29164
  1238
huffman@29164
  1239
definition
huffman@31271
  1240
  sin_coeff :: "nat \<Rightarrow> real" where
huffman@31271
  1241
  "sin_coeff = (\<lambda>n. if even n then 0 else -1 ^ ((n - Suc 0) div 2) / real (fact n))"
huffman@31271
  1242
huffman@31271
  1243
definition
huffman@31271
  1244
  cos_coeff :: "nat \<Rightarrow> real" where
huffman@31271
  1245
  "cos_coeff = (\<lambda>n. if even n then (-1 ^ (n div 2)) / real (fact n) else 0)"
huffman@31271
  1246
huffman@31271
  1247
definition
huffman@29164
  1248
  sin :: "real => real" where
huffman@31271
  1249
  "sin x = (\<Sum>n. sin_coeff n * x ^ n)"
huffman@31271
  1250
huffman@29164
  1251
definition
huffman@29164
  1252
  cos :: "real => real" where
huffman@31271
  1253
  "cos x = (\<Sum>n. cos_coeff n * x ^ n)"
huffman@31271
  1254
huffman@31271
  1255
lemma summable_sin: "summable (\<lambda>n. sin_coeff n * x ^ n)"
huffman@31271
  1256
unfolding sin_coeff_def
huffman@29164
  1257
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
huffman@29164
  1258
apply (rule_tac [2] summable_exp)
huffman@29164
  1259
apply (rule_tac x = 0 in exI)
huffman@29164
  1260
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
huffman@29164
  1261
done
huffman@29164
  1262
huffman@31271
  1263
lemma summable_cos: "summable (\<lambda>n. cos_coeff n * x ^ n)"
huffman@31271
  1264
unfolding cos_coeff_def
huffman@29164
  1265
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test)
huffman@29164
  1266
apply (rule_tac [2] summable_exp)
huffman@29164
  1267
apply (rule_tac x = 0 in exI)
huffman@29164
  1268
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
huffman@29164
  1269
done
huffman@29164
  1270
huffman@31271
  1271
lemma sin_converges: "(\<lambda>n. sin_coeff n * x ^ n) sums sin(x)"
huffman@29164
  1272
unfolding sin_def by (rule summable_sin [THEN summable_sums])
huffman@29164
  1273
huffman@31271
  1274
lemma cos_converges: "(\<lambda>n. cos_coeff n * x ^ n) sums cos(x)"
huffman@29164
  1275
unfolding cos_def by (rule summable_cos [THEN summable_sums])
huffman@29164
  1276
huffman@31271
  1277
lemma sin_fdiffs: "diffs sin_coeff = cos_coeff"
huffman@31271
  1278
unfolding sin_coeff_def cos_coeff_def
hoelzl@42841
  1279
by (auto intro!: ext
huffman@29164
  1280
         simp add: diffs_def divide_inverse real_of_nat_def of_nat_mult
huffman@29164
  1281
         simp del: mult_Suc of_nat_Suc)
huffman@29164
  1282
huffman@31271
  1283
lemma sin_fdiffs2: "diffs sin_coeff n = cos_coeff n"
huffman@29164
  1284
by (simp only: sin_fdiffs)
huffman@29164
  1285
huffman@31271
  1286
lemma cos_fdiffs: "diffs cos_coeff = (\<lambda>n. - sin_coeff n)"
huffman@31271
  1287
unfolding sin_coeff_def cos_coeff_def
hoelzl@42841
  1288
by (auto intro!: ext
huffman@29164
  1289
         simp add: diffs_def divide_inverse odd_Suc_mult_two_ex real_of_nat_def of_nat_mult
huffman@29164
  1290
         simp del: mult_Suc of_nat_Suc)
huffman@29164
  1291
huffman@31271
  1292
lemma cos_fdiffs2: "diffs cos_coeff n = - sin_coeff n"
huffman@29164
  1293
by (simp only: cos_fdiffs)
huffman@29164
  1294
huffman@29164
  1295
text{*Now at last we can get the derivatives of exp, sin and cos*}
huffman@29164
  1296
huffman@31271
  1297
lemma lemma_sin_minus: "- sin x = (\<Sum>n. - (sin_coeff n * x ^ n))"
huffman@29164
  1298
by (auto intro!: sums_unique sums_minus sin_converges)
huffman@29164
  1299
huffman@31271
  1300
lemma lemma_sin_ext: "sin = (\<lambda>x. \<Sum>n. sin_coeff n * x ^ n)"
huffman@45160
  1301
  by (auto simp add: sin_def)
huffman@29164
  1302
huffman@31271
  1303
lemma lemma_cos_ext: "cos = (\<lambda>x. \<Sum>n. cos_coeff n * x ^ n)"
huffman@45160
  1304
  by (auto simp add: cos_def)
huffman@29164
  1305
huffman@29164
  1306
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)"
huffman@29164
  1307
apply (simp add: cos_def)
huffman@29164
  1308
apply (subst lemma_sin_ext)
huffman@29164
  1309
apply (auto simp add: sin_fdiffs2 [symmetric])
huffman@29164
  1310
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
huffman@29164
  1311
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs)
huffman@29164
  1312
done
huffman@29164
  1313
huffman@29164
  1314
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)"
huffman@29164
  1315
apply (subst lemma_cos_ext)
huffman@29164
  1316
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left)
huffman@29164
  1317
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs)
huffman@29164
  1318
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus)
huffman@29164
  1319
done
huffman@29164
  1320
huffman@29164
  1321
lemma isCont_sin [simp]: "isCont sin x"
huffman@29164
  1322
by (rule DERIV_sin [THEN DERIV_isCont])
huffman@29164
  1323
huffman@29164
  1324
lemma isCont_cos [simp]: "isCont cos x"
huffman@29164
  1325
by (rule DERIV_cos [THEN DERIV_isCont])
huffman@29164
  1326
huffman@29164
  1327
hoelzl@31879
  1328
declare
hoelzl@31879
  1329
  DERIV_exp[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@44192
  1330
  DERIV_ln_divide[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31879
  1331
  DERIV_sin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31879
  1332
  DERIV_cos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31879
  1333
huffman@29164
  1334
subsection {* Properties of Sine and Cosine *}
paulson@15077
  1335
paulson@15077
  1336
lemma sin_zero [simp]: "sin 0 = 0"
huffman@31271
  1337
unfolding sin_def sin_coeff_def by (simp add: powser_zero)
paulson@15077
  1338
paulson@15077
  1339
lemma cos_zero [simp]: "cos 0 = 1"
huffman@31271
  1340
unfolding cos_def cos_coeff_def by (simp add: powser_zero)
paulson@15077
  1341
paulson@15077
  1342
lemma DERIV_sin_sin_mult [simp]:
paulson@15077
  1343
     "DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)"
paulson@15077
  1344
by (rule DERIV_mult, auto)
paulson@15077
  1345
paulson@15077
  1346
lemma DERIV_sin_sin_mult2 [simp]:
paulson@15077
  1347
     "DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)"
paulson@15077
  1348
apply (cut_tac x = x in DERIV_sin_sin_mult)
paulson@15077
  1349
apply (auto simp add: mult_assoc)
paulson@15077
  1350
done
paulson@15077
  1351
paulson@15077
  1352
lemma DERIV_sin_realpow2 [simp]:
paulson@15077
  1353
     "DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)"
huffman@36769
  1354
by (auto simp add: numeral_2_eq_2 mult_assoc [symmetric])
paulson@15077
  1355
paulson@15077
  1356
lemma DERIV_sin_realpow2a [simp]:
paulson@15077
  1357
     "DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)"
paulson@15077
  1358
by (auto simp add: numeral_2_eq_2)
paulson@15077
  1359
paulson@15077
  1360
lemma DERIV_cos_cos_mult [simp]:
paulson@15077
  1361
     "DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
paulson@15077
  1362
by (rule DERIV_mult, auto)
paulson@15077
  1363
paulson@15077
  1364
lemma DERIV_cos_cos_mult2 [simp]:
paulson@15077
  1365
     "DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)"
paulson@15077
  1366
apply (cut_tac x = x in DERIV_cos_cos_mult)
paulson@15077
  1367
apply (auto simp add: mult_ac)
paulson@15077
  1368
done
paulson@15077
  1369
paulson@15077
  1370
lemma DERIV_cos_realpow2 [simp]:
paulson@15077
  1371
     "DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)"
huffman@36769
  1372
by (auto simp add: numeral_2_eq_2 mult_assoc [symmetric])
paulson@15077
  1373
paulson@15077
  1374
lemma DERIV_cos_realpow2a [simp]:
paulson@15077
  1375
     "DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)"
paulson@15077
  1376
by (auto simp add: numeral_2_eq_2)
paulson@15077
  1377
paulson@15077
  1378
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E"
paulson@15077
  1379
by auto
paulson@15077
  1380
paulson@15077
  1381
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))"
hoelzl@31880
  1382
  by (auto intro!: DERIV_intros)
paulson@15077
  1383
paulson@15077
  1384
(* most useful *)
paulson@15229
  1385
lemma DERIV_cos_cos_mult3 [simp]:
paulson@15229
  1386
     "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))"
hoelzl@31880
  1387
  by (auto intro!: DERIV_intros)
paulson@15077
  1388
hoelzl@42841
  1389
lemma DERIV_sin_circle_all:
hoelzl@42841
  1390
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :>
paulson@15077
  1391
             (2*cos(x)*sin(x) - 2*cos(x)*sin(x))"
hoelzl@31880
  1392
  by (auto intro!: DERIV_intros)
paulson@15077
  1393
paulson@15229
  1394
lemma DERIV_sin_circle_all_zero [simp]:
paulson@15229
  1395
     "\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0"
paulson@15077
  1396
by (cut_tac DERIV_sin_circle_all, auto)
paulson@15077
  1397
paulson@15077
  1398
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1"
paulson@15077
  1399
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all])
paulson@15077
  1400
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1401
done
paulson@15077
  1402
paulson@15077
  1403
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1"
huffman@23286
  1404
apply (subst add_commute)
huffman@30269
  1405
apply (rule sin_cos_squared_add)
paulson@15077
  1406
done
paulson@15077
  1407
paulson@15077
  1408
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
paulson@15077
  1409
apply (cut_tac x = x in sin_cos_squared_add2)
huffman@30269
  1410
apply (simp add: power2_eq_square)
paulson@15077
  1411
done
paulson@15077
  1412
paulson@15077
  1413
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>"
paulson@15229
  1414
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1])
huffman@30269
  1415
apply simp
paulson@15077
  1416
done
paulson@15077
  1417
paulson@15077
  1418
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>"
paulson@15077
  1419
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1])
huffman@30269
  1420
apply simp
paulson@15077
  1421
done
paulson@15077
  1422
paulson@15081
  1423
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1"
huffman@23097
  1424
by (rule power2_le_imp_le, simp_all add: sin_squared_eq)
paulson@15077
  1425
paulson@15077
  1426
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x"
hoelzl@42841
  1427
apply (insert abs_sin_le_one [of x])
hoelzl@42841
  1428
apply (simp add: abs_le_iff del: abs_sin_le_one)
paulson@15077
  1429
done
paulson@15077
  1430
paulson@15077
  1431
lemma sin_le_one [simp]: "sin x \<le> 1"
hoelzl@42841
  1432
apply (insert abs_sin_le_one [of x])
hoelzl@42841
  1433
apply (simp add: abs_le_iff del: abs_sin_le_one)
paulson@15077
  1434
done
paulson@15077
  1435
paulson@15081
  1436
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1"
huffman@23097
  1437
by (rule power2_le_imp_le, simp_all add: cos_squared_eq)
paulson@15077
  1438
paulson@15077
  1439
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x"
hoelzl@42841
  1440
apply (insert abs_cos_le_one [of x])
huffman@22998
  1441
apply (simp add: abs_le_iff del: abs_cos_le_one)
paulson@15077
  1442
done
paulson@15077
  1443
hoelzl@42841
  1444
lemma cos_le_one [simp]: "cos x \<le> 1"
hoelzl@42841
  1445
apply (insert abs_cos_le_one [of x])
hoelzl@42841
  1446
apply (simp add: abs_le_iff del: abs_cos_le_one)
hoelzl@42841
  1447
done
hoelzl@42841
  1448
hoelzl@42841
  1449
lemma DERIV_fun_pow: "DERIV g x :> m ==>
paulson@15077
  1450
      DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
huffman@30019
  1451
unfolding One_nat_def
paulson@15077
  1452
apply (rule lemma_DERIV_subst)
paulson@15229
  1453
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2)
paulson@15077
  1454
apply (rule DERIV_pow, auto)
paulson@15077
  1455
done
paulson@15077
  1456
paulson@15229
  1457
lemma DERIV_fun_exp:
paulson@15229
  1458
     "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m"
paulson@15077
  1459
apply (rule lemma_DERIV_subst)
paulson@15077
  1460
apply (rule_tac f = exp in DERIV_chain2)
paulson@15077
  1461
apply (rule DERIV_exp, auto)
paulson@15077
  1462
done
paulson@15077
  1463
paulson@15229
  1464
lemma DERIV_fun_sin:
paulson@15229
  1465
     "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m"
paulson@15077
  1466
apply (rule lemma_DERIV_subst)
paulson@15077
  1467
apply (rule_tac f = sin in DERIV_chain2)
paulson@15077
  1468
apply (rule DERIV_sin, auto)
paulson@15077
  1469
done
paulson@15077
  1470
paulson@15229
  1471
lemma DERIV_fun_cos:
paulson@15229
  1472
     "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m"
paulson@15077
  1473
apply (rule lemma_DERIV_subst)
paulson@15077
  1474
apply (rule_tac f = cos in DERIV_chain2)
paulson@15077
  1475
apply (rule DERIV_cos, auto)
paulson@15077
  1476
done
paulson@15077
  1477
paulson@15077
  1478
(* lemma *)
paulson@15229
  1479
lemma lemma_DERIV_sin_cos_add:
hoelzl@42841
  1480
     "\<forall>x.
hoelzl@42841
  1481
         DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +
paulson@15077
  1482
               (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0"
hoelzl@31880
  1483
  by (auto intro!: DERIV_intros simp add: algebra_simps)
paulson@15077
  1484
paulson@15077
  1485
lemma sin_cos_add [simp]:
hoelzl@42841
  1486
     "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 +
paulson@15077
  1487
      (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0"
hoelzl@42841
  1488
apply (cut_tac y = 0 and x = x and y7 = y
paulson@15077
  1489
       in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all])
paulson@15077
  1490
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  1491
done
paulson@15077
  1492
paulson@15077
  1493
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
paulson@15077
  1494
apply (cut_tac x = x and y = y in sin_cos_add)
huffman@22969
  1495
apply (simp del: sin_cos_add)
paulson@15077
  1496
done
paulson@15077
  1497
paulson@15077
  1498
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y"
paulson@15077
  1499
apply (cut_tac x = x and y = y in sin_cos_add)
huffman@22969
  1500
apply (simp del: sin_cos_add)
paulson@15077
  1501
done
paulson@15077
  1502
paulson@15085
  1503
lemma lemma_DERIV_sin_cos_minus:
paulson@15085
  1504
    "\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0"
hoelzl@31880
  1505
  by (auto intro!: DERIV_intros simp add: algebra_simps)
hoelzl@31880
  1506
paulson@15077
  1507
hoelzl@42841
  1508
lemma sin_cos_minus:
paulson@15085
  1509
    "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0"
hoelzl@42841
  1510
apply (cut_tac y = 0 and x = x
paulson@15085
  1511
       in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all])
huffman@22969
  1512
apply simp
paulson@15077
  1513
done
paulson@15077
  1514
paulson@15077
  1515
lemma sin_minus [simp]: "sin (-x) = -sin(x)"
huffman@29165
  1516
  using sin_cos_minus [where x=x] by simp
paulson@15077
  1517
paulson@15077
  1518
lemma cos_minus [simp]: "cos (-x) = cos(x)"
huffman@29165
  1519
  using sin_cos_minus [where x=x] by simp
paulson@15077
  1520
paulson@15077
  1521
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
huffman@22969
  1522
by (simp add: diff_minus sin_add)
paulson@15077
  1523
paulson@15077
  1524
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x"
paulson@15077
  1525
by (simp add: sin_diff mult_commute)
paulson@15077
  1526
paulson@15077
  1527
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
huffman@22969
  1528
by (simp add: diff_minus cos_add)
paulson@15077
  1529
paulson@15077
  1530
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x"
paulson@15077
  1531
by (simp add: cos_diff mult_commute)
paulson@15077
  1532
paulson@15077
  1533
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x"
huffman@29165
  1534
  using sin_add [where x=x and y=x] by simp
paulson@15077
  1535
paulson@15077
  1536
lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)"
huffman@29165
  1537
  using cos_add [where x=x and y=x]
huffman@29165
  1538
  by (simp add: power2_eq_square)
paulson@15077
  1539
paulson@15077
  1540
huffman@29164
  1541
subsection {* The Constant Pi *}
paulson@15077
  1542
huffman@23043
  1543
definition
huffman@23043
  1544
  pi :: "real" where
huffman@23053
  1545
  "pi = 2 * (THE x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)"
huffman@23043
  1546
hoelzl@42841
  1547
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"};
paulson@15077
  1548
   hence define pi.*}
paulson@15077
  1549
paulson@15077
  1550
lemma sin_paired:
hoelzl@42841
  1551
     "(%n. -1 ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1))
paulson@15077
  1552
      sums  sin x"
paulson@15077
  1553
proof -
huffman@31271
  1554
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
huffman@23176
  1555
    unfolding sin_def
hoelzl@42841
  1556
    by (rule sin_converges [THEN sums_summable, THEN sums_group], simp)
huffman@31271
  1557
  thus ?thesis unfolding One_nat_def sin_coeff_def by (simp add: mult_ac)
paulson@15077
  1558
qed
paulson@15077
  1559
huffman@30269
  1560
text {* FIXME: This is a long, ugly proof! *}
paulson@15077
  1561
lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x"
hoelzl@42841
  1562
apply (subgoal_tac
paulson@15077
  1563
       "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2.
hoelzl@42841
  1564
              -1 ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1))
huffman@23177
  1565
     sums (\<Sum>n. -1 ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))")
paulson@15077
  1566
 prefer 2
hoelzl@42841
  1567
 apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp)
paulson@15077
  1568
apply (rotate_tac 2)
paulson@15077
  1569
apply (drule sin_paired [THEN sums_unique, THEN ssubst])
huffman@30019
  1570
unfolding One_nat_def
avigad@32039
  1571
apply (auto simp del: fact_Suc)
paulson@15077
  1572
apply (frule sums_unique)
avigad@32039
  1573
apply (auto simp del: fact_Suc)
paulson@15077
  1574
apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans])
avigad@32039
  1575
apply (auto simp del: fact_Suc)
paulson@15077
  1576
apply (erule sums_summable)
paulson@15077
  1577
apply (case_tac "m=0")
paulson@15077
  1578
apply (simp (no_asm_simp))
hoelzl@42841
  1579
apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x")
hoelzl@42841
  1580
apply (simp only: mult_less_cancel_left, simp)
nipkow@15539
  1581
apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric])
hoelzl@42841
  1582
apply (subgoal_tac "x*x < 2*3", simp)
paulson@15077
  1583
apply (rule mult_strict_mono)
avigad@32039
  1584
apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc)
avigad@32039
  1585
apply (subst fact_Suc)
avigad@32039
  1586
apply (subst fact_Suc)
avigad@32039
  1587
apply (subst fact_Suc)
avigad@32039
  1588
apply (subst fact_Suc)
paulson@15077
  1589
apply (subst real_of_nat_mult)
paulson@15077
  1590
apply (subst real_of_nat_mult)
paulson@15077
  1591
apply (subst real_of_nat_mult)
paulson@15077
  1592
apply (subst real_of_nat_mult)
avigad@32039
  1593
apply (simp (no_asm) add: divide_inverse del: fact_Suc)
avigad@32039
  1594
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc)
hoelzl@42841
  1595
apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right)
avigad@32039
  1596
apply (auto simp add: mult_assoc simp del: fact_Suc)
hoelzl@42841
  1597
apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right)
avigad@32039
  1598
apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc)
hoelzl@42841
  1599
apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)")
paulson@15077
  1600
apply (erule ssubst)+
avigad@32039
  1601
apply (auto simp del: fact_Suc)
paulson@15077
  1602
apply (subgoal_tac "0 < x ^ (4 * m) ")
hoelzl@42841
  1603
 prefer 2 apply (simp only: zero_less_power)
paulson@15077
  1604
apply (simp (no_asm_simp) add: mult_less_cancel_left)
paulson@15077
  1605
apply (rule mult_strict_mono)
paulson@15077
  1606
apply (simp_all (no_asm_simp))
paulson@15077
  1607
done
paulson@15077
  1608
paulson@15077
  1609
lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x"
paulson@15077
  1610
by (auto intro: sin_gt_zero)
paulson@15077
  1611
paulson@15077
  1612
lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1"
paulson@15077
  1613
apply (cut_tac x = x in sin_gt_zero1)
paulson@15077
  1614
apply (auto simp add: cos_squared_eq cos_double)
paulson@15077
  1615
done
paulson@15077
  1616
paulson@15077
  1617
lemma cos_paired:
huffman@23177
  1618
     "(%n. -1 ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x"
paulson@15077
  1619
proof -
huffman@31271
  1620
  have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
huffman@23176
  1621
    unfolding cos_def
hoelzl@42841
  1622
    by (rule cos_converges [THEN sums_summable, THEN sums_group], simp)
huffman@31271
  1623
  thus ?thesis unfolding cos_coeff_def by (simp add: mult_ac)
paulson@15077
  1624
qed
paulson@15077
  1625
paulson@15077
  1626
lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)"
paulson@15077
  1627
by simp
paulson@15077
  1628
huffman@36819
  1629
lemma real_mult_inverse_cancel:
hoelzl@42841
  1630
     "[|(0::real) < x; 0 < x1; x1 * y < x * u |]
huffman@36819
  1631
      ==> inverse x * y < inverse x1 * u"
hoelzl@42841
  1632
apply (rule_tac c=x in mult_less_imp_less_left)
huffman@36819
  1633
apply (auto simp add: mult_assoc [symmetric])
huffman@36819
  1634
apply (simp (no_asm) add: mult_ac)
hoelzl@42841
  1635
apply (rule_tac c=x1 in mult_less_imp_less_right)
huffman@36819
  1636
apply (auto simp add: mult_ac)
huffman@36819
  1637
done
huffman@36819
  1638
huffman@36819
  1639
lemma real_mult_inverse_cancel2:
huffman@36819
  1640
     "[|(0::real) < x;0 < x1; x1 * y < x * u |] ==> y * inverse x < u * inverse x1"
huffman@36819
  1641
apply (auto dest: real_mult_inverse_cancel simp add: mult_ac)
huffman@36819
  1642
done
huffman@36819
  1643
huffman@36819
  1644
lemma realpow_num_eq_if:
huffman@36819
  1645
  fixes m :: "'a::power"
huffman@36819
  1646
  shows "m ^ n = (if n=0 then 1 else m * m ^ (n - 1))"
huffman@36819
  1647
by (cases n, auto)
huffman@36819
  1648
huffman@23053
  1649
lemma cos_two_less_zero [simp]: "cos (2) < 0"
paulson@15077
  1650
apply (cut_tac x = 2 in cos_paired)
paulson@15077
  1651
apply (drule sums_minus)
hoelzl@42841
  1652
apply (rule neg_less_iff_less [THEN iffD1])
nipkow@15539
  1653
apply (frule sums_unique, auto)
nipkow@15539
  1654
apply (rule_tac y =
huffman@23177
  1655
 "\<Sum>n=0..< Suc(Suc(Suc 0)). - (-1 ^ n / (real(fact (2*n))) * 2 ^ (2*n))"
paulson@15481
  1656
       in order_less_trans)
avigad@32039
  1657
apply (simp (no_asm) add: fact_num_eq_if_nat realpow_num_eq_if del: fact_Suc)
nipkow@15561
  1658
apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc)
paulson@15077
  1659
apply (rule sumr_pos_lt_pair)
paulson@15077
  1660
apply (erule sums_summable, safe)
huffman@30019
  1661
unfolding One_nat_def
hoelzl@42841
  1662
apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric]
avigad@32039
  1663
            del: fact_Suc)
paulson@15077
  1664
apply (rule real_mult_inverse_cancel2)
huffman@45165
  1665
apply (simp del: fact_Suc)
huffman@45165
  1666
apply (simp del: fact_Suc)
avigad@32039
  1667
apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc)
hoelzl@42841
  1668
apply (subst fact_lemma)
avigad@32039
  1669
apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"])
paulson@15481
  1670
apply (simp only: real_of_nat_mult)
huffman@23007
  1671
apply (rule mult_strict_mono, force)
huffman@27483
  1672
  apply (rule_tac [3] real_of_nat_ge_zero)
paulson@15481
  1673
 prefer 2 apply force
paulson@15077
  1674
apply (rule real_of_nat_less_iff [THEN iffD2])
avigad@32029
  1675
apply (rule fact_less_mono_nat, auto)
paulson@15077
  1676
done
huffman@23053
  1677
huffman@23053
  1678
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
huffman@23053
  1679
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
paulson@15077
  1680
paulson@15077
  1681
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0"
paulson@15077
  1682
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0")
paulson@15077
  1683
apply (rule_tac [2] IVT2)
paulson@15077
  1684
apply (auto intro: DERIV_isCont DERIV_cos)
paulson@15077
  1685
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@15077
  1686
apply (rule ccontr)
paulson@15077
  1687
apply (subgoal_tac " (\<forall>x. cos differentiable x) & (\<forall>x. isCont cos x) ")
paulson@15077
  1688
apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def)
paulson@15077
  1689
apply (drule_tac f = cos in Rolle)
paulson@15077
  1690
apply (drule_tac [5] f = cos in Rolle)
paulson@15077
  1691
apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def)
huffman@36769
  1692
apply (metis order_less_le_trans less_le sin_gt_zero)
huffman@36769
  1693
apply (metis order_less_le_trans less_le sin_gt_zero)
paulson@15077
  1694
done
hoelzl@31879
  1695
huffman@23053
  1696
lemma pi_half: "pi/2 = (THE x. 0 \<le> x & x \<le> 2 & cos x = 0)"
paulson@15077
  1697
by (simp add: pi_def)
paulson@15077
  1698
paulson@15077
  1699
lemma cos_pi_half [simp]: "cos (pi / 2) = 0"
huffman@23053
  1700
by (simp add: pi_half cos_is_zero [THEN theI'])
huffman@23053
  1701
huffman@23053
  1702
lemma pi_half_gt_zero [simp]: "0 < pi / 2"
huffman@23053
  1703
apply (rule order_le_neq_trans)
huffman@23053
  1704
apply (simp add: pi_half cos_is_zero [THEN theI'])
huffman@23053
  1705
apply (rule notI, drule arg_cong [where f=cos], simp)
paulson@15077
  1706
done
paulson@15077
  1707
huffman@23053
  1708
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
huffman@23053
  1709
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
huffman@23053
  1710
huffman@23053
  1711
lemma pi_half_less_two [simp]: "pi / 2 < 2"
huffman@23053
  1712
apply (rule order_le_neq_trans)
huffman@23053
  1713
apply (simp add: pi_half cos_is_zero [THEN theI'])
huffman@23053
  1714
apply (rule notI, drule arg_cong [where f=cos], simp)
paulson@15077
  1715
done
paulson@15077
  1716
huffman@23053
  1717
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
huffman@23053
  1718
lemmas pi_half_le_two [simp] =  pi_half_less_two [THEN order_less_imp_le]
paulson@15077
  1719
paulson@15077
  1720
lemma pi_gt_zero [simp]: "0 < pi"
huffman@23053
  1721
by (insert pi_half_gt_zero, simp)
huffman@23053
  1722
huffman@23053
  1723
lemma pi_ge_zero [simp]: "0 \<le> pi"
huffman@23053
  1724
by (rule pi_gt_zero [THEN order_less_imp_le])
paulson@15077
  1725
paulson@15077
  1726
lemma pi_neq_zero [simp]: "pi \<noteq> 0"
huffman@22998
  1727
by (rule pi_gt_zero [THEN less_imp_neq, THEN not_sym])
paulson@15077
  1728
huffman@23053
  1729
lemma pi_not_less_zero [simp]: "\<not> pi < 0"
huffman@23053
  1730
by (simp add: linorder_not_less)
paulson@15077
  1731
huffman@29165
  1732
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
huffman@29165
  1733
by simp
paulson@15077
  1734
hoelzl@29740
  1735
lemma m2pi_less_pi: "- (2 * pi) < pi"
hoelzl@29740
  1736
proof -
hoelzl@29740
  1737
  have "- (2 * pi) < 0" and "0 < pi" by auto
hoelzl@29740
  1738
  from order_less_trans[OF this] show ?thesis .
hoelzl@29740
  1739
qed
hoelzl@29740
  1740
paulson@15077
  1741
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
paulson@15077
  1742
apply (cut_tac x = "pi/2" in sin_cos_squared_add2)
paulson@15077
  1743
apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two])
huffman@36963
  1744
apply (simp add: power2_eq_1_iff)
paulson@15077
  1745
done
paulson@15077
  1746
paulson@15077
  1747
lemma cos_pi [simp]: "cos pi = -1"
nipkow@15539
  1748
by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp)
paulson@15077
  1749
paulson@15077
  1750
lemma sin_pi [simp]: "sin pi = 0"
nipkow@15539
  1751
by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp)
paulson@15077
  1752
paulson@15077
  1753
lemma sin_cos_eq: "sin x = cos (pi/2 - x)"
paulson@15229
  1754
by (simp add: diff_minus cos_add)
huffman@23053
  1755
declare sin_cos_eq [symmetric, simp]
paulson@15077
  1756
paulson@15077
  1757
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)"
paulson@15229
  1758
by (simp add: cos_add)
paulson@15077
  1759
declare minus_sin_cos_eq [symmetric, simp]
paulson@15077
  1760
paulson@15077
  1761
lemma cos_sin_eq: "cos x = sin (pi/2 - x)"
paulson@15229
  1762
by (simp add: diff_minus sin_add)
huffman@23053
  1763
declare cos_sin_eq [symmetric, simp]
paulson@15077
  1764
paulson@15077
  1765
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
paulson@15229
  1766
by (simp add: sin_add)
paulson@15077
  1767
paulson@15077
  1768
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
paulson@15229
  1769
by (simp add: sin_add)
paulson@15077
  1770
paulson@15077
  1771
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
paulson@15229
  1772
by (simp add: cos_add)
paulson@15077
  1773
paulson@15077
  1774
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x"
paulson@15077
  1775
by (simp add: sin_add cos_double)
paulson@15077
  1776
paulson@15077
  1777
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x"
paulson@15077
  1778
by (simp add: cos_add cos_double)
paulson@15077
  1779
paulson@15077
  1780
lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n"
paulson@15251
  1781
apply (induct "n")
paulson@15077
  1782
apply (auto simp add: real_of_nat_Suc left_distrib)
paulson@15077
  1783
done
paulson@15077
  1784
paulson@15383
  1785
lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n"
paulson@15383
  1786
proof -
paulson@15383
  1787
  have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute)
hoelzl@42841
  1788
  also have "... = -1 ^ n" by (rule cos_npi)
paulson@15383
  1789
  finally show ?thesis .
paulson@15383
  1790
qed
paulson@15383
  1791
paulson@15077
  1792
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0"
paulson@15251
  1793
apply (induct "n")
paulson@15077
  1794
apply (auto simp add: real_of_nat_Suc left_distrib)
paulson@15077
  1795
done
paulson@15077
  1796
paulson@15077
  1797
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0"
hoelzl@42841
  1798
by (simp add: mult_commute [of pi])
paulson@15077
  1799
paulson@15077
  1800
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
paulson@15077
  1801
by (simp add: cos_double)
paulson@15077
  1802
paulson@15077
  1803
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
paulson@15229
  1804
by simp
paulson@15077
  1805
paulson@15077
  1806
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x"
paulson@15077
  1807
apply (rule sin_gt_zero, assumption)
paulson@15077
  1808
apply (rule order_less_trans, assumption)
paulson@15077
  1809
apply (rule pi_half_less_two)
paulson@15077
  1810
done
paulson@15077
  1811
hoelzl@42841
  1812
lemma sin_less_zero:
paulson@15077
  1813
  assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0"
paulson@15077
  1814
proof -
hoelzl@42841
  1815
  have "0 < sin (- x)" using assms by (simp only: sin_gt_zero2)
paulson@15077
  1816
  thus ?thesis by simp
paulson@15077
  1817
qed
paulson@15077
  1818
paulson@15077
  1819
lemma pi_less_4: "pi < 4"
paulson@15077
  1820
by (cut_tac pi_half_less_two, auto)
paulson@15077
  1821
paulson@15077
  1822
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x"
paulson@15077
  1823
apply (cut_tac pi_less_4)
paulson@15077
  1824
apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all)
paulson@15077
  1825
apply (cut_tac cos_is_zero, safe)
paulson@15077
  1826
apply (rename_tac y z)
paulson@15077
  1827
apply (drule_tac x = y in spec)
hoelzl@42841
  1828
apply (drule_tac x = "pi/2" in spec, simp)
paulson@15077
  1829
done
paulson@15077
  1830
paulson@15077
  1831
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x"
paulson@15077
  1832
apply (rule_tac x = x and y = 0 in linorder_cases)
paulson@15077
  1833
apply (rule cos_minus [THEN subst])
paulson@15077
  1834
apply (rule cos_gt_zero)
paulson@15077
  1835
apply (auto intro: cos_gt_zero)
paulson@15077
  1836
done
hoelzl@42841
  1837
paulson@15077
  1838
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x"
paulson@15077
  1839
apply (auto simp add: order_le_less cos_gt_zero_pi)
hoelzl@42841
  1840
apply (subgoal_tac "x = pi/2", auto)
paulson@15077
  1841
done
paulson@15077
  1842
paulson@15077
  1843
lemma sin_gt_zero_pi: "[| 0 < x; x < pi  |] ==> 0 < sin x"
paulson@15077
  1844
apply (subst sin_cos_eq)
paulson@15077
  1845
apply (rotate_tac 1)
paulson@15077
  1846
apply (drule real_sum_of_halves [THEN ssubst])
paulson@15077
  1847
apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric])
paulson@15077
  1848
done
paulson@15077
  1849
hoelzl@29740
  1850
hoelzl@29740
  1851
lemma pi_ge_two: "2 \<le> pi"
hoelzl@29740
  1852
proof (rule ccontr)
hoelzl@29740
  1853
  assume "\<not> 2 \<le> pi" hence "pi < 2" by auto
hoelzl@29740
  1854
  have "\<exists>y > pi. y < 2 \<and> y < 2 * pi"
hoelzl@29740
  1855
  proof (cases "2 < 2 * pi")
hoelzl@29740
  1856
    case True with dense[OF `pi < 2`] show ?thesis by auto
hoelzl@29740
  1857
  next
hoelzl@29740
  1858
    case False have "pi < 2 * pi" by auto
hoelzl@29740
  1859
    from dense[OF this] and False show ?thesis by auto
hoelzl@29740
  1860
  qed
hoelzl@29740
  1861
  then obtain y where "pi < y" and "y < 2" and "y < 2 * pi" by blast
hoelzl@29740
  1862
  hence "0 < sin y" using sin_gt_zero by auto
hoelzl@42841
  1863
  moreover
hoelzl@29740
  1864
  have "sin y < 0" using sin_gt_zero_pi[of "y - pi"] `pi < y` and `y < 2 * pi` sin_periodic_pi[of "y - pi"] by auto
hoelzl@29740
  1865
  ultimately show False by auto
hoelzl@29740
  1866
qed
hoelzl@29740
  1867
paulson@15077
  1868
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x"
paulson@15077
  1869
by (auto simp add: order_le_less sin_gt_zero_pi)
paulson@15077
  1870
paulson@15077
  1871
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)"
paulson@15077
  1872
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y")
paulson@15077
  1873
apply (rule_tac [2] IVT2)
paulson@15077
  1874
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos)
paulson@15077
  1875
apply (cut_tac x = xa and y = y in linorder_less_linear)
paulson@15077
  1876
apply (rule ccontr, auto)
paulson@15077
  1877
apply (drule_tac f = cos in Rolle)
paulson@15077
  1878
apply (drule_tac [5] f = cos in Rolle)
paulson@15077
  1879
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos
hoelzl@42841
  1880
            dest!: DERIV_cos [THEN DERIV_unique]
paulson@15077
  1881
            simp add: differentiable_def)
paulson@15077
  1882
apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans])
paulson@15077
  1883
done
paulson@15077
  1884
paulson@15077
  1885
lemma sin_total:
paulson@15077
  1886
     "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)"
paulson@15077
  1887
apply (rule ccontr)
paulson@15077
  1888
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))")
wenzelm@18585
  1889
apply (erule contrapos_np)
paulson@15077
  1890
apply (simp del: minus_sin_cos_eq [symmetric])
hoelzl@42841
  1891
apply (cut_tac y="-y" in cos_total, simp) apply simp
paulson@15077
  1892
apply (erule ex1E)
paulson@15229
  1893
apply (rule_tac a = "x - (pi/2)" in ex1I)
huffman@23286
  1894
apply (simp (no_asm) add: add_assoc)
paulson@15077
  1895
apply (rotate_tac 3)
hoelzl@42841
  1896
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all)
paulson@15077
  1897
done
paulson@15077
  1898
paulson@15077
  1899
lemma reals_Archimedean4:
paulson@15077
  1900
     "[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y"
paulson@15077
  1901
apply (auto dest!: reals_Archimedean3)
hoelzl@42841
  1902
apply (drule_tac x = x in spec, clarify)
paulson@15077
  1903
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y")
hoelzl@42841
  1904
 prefer 2 apply (erule LeastI)
hoelzl@42841
  1905
apply (case_tac "LEAST m::nat. x < real m * y", simp)
paulson@15077
  1906
apply (subgoal_tac "~ x < real nat * y")
hoelzl@42841
  1907
 prefer 2 apply (rule not_less_Least, simp, force)
paulson@15077
  1908
done
paulson@15077
  1909
hoelzl@42841
  1910
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic
paulson@15077
  1911
   now causes some unwanted re-arrangements of literals!   *)
paulson@15229
  1912
lemma cos_zero_lemma:
hoelzl@42841
  1913
     "[| 0 \<le> x; cos x = 0 |] ==>
paulson@15077
  1914
      \<exists>n::nat. ~even n & x = real n * (pi/2)"
paulson@15077
  1915
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe)
hoelzl@42841
  1916
apply (subgoal_tac "0 \<le> x - real n * pi &
paulson@15086
  1917
                    (x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ")
nipkow@29667
  1918
apply (auto simp add: algebra_simps real_of_nat_Suc)
nipkow@29667
  1919
 prefer 2 apply (simp add: cos_diff)
paulson@15077
  1920
apply (simp add: cos_diff)
paulson@15077
  1921
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0")
paulson@15077
  1922
apply (rule_tac [2] cos_total, safe)
paulson@15077
  1923
apply (drule_tac x = "x - real n * pi" in spec)
paulson@15077
  1924
apply (drule_tac x = "pi/2" in spec)
paulson@15077
  1925
apply (simp add: cos_diff)
paulson@15229
  1926
apply (rule_tac x = "Suc (2 * n)" in exI)
nipkow@29667
  1927
apply (simp add: real_of_nat_Suc algebra_simps, auto)
paulson@15077
  1928
done
paulson@15077
  1929
paulson@15229
  1930
lemma sin_zero_lemma:
hoelzl@42841
  1931
     "[| 0 \<le> x; sin x = 0 |] ==>
paulson@15077
  1932
      \<exists>n::nat. even n & x = real n * (pi/2)"
paulson@15077
  1933
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ")
paulson@15077
  1934
 apply (clarify, rule_tac x = "n - 1" in exI)
paulson@15077
  1935
 apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib)
paulson@15085
  1936
apply (rule cos_zero_lemma)
hoelzl@42841
  1937
apply (simp_all add: add_increasing)
paulson@15077
  1938
done
paulson@15077
  1939
paulson@15077
  1940
paulson@15229
  1941
lemma cos_zero_iff:
hoelzl@42841
  1942
     "(cos x = 0) =
hoelzl@42841
  1943
      ((\<exists>n::nat. ~even n & (x = real n * (pi/2))) |
paulson@15077
  1944
       (\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))"
paulson@15077
  1945
apply (rule iffI)
paulson@15077
  1946
apply (cut_tac linorder_linear [of 0 x], safe)
paulson@15077
  1947
apply (drule cos_zero_lemma, assumption+)
hoelzl@42841
  1948
apply (cut_tac x="-x" in cos_zero_lemma, simp, simp)
hoelzl@42841
  1949
apply (force simp add: minus_equation_iff [of x])
hoelzl@42841
  1950
apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib)
nipkow@15539
  1951
apply (auto simp add: cos_add)
paulson@15077
  1952
done
paulson@15077
  1953
paulson@15077
  1954
(* ditto: but to a lesser extent *)
paulson@15229
  1955
lemma sin_zero_iff:
hoelzl@42841
  1956
     "(sin x = 0) =
hoelzl@42841
  1957
      ((\<exists>n::nat. even n & (x = real n * (pi/2))) |
paulson@15077
  1958
       (\<exists>n::nat. even n & (x = -(real n * (pi/2)))))"
paulson@15077
  1959
apply (rule iffI)
paulson@15077
  1960
apply (cut_tac linorder_linear [of 0 x], safe)
paulson@15077
  1961
apply (drule sin_zero_lemma, assumption+)
paulson@15077
  1962
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe)
hoelzl@42841
  1963
apply (force simp add: minus_equation_iff [of x])
nipkow@15539
  1964
apply (auto simp add: even_mult_two_ex)
paulson@15077
  1965
done
paulson@15077
  1966
hoelzl@29740
  1967
lemma cos_monotone_0_pi: assumes "0 \<le> y" and "y < x" and "x \<le> pi"
hoelzl@29740
  1968
  shows "cos x < cos y"
hoelzl@29740
  1969
proof -
wenzelm@33591
  1970
  have "- (x - y) < 0" using assms by auto
hoelzl@29740
  1971
hoelzl@29740
  1972
  from MVT2[OF `y < x` DERIV_cos[THEN impI, THEN allI]]
hoelzl@29740
  1973
  obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z" by auto
wenzelm@33591
  1974
  hence "0 < z" and "z < pi" using assms by auto
hoelzl@29740
  1975
  hence "0 < sin z" using sin_gt_zero_pi by auto
hoelzl@29740
  1976
  hence "cos x - cos y < 0" unfolding cos_diff minus_mult_commute[symmetric] using `- (x - y) < 0` by (rule mult_pos_neg2)
hoelzl@29740
  1977
  thus ?thesis by auto
hoelzl@29740
  1978
qed
hoelzl@29740
  1979
hoelzl@29740
  1980
lemma cos_monotone_0_pi': assumes "0 \<le> y" and "y \<le> x" and "x \<le> pi" shows "cos x \<le> cos y"
hoelzl@29740
  1981
proof (cases "y < x")
hoelzl@29740
  1982
  case True show ?thesis using cos_monotone_0_pi[OF `0 \<le> y` True `x \<le> pi`] by auto
hoelzl@29740
  1983
next
hoelzl@29740
  1984
  case False hence "y = x" using `y \<le> x` by auto
hoelzl@29740
  1985
  thus ?thesis by auto
hoelzl@29740
  1986
qed
hoelzl@29740
  1987
hoelzl@29740
  1988
lemma cos_monotone_minus_pi_0: assumes "-pi \<le> y" and "y < x" and "x \<le> 0"
hoelzl@29740
  1989
  shows "cos y < cos x"
hoelzl@29740
  1990
proof -
wenzelm@33591
  1991
  have "0 \<le> -x" and "-x < -y" and "-y \<le> pi" using assms by auto
hoelzl@29740
  1992
  from cos_monotone_0_pi[OF this]
hoelzl@29740
  1993
  show ?thesis unfolding cos_minus .
hoelzl@29740
  1994
qed
hoelzl@29740
  1995
hoelzl@29740
  1996
lemma cos_monotone_minus_pi_0': assumes "-pi \<le> y" and "y \<le> x" and "x \<le> 0" shows "cos y \<le> cos x"
hoelzl@29740
  1997
proof (cases "y < x")
hoelzl@29740
  1998
  case True show ?thesis using cos_monotone_minus_pi_0[OF `-pi \<le> y` True `x \<le> 0`] by auto
hoelzl@29740
  1999
next
hoelzl@29740
  2000
  case False hence "y = x" using `y \<le> x` by auto
hoelzl@29740
  2001
  thus ?thesis by auto
hoelzl@29740
  2002
qed
hoelzl@29740
  2003
hoelzl@29740
  2004
lemma sin_monotone_2pi': assumes "- (pi / 2) \<le> y" and "y \<le> x" and "x \<le> pi / 2" shows "sin y \<le> sin x"
hoelzl@29740
  2005
proof -
wenzelm@33591
  2006
  have "0 \<le> y + pi / 2" and "y + pi / 2 \<le> x + pi / 2" and "x + pi /2 \<le> pi"
wenzelm@33591
  2007
    using pi_ge_two and assms by auto
hoelzl@29740
  2008
  from cos_monotone_0_pi'[OF this] show ?thesis unfolding minus_sin_cos_eq[symmetric] by auto
hoelzl@29740
  2009
qed
paulson@15077
  2010
huffman@29164
  2011
subsection {* Tangent *}
paulson@15077
  2012
huffman@23043
  2013
definition
huffman@23043
  2014
  tan :: "real => real" where
huffman@23043
  2015
  "tan x = (sin x)/(cos x)"
huffman@23043
  2016
paulson@15077
  2017
lemma tan_zero [simp]: "tan 0 = 0"
paulson@15077
  2018
by (simp add: tan_def)
paulson@15077
  2019
paulson@15077
  2020
lemma tan_pi [simp]: "tan pi = 0"
paulson@15077
  2021
by (simp add: tan_def)
paulson@15077
  2022
paulson@15077
  2023
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0"
paulson@15077
  2024
by (simp add: tan_def)
paulson@15077
  2025
paulson@15077
  2026
lemma tan_minus [simp]: "tan (-x) = - tan x"
paulson@15077
  2027
by (simp add: tan_def minus_mult_left)
paulson@15077
  2028
paulson@15077
  2029
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x"
paulson@15077
  2030
by (simp add: tan_def)
paulson@15077
  2031
hoelzl@42841
  2032
lemma lemma_tan_add1:
hoelzl@42841
  2033
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]
paulson@15077
  2034
        ==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)"
paulson@15229
  2035
apply (simp add: tan_def divide_inverse)
hoelzl@42841
  2036
apply (auto simp del: inverse_mult_distrib
paulson@15229
  2037
            simp add: inverse_mult_distrib [symmetric] mult_ac)
paulson@15077
  2038
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
hoelzl@42841
  2039
apply (auto simp del: inverse_mult_distrib
paulson@15229
  2040
            simp add: mult_assoc left_diff_distrib cos_add)
nipkow@29667
  2041
done
paulson@15077
  2042
hoelzl@42841
  2043
lemma add_tan_eq:
hoelzl@42841
  2044
      "[| cos x \<noteq> 0; cos y \<noteq> 0 |]
paulson@15077
  2045
       ==> tan x + tan y = sin(x + y)/(cos x * cos y)"
paulson@15229
  2046
apply (simp add: tan_def)
paulson@15077
  2047
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst])
paulson@15077
  2048
apply (auto simp add: mult_assoc left_distrib)
nipkow@15539
  2049
apply (simp add: sin_add)
paulson@15077
  2050
done
paulson@15077
  2051
paulson@15229
  2052
lemma tan_add:
hoelzl@42841
  2053
     "[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |]
paulson@15077
  2054
      ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))"
paulson@15077
  2055
apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1)
paulson@15077
  2056
apply (simp add: tan_def)
paulson@15077
  2057
done
paulson@15077
  2058
paulson@15229
  2059
lemma tan_double:
hoelzl@42841
  2060
     "[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |]
paulson@15077
  2061
      ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))"
hoelzl@42841
  2062
apply (insert tan_add [of x x])
hoelzl@42841
  2063
apply (simp add: mult_2 [symmetric])
paulson@15077
  2064
apply (auto simp add: numeral_2_eq_2)
paulson@15077
  2065
done
paulson@15077
  2066
paulson@15077
  2067
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x"
hoelzl@42841
  2068
by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
hoelzl@42841
  2069
hoelzl@42841
  2070
lemma tan_less_zero:
paulson@15077
  2071
  assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0"
paulson@15077
  2072
proof -
hoelzl@42841
  2073
  have "0 < tan (- x)" using assms by (simp only: tan_gt_zero)
paulson@15077
  2074
  thus ?thesis by simp
paulson@15077
  2075
qed
paulson@15077
  2076
hoelzl@29740
  2077
lemma tan_half: fixes x :: real assumes "- (pi / 2) < x" and "x < pi / 2"
hoelzl@29740
  2078
  shows "tan x = sin (2 * x) / (cos (2 * x) + 1)"
hoelzl@29740
  2079
proof -
hoelzl@29740
  2080
  from cos_gt_zero_pi[OF `- (pi / 2) < x` `x < pi / 2`]
hoelzl@29740
  2081
  have "cos x \<noteq> 0" by auto
hoelzl@29740
  2082
hoelzl@29740
  2083
  have minus_cos_2x: "\<And>X. X - cos (2*x) = X - (cos x) ^ 2 + (sin x) ^ 2" unfolding cos_double by algebra
hoelzl@29740
  2084
hoelzl@29740
  2085
  have "tan x = (tan x + tan x) / 2" by auto
hoelzl@29740
  2086
  also have "\<dots> = sin (x + x) / (cos x * cos x) / 2" unfolding add_tan_eq[OF `cos x \<noteq> 0` `cos x \<noteq> 0`] ..
hoelzl@29740
  2087
  also have "\<dots> = sin (2 * x) / ((cos x) ^ 2 + (cos x) ^ 2 + cos (2*x) - cos (2*x))" unfolding divide_divide_eq_left numeral_2_eq_2 by auto
hoelzl@29740
  2088
  also have "\<dots> = sin (2 * x) / ((cos x) ^ 2 + cos (2*x) + (sin x)^2)" unfolding minus_cos_2x by auto
hoelzl@29740
  2089
  also have "\<dots> = sin (2 * x) / (cos (2*x) + 1)" by auto
hoelzl@29740
  2090
  finally show ?thesis .
hoelzl@29740
  2091
qed
hoelzl@29740
  2092
paulson@15077
  2093
lemma lemma_DERIV_tan:
paulson@15077
  2094
     "cos x \<noteq> 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\<twosuperior>)"
hoelzl@31880
  2095
  by (auto intro!: DERIV_intros simp add: field_simps numeral_2_eq_2)
paulson@15077
  2096
paulson@15077
  2097
lemma DERIV_tan [simp]: "cos x \<noteq> 0 ==> DERIV tan x :> inverse((cos x)\<twosuperior>)"
paulson@15077
  2098
by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric])
paulson@15077
  2099
huffman@23045
  2100
lemma isCont_tan [simp]: "cos x \<noteq> 0 ==> isCont tan x"
huffman@23045
  2101
by (rule DERIV_tan [THEN DERIV_isCont])
huffman@23045
  2102
paulson@15077
  2103
lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0"
paulson@15077
  2104
apply (subgoal_tac "(\<lambda>x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1")
paulson@15229
  2105
apply (simp add: divide_inverse [symmetric])
huffman@22613
  2106
apply (rule LIM_mult)
paulson@15077
  2107
apply (rule_tac [2] inverse_1 [THEN subst])
paulson@15077
  2108
apply (rule_tac [2] LIM_inverse)
hoelzl@42841
  2109
apply (simp_all add: divide_inverse [symmetric])
hoelzl@42841
  2110
apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric])
paulson@15077
  2111
apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+
paulson@15077
  2112
done
paulson@15077
  2113
paulson@15077
  2114
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x"
paulson@15077
  2115
apply (cut_tac LIM_cos_div_sin)
huffman@31325
  2116
apply (simp only: LIM_eq)
paulson@15077
  2117
apply (drule_tac x = "inverse y" in spec, safe, force)
paulson@15077
  2118
apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe)
paulson@15229
  2119
apply (rule_tac x = "(pi/2) - e" in exI)
paulson@15077
  2120
apply (simp (no_asm_simp))
paulson@15229
  2121
apply (drule_tac x = "(pi/2) - e" in spec)
paulson@15229
  2122
apply (auto simp add: tan_def)
paulson@15077
  2123
apply (rule inverse_less_iff_less [THEN iffD1])
paulson@15079
  2124
apply (auto simp add: divide_inverse)
huffman@36769
  2125
apply (rule mult_pos_pos)
paulson@15229
  2126
apply (subgoal_tac [3] "0 < sin e & 0 < cos e")
huffman@36769
  2127
apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute)
paulson@15077
  2128
done
paulson@15077
  2129
paulson@15077
  2130
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y"
huffman@22998
  2131
apply (frule order_le_imp_less_or_eq, safe)
paulson@15077
  2132
 prefer 2 apply force
paulson@15077
  2133
apply (drule lemma_tan_total, safe)
paulson@15077
  2134
apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl)
paulson@15077
  2135
apply (auto intro!: DERIV_tan [THEN DERIV_isCont])
paulson@15077
  2136
apply (drule_tac y = xa in order_le_imp_less_or_eq)
paulson@15077
  2137
apply (auto dest: cos_gt_zero)
paulson@15077
  2138
done
paulson@15077
  2139
paulson@15077
  2140
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y"
paulson@15077
  2141
apply (cut_tac linorder_linear [of 0 y], safe)
paulson@15077
  2142
apply (drule tan_total_pos)
paulson@15077
  2143
apply (cut_tac [2] y="-y" in tan_total_pos, safe)
paulson@15077
  2144
apply (rule_tac [3] x = "-x" in exI)
paulson@15077
  2145
apply (auto intro!: exI)
paulson@15077
  2146
done
paulson@15077
  2147
paulson@15077
  2148
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y"
paulson@15077
  2149
apply (cut_tac y = y in lemma_tan_total1, auto)
paulson@15077
  2150
apply (cut_tac x = xa and y = y in linorder_less_linear, auto)
paulson@15077
  2151
apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0")
paulson@15077
  2152
apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0")
paulson@15077
  2153
apply (rule_tac [4] Rolle)
paulson@15077
  2154
apply (rule_tac [2] Rolle)
hoelzl@42841
  2155
apply (auto intro!: DERIV_tan DERIV_isCont exI
paulson@15077
  2156
            simp add: differentiable_def)
paulson@15077
  2157
txt{*Now, simulate TRYALL*}
paulson@15077
  2158
apply (rule_tac [!] DERIV_tan asm_rl)
paulson@15077
  2159
apply (auto dest!: DERIV_unique [OF _ DERIV_tan]
hoelzl@42841
  2160
            simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym])
paulson@15077
  2161
done
paulson@15077
  2162
hoelzl@29740
  2163
lemma tan_monotone: assumes "- (pi / 2) < y" and "y < x" and "x < pi / 2"
hoelzl@29740
  2164
  shows "tan y < tan x"
hoelzl@29740
  2165
proof -
hoelzl@29740
  2166
  have "\<forall> x'. y \<le> x' \<and> x' \<le> x \<longrightarrow> DERIV tan x' :> inverse (cos x'^2)"
hoelzl@29740
  2167
  proof (rule allI, rule impI)
hoelzl@29740
  2168
    fix x' :: real assume "y \<le> x' \<and> x' \<le> x"
wenzelm@33591
  2169
    hence "-(pi/2) < x'" and "x' < pi/2" using assms by auto
hoelzl@29740
  2170
    from cos_gt_zero_pi[OF this]
hoelzl@29740
  2171
    have "cos x' \<noteq> 0" by auto
hoelzl@29740
  2172
    thus "DERIV tan x' :> inverse (cos x'^2)" by (rule DERIV_tan)
hoelzl@29740
  2173
  qed
hoelzl@42841
  2174
  from MVT2[OF `y < x` this]
hoelzl@29740
  2175
  obtain z where "y < z" and "z < x" and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)\<twosuperior>)" by auto
wenzelm@33591
  2176
  hence "- (pi / 2) < z" and "z < pi / 2" using assms by auto
hoelzl@29740
  2177
  hence "0 < cos z" using cos_gt_zero_pi by auto
hoelzl@29740
  2178
  hence inv_pos: "0 < inverse ((cos z)\<twosuperior>)" by auto
hoelzl@29740
  2179
  have "0 < x - y" using `y < x` by auto
huffman@36769
  2180
  from mult_pos_pos [OF this inv_pos]
hoelzl@29740
  2181
  have "0 < tan x - tan y" unfolding tan_diff by auto
hoelzl@29740
  2182
  thus ?thesis by auto
hoelzl@29740
  2183
qed
hoelzl@29740
  2184
hoelzl@29740
  2185
lemma tan_monotone': assumes "- (pi / 2) < y" and "y < pi / 2" and "- (pi / 2) < x" and "x < pi / 2"
hoelzl@29740
  2186
  shows "(y < x) = (tan y < tan x)"
hoelzl@29740
  2187
proof
hoelzl@29740
  2188
  assume "y < x" thus "tan y < tan x" using tan_monotone and `- (pi / 2) < y` and `x < pi / 2` by auto
hoelzl@29740
  2189
next
hoelzl@29740
  2190
  assume "tan y < tan x"
hoelzl@29740
  2191
  show "y < x"
hoelzl@29740
  2192
  proof (rule ccontr)
hoelzl@29740
  2193
    assume "\<not> y < x" hence "x \<le> y" by auto
hoelzl@42841
  2194
    hence "tan x \<le> tan y"
hoelzl@29740
  2195
    proof (cases "x = y")
hoelzl@29740
  2196
      case True thus ?thesis by auto
hoelzl@29740
  2197
    next
hoelzl@29740
  2198
      case False hence "x < y" using `x \<le> y` by auto
hoelzl@29740
  2199
      from tan_monotone[OF `- (pi/2) < x` this `y < pi / 2`] show ?thesis by auto
hoelzl@29740
  2200
    qed
hoelzl@29740
  2201
    thus False using `tan y < tan x` by auto
hoelzl@29740
  2202
  qed
hoelzl@29740
  2203
qed
hoelzl@29740
  2204
hoelzl@29740
  2205
lemma tan_inverse: "1 / (tan y) = tan (pi / 2 - y)" unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
hoelzl@29740
  2206
hoelzl@42841
  2207
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
hoelzl@29740
  2208
  by (simp add: tan_def)
hoelzl@29740
  2209
hoelzl@42841
  2210
lemma tan_periodic_nat[simp]: fixes n :: nat shows "tan (x + real n * pi) = tan x"
hoelzl@29740
  2211
proof (induct n arbitrary: x)
hoelzl@29740
  2212
  case (Suc n)
huffman@36769
  2213
  have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi" unfolding Suc_eq_plus1 real_of_nat_add real_of_one left_distrib by auto
hoelzl@29740
  2214
  show ?case unfolding split_pi_off using Suc by auto
hoelzl@29740
  2215
qed auto
hoelzl@29740
  2216
hoelzl@29740
  2217
lemma tan_periodic_int[simp]: fixes i :: int shows "tan (x + real i * pi) = tan x"
hoelzl@29740
  2218
proof (cases "0 \<le> i")
hoelzl@29740
  2219
  case True hence i_nat: "real i = real (nat i)" by auto
hoelzl@29740
  2220
  show ?thesis unfolding i_nat by auto
hoelzl@29740
  2221
next
hoelzl@29740
  2222
  case False hence i_nat: "real i = - real (nat (-i))" by auto
hoelzl@29740
  2223
  have "tan x = tan (x + real i * pi - real i * pi)" by auto
hoelzl@29740
  2224
  also have "\<dots> = tan (x + real i * pi)" unfolding i_nat mult_minus_left diff_minus_eq_add by (rule tan_periodic_nat)
hoelzl@29740
  2225
  finally show ?thesis by auto
hoelzl@29740
  2226
qed
hoelzl@29740
  2227
hoelzl@29740
  2228
lemma tan_periodic_n[simp]: "tan (x + number_of n * pi) = tan x"
hoelzl@29740
  2229
  using tan_periodic_int[of _ "number_of n" ] unfolding real_number_of .
huffman@23043
  2230
huffman@23043
  2231
subsection {* Inverse Trigonometric Functions *}
huffman@23043
  2232
huffman@23043
  2233
definition
huffman@23043
  2234
  arcsin :: "real => real" where
huffman@23043
  2235
  "arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)"
huffman@23043
  2236
huffman@23043
  2237
definition
huffman@23043
  2238
  arccos :: "real => real" where
huffman@23043
  2239
  "arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)"
huffman@23043
  2240
hoelzl@42841
  2241
definition
huffman@23043
  2242
  arctan :: "real => real" where
huffman@23043
  2243
  "arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)"
huffman@23043
  2244
paulson@15229
  2245
lemma arcsin:
hoelzl@42841
  2246
     "[| -1 \<le> y; y \<le> 1 |]
hoelzl@42841
  2247
      ==> -(pi/2) \<le> arcsin y &
paulson@15077
  2248
           arcsin y \<le> pi/2 & sin(arcsin y) = y"
huffman@23011
  2249
unfolding arcsin_def by (rule theI' [OF sin_total])
huffman@23011
  2250
huffman@23011
  2251
lemma arcsin_pi:
hoelzl@42841
  2252
     "[| -1 \<le> y; y \<le> 1 |]
huffman@23011
  2253
      ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y"
huffman@23011
  2254
apply (drule (1) arcsin)
huffman@23011
  2255
apply (force intro: order_trans)
paulson@15077
  2256
done
paulson@15077
  2257
paulson@15077
  2258
lemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y"
paulson@15077
  2259
by (blast dest: arcsin)
hoelzl@42841
  2260
paulson@15077
  2261
lemma arcsin_bounded:
paulson@15077
  2262
     "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2"
paulson@15077
  2263
by (blast dest: arcsin)
paulson@15077
  2264
paulson@15077
  2265
lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y"
paulson@15077
  2266
by (blast dest: arcsin)
paulson@15077
  2267
paulson@15077
  2268
lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2"
paulson@15077
  2269
by (blast dest: arcsin)
paulson@15077
  2270
paulson@15077
  2271
lemma arcsin_lt_bounded:
paulson@15077
  2272
     "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2"
paulson@15077
  2273
apply (frule order_less_imp_le)
paulson@15077
  2274
apply (frule_tac y = y in order_less_imp_le)
paulson@15077
  2275
apply (frule arcsin_bounded)
paulson@15077
  2276
apply (safe, simp)
paulson@15077
  2277
apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq)
paulson@15077
  2278
apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe)
paulson@15077
  2279
apply (drule_tac [!] f = sin in arg_cong, auto)
paulson@15077
  2280
done
paulson@15077
  2281
paulson@15077
  2282
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x"
paulson@15077
  2283
apply (unfold arcsin_def)
huffman@23011
  2284
apply (rule the1_equality)
paulson@15077
  2285
apply (rule sin_total, auto)
paulson@15077
  2286
done
paulson@15077
  2287
huffman@22975
  2288
lemma arccos:
hoelzl@42841
  2289
     "[| -1 \<le> y; y \<le> 1 |]
huffman@22975
  2290
      ==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y"
huffman@23011
  2291
unfolding arccos_def by (rule theI' [OF cos_total])
paulson@15077
  2292
huffman@22975
  2293
lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y"
huffman@22975
  2294
by (blast dest: arccos)
hoelzl@42841
  2295
huffman@22975
  2296
lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi"
huffman@22975
  2297
by (blast dest: arccos)
paulson@15077
  2298
huffman@22975
  2299
lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y"
huffman@22975
  2300
by (blast dest: arccos)
paulson@15077
  2301
huffman@22975
  2302
lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi"
huffman@22975
  2303
by (blast dest: arccos)
paulson@15077
  2304
huffman@22975
  2305
lemma arccos_lt_bounded:
hoelzl@42841
  2306
     "[| -1 < y; y < 1 |]
huffman@22975
  2307
      ==> 0 < arccos y & arccos y < pi"
paulson@15077
  2308
apply (frule order_less_imp_le)
paulson@15077
  2309
apply (frule_tac y = y in order_less_imp_le)
huffman@22975
  2310
apply (frule arccos_bounded, auto)
huffman@22975
  2311
apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq)
paulson@15077
  2312
apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto)
paulson@15077
  2313
apply (drule_tac [!] f = cos in arg_cong, auto)
paulson@15077
  2314
done
paulson@15077
  2315
huffman@22975
  2316
lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x"
huffman@22975
  2317
apply (simp add: arccos_def)
huffman@23011
  2318
apply (auto intro!: the1_equality cos_total)
paulson@15077
  2319
done
paulson@15077
  2320
huffman@22975
  2321
lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x"
huffman@22975
  2322
apply (simp add: arccos_def)
huffman@23011
  2323
apply (auto intro!: the1_equality cos_total)
paulson@15077
  2324
done
paulson@15077
  2325
huffman@23045
  2326
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<twosuperior>)"
huffman@23045
  2327
apply (subgoal_tac "x\<twosuperior> \<le> 1")
huffman@23052
  2328
apply (rule power2_eq_imp_eq)
huffman@23045
  2329
apply (simp add: cos_squared_eq)
huffman@23045
  2330
apply (rule cos_ge_zero)
huffman@23045
  2331
apply (erule (1) arcsin_lbound)
huffman@23045
  2332
apply (erule (1) arcsin_ubound)
huffman@23045
  2333
apply simp
huffman@23045
  2334
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)
huffman@23045
  2335
apply (rule power_mono, simp, simp)
huffman@23045
  2336
done
huffman@23045
  2337
huffman@23045
  2338
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<twosuperior>)"
huffman@23045
  2339
apply (subgoal_tac "x\<twosuperior> \<le> 1")
huffman@23052
  2340
apply (rule power2_eq_imp_eq)
huffman@23045
  2341
apply (simp add: sin_squared_eq)
huffman@23045
  2342
apply (rule sin_ge_zero)
huffman@23045
  2343
apply (erule (1) arccos_lbound)
huffman@23045
  2344
apply (erule (1) arccos_ubound)
huffman@23045
  2345
apply simp
huffman@23045
  2346
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp)
huffman@23045
  2347
apply (rule power_mono, simp, simp)
huffman@23045
  2348
done
huffman@23045
  2349
paulson@15077
  2350
lemma arctan [simp]:
paulson@15077
  2351
     "- (pi/2) < arctan y  & arctan y < pi/2 & tan (arctan y) = y"
huffman@23011
  2352
unfolding arctan_def by (rule theI' [OF tan_total])
paulson@15077
  2353
paulson@15077
  2354
lemma tan_arctan: "tan(arctan y) = y"
paulson@15077
  2355
by auto
paulson@15077
  2356
paulson@15077
  2357
lemma arctan_bounded: "- (pi/2) < arctan y  & arctan y < pi/2"
paulson@15077
  2358
by (auto simp only: arctan)
paulson@15077
  2359
paulson@15077
  2360
lemma arctan_lbound: "- (pi/2) < arctan y"
paulson@15077
  2361
by auto
paulson@15077
  2362
paulson@15077
  2363
lemma arctan_ubound: "arctan y < pi/2"
paulson@15077
  2364
by (auto simp only: arctan)
paulson@15077
  2365
hoelzl@42841
  2366
lemma arctan_tan:
paulson@15077
  2367
      "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x"
paulson@15077
  2368
apply (unfold arctan_def)
huffman@23011
  2369
apply (rule the1_equality)
paulson@15077
  2370
apply (rule tan_total, auto)
paulson@15077
  2371
done
paulson@15077
  2372
paulson@15077
  2373
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
paulson@15077
  2374
by (insert arctan_tan [of 0], simp)
paulson@15077
  2375
paulson@15077
  2376
lemma cos_arctan_not_zero [simp]: "cos(arctan x) \<noteq> 0"
paulson@15077
  2377
apply (auto simp add: cos_zero_iff)
paulson@15077
  2378
apply (case_tac "n")
paulson@15077
  2379
apply (case_tac [3] "n")
paulson@15077
  2380
apply (cut_tac [2] y = x in arctan_ubound)
hoelzl@42841
  2381
apply (cut_tac [4] y = x in arctan_lbound)
paulson@15077
  2382
apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff)
paulson@15077
  2383
done
paulson@15077
  2384
paulson@15077
  2385
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2"
paulson@15077
  2386
apply (rule power_inverse [THEN subst])
paulson@15077
  2387
apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1])
huffman@22960
  2388
apply (auto dest: field_power_not_zero
hoelzl@42841
  2389
        simp add: power_mult_distrib left_distrib power_divide tan_def
huffman@30269
  2390
                  mult_assoc power_inverse [symmetric])
paulson@15077
  2391
done
paulson@15077
  2392
huffman@23045
  2393
lemma isCont_inverse_function2:
huffman@23045
  2394
  fixes f g :: "real \<Rightarrow> real" shows
huffman@23045
  2395
  "\<lbrakk>a < x; x < b;
huffman@23045
  2396
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z;
huffman@23045
  2397
    \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk>
huffman@23045
  2398
   \<Longrightarrow> isCont g (f x)"
huffman@23045
  2399
apply (rule isCont_inverse_function
huffman@23045
  2400
       [where f=f and d="min (x - a) (b - x)"])
huffman@23045
  2401
apply (simp_all add: abs_le_iff)
huffman@23045
  2402
done
huffman@23045
  2403
huffman@23045
  2404
lemma isCont_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arcsin x"
huffman@23045
  2405
apply (subgoal_tac "isCont arcsin (sin (arcsin x))", simp)
huffman@23045
  2406
apply (rule isCont_inverse_function2 [where f=sin])
huffman@23045
  2407
apply (erule (1) arcsin_lt_bounded [THEN conjunct1])
huffman@23045
  2408
apply (erule (1) arcsin_lt_bounded [THEN conjunct2])
huffman@23045
  2409
apply (fast intro: arcsin_sin, simp)
huffman@23045
  2410
done
huffman@23045
  2411
huffman@23045
  2412
lemma isCont_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arccos x"
huffman@23045
  2413
apply (subgoal_tac "isCont arccos (cos (arccos x))", simp)
huffman@23045
  2414
apply (rule isCont_inverse_function2 [where f=cos])
huffman@23045
  2415
apply (erule (1) arccos_lt_bounded [THEN conjunct1])
huffman@23045
  2416
apply (erule (1) arccos_lt_bounded [THEN conjunct2])
huffman@23045
  2417
apply (fast intro: arccos_cos, simp)
huffman@23045
  2418
done
huffman@23045
  2419
huffman@23045
  2420
lemma isCont_arctan: "isCont arctan x"
huffman@23045
  2421
apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify)
huffman@23045
  2422
apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify)
huffman@23045
  2423
apply (subgoal_tac "isCont arctan (tan (arctan x))", simp)
huffman@23045
  2424
apply (erule (1) isCont_inverse_function2 [where f=tan])
paulson@33667
  2425
apply (metis arctan_tan order_le_less_trans order_less_le_trans)
huffman@36769
  2426
apply (metis cos_gt_zero_pi isCont_tan order_less_le_trans less_le)
huffman@23045
  2427
done
huffman@23045
  2428
huffman@23045
  2429
lemma DERIV_arcsin:
huffman@23045
  2430
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<twosuperior>))"
huffman@23045
  2431
apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"])
huffman@23045
  2432
apply (rule lemma_DERIV_subst [OF DERIV_sin])
huffman@23045
  2433
apply (simp add: cos_arcsin)
huffman@23045
  2434
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)
huffman@23045
  2435
apply (rule power_strict_mono, simp, simp, simp)
huffman@23045
  2436
apply assumption
huffman@23045
  2437
apply assumption
huffman@23045
  2438
apply simp
huffman@23045
  2439
apply (erule (1) isCont_arcsin)
huffman@23045
  2440
done
huffman@23045
  2441
huffman@23045
  2442
lemma DERIV_arccos:
huffman@23045
  2443
  "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<twosuperior>))"
huffman@23045
  2444
apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"])
huffman@23045
  2445
apply (rule lemma_DERIV_subst [OF DERIV_cos])
huffman@23045
  2446
apply (simp add: sin_arccos)
huffman@23045
  2447
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp)
huffman@23045
  2448
apply (rule power_strict_mono, simp, simp, simp)
huffman@23045
  2449
apply assumption
huffman@23045
  2450
apply assumption
huffman@23045
  2451
apply simp
huffman@23045
  2452
apply (erule (1) isCont_arccos)
huffman@23045
  2453
done
huffman@23045
  2454
huffman@23045
  2455
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<twosuperior>)"
huffman@23045
  2456
apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"])
huffman@23045
  2457
apply (rule lemma_DERIV_subst [OF DERIV_tan])
huffman@23045
  2458
apply (rule cos_arctan_not_zero)
huffman@23045
  2459
apply (simp add: power_inverse tan_sec [symmetric])
huffman@23045
  2460
apply (subgoal_tac "0 < 1 + x\<twosuperior>", simp)
huffman@23045
  2461
apply (simp add: add_pos_nonneg)
huffman@23045
  2462
apply (simp, simp, simp, rule isCont_arctan)
huffman@23045
  2463
done
huffman@23045
  2464
hoelzl@31879
  2465
declare
hoelzl@31879
  2466
  DERIV_arcsin[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31879
  2467
  DERIV_arccos[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31879
  2468
  DERIV_arctan[THEN DERIV_chain2, THEN DERIV_cong, DERIV_intros]
hoelzl@31879
  2469
huffman@23043
  2470
subsection {* More Theorems about Sin and Cos *}
huffman@23043
  2471
huffman@23052
  2472
lemma cos_45: "cos (pi / 4) = sqrt 2 / 2"
huffman@23052
  2473
proof -
huffman@23052
  2474
  let ?c = "cos (pi / 4)" and ?s = "sin (pi / 4)"
huffman@23052
  2475
  have nonneg: "0 \<le> ?c"
huffman@23052
  2476
    by (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
huffman@23052
  2477
  have "0 = cos (pi / 4 + pi / 4)"
huffman@23052
  2478
    by simp
huffman@23052
  2479
  also have "cos (pi / 4 + pi / 4) = ?c\<twosuperior> - ?s\<twosuperior>"
huffman@23052
  2480
    by (simp only: cos_add power2_eq_square)
huffman@23052
  2481
  also have "\<dots> = 2 * ?c\<twosuperior> - 1"
huffman@23052
  2482
    by (simp add: sin_squared_eq)
huffman@23052
  2483
  finally have "?c\<twosuperior> = (sqrt 2 / 2)\<twosuperior>"
huffman@23052
  2484
    by (simp add: power_divide)
huffman@23052
  2485
  thus ?thesis
huffman@23052
  2486
    using nonneg by (rule power2_eq_imp_eq) simp
huffman@23052
  2487
qed
huffman@23052
  2488
huffman@23052
  2489
lemma cos_30: "cos (pi / 6) = sqrt 3 / 2"
huffman@23052
  2490
proof -
huffman@23052
  2491
  let ?c = "cos (pi / 6)" and ?s = "sin (pi / 6)"
huffman@23052
  2492
  have pos_c: "0 < ?c"
huffman@23052
  2493
    by (rule cos_gt_zero, simp, simp)
huffman@23052
  2494
  have "0 = cos (pi / 6 + pi / 6 + pi / 6)"
huffman@23066
  2495
    by simp
huffman@23052
  2496
  also have "\<dots> = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
huffman@23052
  2497
    by (simp only: cos_add sin_add)
huffman@23052
  2498
  also have "\<dots> = ?c * (?c\<twosuperior> - 3 * ?s\<twosuperior>)"
nipkow@29667
  2499
    by (simp add: algebra_simps power2_eq_square)
huffman@23052
  2500
  finally have "?c\<twosuperior> = (sqrt 3 / 2)\<twosuperior>"
huffman@23052
  2501
    using pos_c by (simp add: sin_squared_eq power_divide)
huffman@23052
  2502
  thus ?thesis
huffman@23052
  2503
    using pos_c [THEN order_less_imp_le]
huffman@23052
  2504
    by (rule power2_eq_imp_eq) simp
huffman@23052
  2505
qed
huffman@23052
  2506
huffman@23052
  2507
lemma sin_45: "sin (pi / 4) = sqrt 2 / 2"
huffman@23052
  2508
proof -
huffman@23052
  2509
  have "sin (pi / 4) = cos (pi / 2 - pi / 4)" by (rule sin_cos_eq)
huffman@23052
  2510
  also have "pi / 2 - pi / 4 = pi / 4" by simp
huffman@23052
  2511
  also have "cos (pi / 4) = sqrt 2 / 2" by (rule cos_45)
huffman@23052
  2512
  finally show ?thesis .
huffman@23052
  2513
qed
huffman@23052
  2514
huffman@23052
  2515
lemma sin_60: "sin (pi / 3) = sqrt 3 / 2"
huffman@23052
  2516
proof -
huffman@23052
  2517
  have "sin (pi / 3) = cos (pi / 2 - pi / 3)" by (rule sin_cos_eq)
huffman@23052
  2518
  also have "pi / 2 - pi / 3 = pi / 6" by simp
huffman@23052
  2519
  also have "cos (pi / 6) = sqrt 3 / 2" by (rule cos_30)
huffman@23052
  2520
  finally show ?thesis .
huffman@23052
  2521
qed
huffman@23052
  2522
huffman@23052
  2523
lemma cos_60: "cos (pi / 3) = 1 / 2"
huffman@23052
  2524
apply (rule power2_eq_imp_eq)
huffman@23052
  2525
apply (simp add: cos_squared_eq sin_60 power_divide)
huffman@23052
  2526
apply (rule cos_ge_zero, rule order_trans [where y=0], simp_all)
huffman@23052
  2527
done
huffman@23052
  2528
huffman@23052
  2529
lemma sin_30: "sin (pi / 6) = 1 / 2"
huffman@23052
  2530
proof -
huffman@23052
  2531
  have "sin (pi / 6) = cos (pi / 2 - pi / 6)" by (rule sin_cos_eq)
huffman@23066
  2532
  also have "pi / 2 - pi / 6 = pi / 3" by simp
huffman@23052
  2533
  also have "cos (pi / 3) = 1 / 2" by (rule cos_60)
huffman@23052
  2534
  finally show ?thesis .
huffman@23052
  2535
qed
huffman@23052
  2536
huffman@23052
  2537
lemma tan_30: "tan (pi / 6) = 1 / sqrt 3"
huffman@23052
  2538
unfolding tan_def by (simp add: sin_30 cos_30)
huffman@23052
  2539
huffman@23052
  2540
lemma tan_45: "tan (pi / 4) = 1"
huffman@23052
  2541
unfolding tan_def by (simp add: sin_45 cos_45)
huffman@23052
  2542
huffman@23052
  2543
lemma tan_60: "tan (pi / 3) = sqrt 3"
huffman@23052
  2544
unfolding tan_def by (simp add: sin_60 cos_60)
huffman@23052
  2545
paulson@15077
  2546
lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)"
hoelzl@31880
  2547
  by (auto intro!: DERIV_intros)
paulson@15077
  2548
paulson@15383
  2549
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n"
paulson@15383
  2550
proof -
paulson@15383
  2551
  have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
nipkow@29667
  2552
    by (auto simp add: algebra_simps sin_add)
paulson@15383
  2553
  thus ?thesis
hoelzl@42841
  2554
    by (simp add: real_of_nat_Suc left_distrib add_divide_distrib
paulson@15383
  2555
                  mult_commute [of pi])
paulson@15383
  2556
qed
paulson@15077
  2557
paulson@15077
  2558
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1"
paulson@15077
  2559
by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2)
paulson@15077
  2560
paulson@15077
  2561
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0"
huffman@23066
  2562
apply (subgoal_tac "cos (pi + pi/2) = 0", simp)
huffman@23066
  2563
apply (subst cos_add, simp)
paulson@15077
  2564
done
paulson@15077
  2565
paulson@15077
  2566
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0"
paulson@15077
  2567
by (auto simp add: mult_assoc)
paulson@15077
  2568
paulson@15077
  2569
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1"
huffman@23066
  2570
apply (subgoal_tac "sin (pi + pi/2) = - 1", simp)
huffman@23066
  2571
apply (subst sin_add, simp)
paulson@15077
  2572
done
paulson@15077
  2573
paulson@15077
  2574
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
paulson@15229
  2575
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto)
paulson@15077
  2576
paulson@15077
  2577
lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)"
hoelzl@31880
  2578
  by (auto intro!: DERIV_intros)
paulson@15077
  2579
paulson@15081
  2580
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1"
nipkow@15539
  2581
by (auto simp add: sin_zero_iff even_mult_two_ex)
paulson@15077
  2582
paulson@15077
  2583
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0"
paulson@15077
  2584
by (cut_tac x = x in sin_cos_squared_add3, auto)
paulson@15077
  2585
hoelzl@29740
  2586
subsection {* Machins formula *}
hoelzl@29740
  2587
hoelzl@29740
  2588
lemma tan_total_pi4: assumes "\<bar>x\<bar> < 1"
hoelzl@29740
  2589
  shows "\<exists> z. - (pi / 4) < z \<and> z < pi / 4 \<and> tan z = x"
hoelzl@29740
  2590
proof -
hoelzl@29740
  2591
  obtain z where "- (pi / 2) < z" and "z < pi / 2" and "tan z = x" using tan_total by blast
hoelzl@29740
  2592
  have "tan (pi / 4) = 1" and "tan (- (pi / 4)) = - 1" using tan_45 tan_minus by auto
hoelzl@42841
  2593
  have "z \<noteq> pi / 4"
hoelzl@29740
  2594
  proof (rule ccontr)
hoelzl@29740
  2595
    assume "\<not> (z \<noteq> pi / 4)" hence "z = pi / 4" by auto
hoelzl@29740
  2596
    have "tan z = 1" unfolding `z = pi / 4` `tan (pi / 4) = 1` ..
hoelzl@29740
  2597
    thus False unfolding `tan z = x` using `\<bar>x\<bar> < 1` by auto
hoelzl@29740
  2598
  qed
hoelzl@29740
  2599
  have "z \<noteq> - (pi / 4)"
hoelzl@29740
  2600
  proof (rule ccontr)
hoelzl@29740
  2601
    assume "\<not> (z \<noteq> - (pi / 4))" hence "z = - (pi / 4)" by auto
hoelzl@29740
  2602
    have "tan z = - 1" unfolding `z = - (pi / 4)` `tan (- (pi / 4)) = - 1` ..
hoelzl@29740
  2603
    thus False unfolding `tan z = x` using `\<bar>x\<bar> < 1` by auto
hoelzl@29740
  2604
  qed
hoelzl@29740
  2605
hoelzl@29740
  2606
  have "z < pi / 4"
hoelzl@29740
  2607
  proof (rule ccontr)
hoelzl@29740
  2608
    assume "\<not> (z < pi / 4)" hence "pi / 4 < z" using `z \<noteq> pi / 4` by auto
hoelzl@29740
  2609
    have "- (pi / 2) < pi / 4" using m2pi_less_pi by auto
hoelzl@42841
  2610
    from tan_monotone[OF this `pi / 4 < z` `z < pi / 2`]
hoelzl@29740
  2611
    have "1 < x" unfolding `tan z = x` `tan (pi / 4) = 1` .
hoelzl@29740
  2612
    thus False using `\<bar>x\<bar> < 1` by auto
hoelzl@29740
  2613
  qed
hoelzl@42841
  2614
  moreover
hoelzl@29740
  2615
  have "-(pi / 4) < z"
hoelzl@29740
  2616
  proof (rule ccontr)
hoelzl@29740
  2617
    assume "\<not> (-(pi / 4) < z)" hence "z < - (pi / 4)" using `z \<noteq> - (pi / 4)` by auto
hoelzl@29740
  2618
    have "-(pi / 4) < pi / 2" using m2pi_less_pi by auto
hoelzl@29740
  2619
    from tan_monotone[OF `-(pi / 2) < z` `z < -(pi / 4)` this]
hoelzl@29740
  2620
    have "x < - 1" unfolding `tan z = x` `tan (-(pi / 4)) = - 1` .
hoelzl@29740
  2621
    thus False using `\<bar>x\<bar> < 1` by auto
hoelzl@29740
  2622
  qed
hoelzl@29740
  2623
  ultimately show ?thesis using `tan z = x` by auto
hoelzl@29740
  2624
qed
hoelzl@29740
  2625
hoelzl@29740
  2626
lemma arctan_add: assumes "\<bar>x\<bar> \<le> 1" and "\<bar>y\<bar> < 1"
hoelzl@29740
  2627
  shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
hoelzl@29740
  2628
proof -
hoelzl@29740
  2629
  obtain y' where "-(pi/4) < y'" and "y' < pi/4" and "tan y' = y" using tan_total_pi4[OF `\<bar>y\<bar> < 1`] by blast
hoelzl@29740
  2630
hoelzl@29740
  2631
  have "pi / 4 < pi / 2" by auto
hoelzl@29740
  2632
hoelzl@29740
  2633
  have "\<exists> x'. -(pi/4) \<le> x' \<and> x' \<le> pi/4 \<and> tan x' = x"
hoelzl@29740
  2634
  proof (cases "\<bar>x\<bar> < 1")
hoelzl@29740
  2635
    case True from tan_total_pi4[OF this] obtain x' where "-(pi/4) < x'" and "x' < pi/4" and "tan x' = x" by blast
hoelzl@29740
  2636
    hence "-(pi/4) \<le> x'" and "x' \<le> pi/4" and "tan x' = x" by auto
hoelzl@29740
  2637
    thus ?thesis by auto
hoelzl@29740
  2638
  next
hoelzl@29740
  2639
    case False
hoelzl@29740
  2640
    show ?thesis
hoelzl@29740
  2641
    proof (cases "x = 1")
hoelzl@29740
  2642
      case True hence "tan (pi/4) = x" using tan_45 by auto
hoelzl@42841
  2643
      moreover
hoelzl@29740
  2644
      have "- pi \<le> pi" unfolding minus_le_self_iff by auto
hoelzl@29740
  2645
      hence "-(pi/4) \<le> pi/4" and "pi/4 \<le> pi/4" by auto
hoelzl@29740
  2646
      ultimately show ?thesis by blast
hoelzl@29740
  2647
    next
hoelzl@29740
  2648
      case False hence "x = -1" using `\<not> \<bar>x\<bar> < 1` and `\<bar>x\<bar> \<le> 1` by auto
hoelzl@29740
  2649
      hence "tan (-(pi/4)) = x" using tan_45 tan_minus by auto
hoelzl@42841
  2650
      moreover
hoelzl@29740
  2651
      have "- pi \<le> pi" unfolding minus_le_self_iff by auto
hoelzl@29740
  2652
      hence "-(pi/4) \<le> pi/4" and "-(pi/4) \<le> -(pi/4)" by auto
hoelzl@29740
  2653
      ultimately show ?thesis by blast
hoelzl@29740
  2654
    qed
hoelzl@29740
  2655
  qed
hoelzl@29740
  2656
  then obtain x' where "-(pi/4) \<le> x'" and "x' \<le> pi/4" and "tan x' = x" by blast
hoelzl@29740
  2657
  hence "-(pi/2) < x'" and "x' < pi/2" using order_le_less_trans[OF `x' \<le> pi/4` `pi / 4 < pi / 2`] by auto
hoelzl@29740
  2658
hoelzl@29740
  2659
  have "cos x' \<noteq> 0" using cos_gt_zero_pi[THEN less_imp_neq] and `-(pi/2) < x'` and `x' < pi/2` by auto
hoelzl@29740
  2660
  moreover have "cos y' \<noteq> 0" using cos_gt_zero_pi[THEN less_imp_neq] and `-(pi/4) < y'` and `y' < pi/4` by auto
hoelzl@29740
  2661
  ultimately have "cos x' * cos y' \<noteq> 0" by auto
hoelzl@29740
  2662
hoelzl@29740
  2663
  have divide_nonzero_divide: "\<And> A B C :: real. C \<noteq> 0 \<Longrightarrow> (A / C) / (B / C) = A / B" by auto
hoelzl@29740
  2664
  have divide_mult_commute: "\<And> A B C D :: real. A * B / (C * D) = (A / C) * (B / D)" by auto
hoelzl@29740
  2665
hoelzl@29740
  2666
  have "tan (x' + y') = sin (x' + y') / (cos x' * cos y' - sin x' * sin y')" unfolding tan_def cos_add ..
hoelzl@29740
  2667
  also have "\<dots> = (tan x' + tan y') / ((cos x' * cos y' - sin x' * sin y') / (cos x' * cos y'))" unfolding add_tan_eq[OF `cos x' \<noteq> 0` `cos y' \<noteq> 0`] divide_nonzero_divide[OF `cos x' * cos y' \<noteq> 0`] ..
hoelzl@29740
  2668
  also have "\<dots> = (tan x' + tan y') / (1 - tan x' * tan y')" unfolding tan_def diff_divide_distrib divide_self[OF `cos x' * cos y' \<noteq> 0`] unfolding divide_mult_commute ..
hoelzl@29740
  2669
  finally have tan_eq: "tan (x' + y') = (x + y) / (1 - x * y)" unfolding `tan y' = y` `tan x' = x` .
hoelzl@29740
  2670
hoelzl@29740
  2671
  have "arctan (tan (x' + y')) = x' + y'" using `-(pi/4) < y'` `-(pi/4) \<le> x'` `y' < pi/4` and `x' \<le> pi/4` by (auto intro!: arctan_tan)
hoelzl@29740
  2672
  moreover have "arctan (tan (x')) = x'" using `-(pi/2) < x'` and `x' < pi/2` by (auto intro!: arctan_tan)
hoelzl@29740
  2673
  moreover have "arctan (tan (y')) = y'" using `-(pi/4) < y'` and `y' < pi/4` by (auto intro!: arctan_tan)
hoelzl@29740
  2674
  ultimately have "arctan x + arctan y = arctan (tan (x' + y'))" unfolding `tan y' = y` [symmetric] `tan x' = x`[symmetric] by auto
hoelzl@29740
  2675
  thus "arctan x + arctan y = arctan ((x + y) / (1 - x * y))" unfolding tan_eq .
hoelzl@29740
  2676
qed
hoelzl@29740
  2677
hoelzl@29740
  2678
lemma arctan1_eq_pi4: "arctan 1 = pi / 4" unfolding tan_45[symmetric] by (rule arctan_tan, auto simp add: m2pi_less_pi)
hoelzl@29740
  2679
hoelzl@29740
  2680
theorem machin: "pi / 4 = 4 * arctan (1/5) - arctan (1 / 239)"
hoelzl@29740
  2681
proof -
hoelzl@29740
  2682
  have "\<bar>1 / 5\<bar> < (1 :: real)" by auto
hoelzl@29740
  2683
  from arctan_add[OF less_imp_le[OF this] this]
hoelzl@29740
  2684
  have "2 * arctan (1 / 5) = arctan (5 / 12)" by auto
hoelzl@29740
  2685
  moreover
hoelzl@29740
  2686
  have "\<bar>5 / 12\<bar> < (1 :: real)" by auto
hoelzl@29740
  2687
  from arctan_add[OF less_imp_le[OF this] this]
hoelzl@29740
  2688
  have "2 * arctan (5 / 12) = arctan (120 / 119)" by auto
hoelzl@42841
  2689
  moreover
hoelzl@29740
  2690
  have "\<bar>1\<bar> \<le> (1::real)" and "\<bar>1 / 239\<bar> < (1::real)" by auto
hoelzl@29740
  2691
  from arctan_add[OF this]
hoelzl@29740
  2692
  have "arctan 1 + arctan (1 / 239) = arctan (120 / 119)" by auto
hoelzl@29740
  2693
  ultimately have "arctan 1 + arctan (1 / 239) = 4 * arctan (1 / 5)" by auto
hoelzl@29740
  2694
  thus ?thesis unfolding arctan1_eq_pi4 by algebra
hoelzl@29740
  2695
qed
hoelzl@29740
  2696
subsection {* Introducing the arcus tangens power series *}
hoelzl@29740
  2697
hoelzl@29740
  2698
lemma monoseq_arctan_series: fixes x :: real
hoelzl@29740
  2699
  assumes "\<bar>x\<bar> \<le> 1" shows "monoseq (\<lambda> n. 1 / real (n*2+1) * x^(n*2+1))" (is "monoseq ?a")
huffman@30019
  2700
proof (cases "x = 0") case True thus ?thesis unfolding monoseq_def One_nat_def by auto
hoelzl@29740
  2701
next
hoelzl@29740
  2702
  case False
hoelzl@29740
  2703
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
hoelzl@29740
  2704
  show "monoseq ?a"
hoelzl@29740
  2705
  proof -
hoelzl@29740
  2706
    { fix n fix x :: real assume "0 \<le> x" and "x \<le> 1"
hoelzl@29740
  2707
      have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<le> 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
hoelzl@29740
  2708
      proof (rule mult_mono)
wenzelm@32962
  2709
        show "1 / real (Suc (Suc n * 2)) \<le> 1 / real (Suc (n * 2))" by (rule frac_le) simp_all
wenzelm@32962
  2710
        show "0 \<le> 1 / real (Suc (n * 2))" by auto
wenzelm@32962
  2711
        show "x ^ Suc (Suc n * 2) \<le> x ^ Suc (n * 2)" by (rule power_decreasing) (simp_all add: `0 \<le> x` `x \<le> 1`)
wenzelm@32962
  2712
        show "0 \<le> x ^ Suc (Suc n * 2)" by (rule zero_le_power) (simp add: `0 \<le> x`)
hoelzl@29740
  2713
      qed
hoelzl@29740
  2714
    } note mono = this
hoelzl@42841
  2715
hoelzl@29740
  2716
    show ?thesis
hoelzl@29740
  2717
    proof (cases "0 \<le> x")
hoelzl@29740
  2718
      case True from mono[OF this `x \<le> 1`, THEN allI]
nipkow@31790
  2719
      show ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
hoelzl@29740
  2720
    next
hoelzl@29740
  2721
      case False hence "0 \<le> -x" and "-x \<le> 1" using `-1 \<le> x` by auto
hoelzl@29740
  2722
      from mono[OF this]
hoelzl@29740
  2723
      have "\<And>n. 1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) \<ge> 1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" using `0 \<le> -x` by auto
nipkow@31790
  2724
      thus ?thesis unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
hoelzl@29740
  2725
    qed
hoelzl@29740
  2726
  qed
hoelzl@29740
  2727
qed
hoelzl@29740
  2728
hoelzl@29740
  2729
lemma zeroseq_arctan_series: fixes x :: real
hoelzl@29740
  2730
  assumes "\<bar>x\<bar> \<le> 1" shows "(\<lambda> n. 1 / real (n*2+1) * x^(n*2+1)) ----> 0" (is "?a ----> 0")
huffman@30019
  2731
proof (cases "x = 0") case True thus ?thesis unfolding One_nat_def by (auto simp add: LIMSEQ_const)
hoelzl@29740
  2732
next
hoelzl@29740
  2733
  case False
hoelzl@29740
  2734
  have "norm x \<le> 1" and "x \<le> 1" and "-1 \<le> x" using assms by auto
hoelzl@29740
  2735
  show "?a ----> 0"
hoelzl@29740
  2736
  proof (cases "\<bar>x\<bar> < 1")
hoelzl@29740
  2737
    case True hence "norm x < 1" by auto
hoelzl@29740
  2738
    from LIMSEQ_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF `norm x < 1`, THEN LIMSEQ_Suc]]
huffman@30019
  2739
    have "(\<lambda>n. 1 / real (n + 1) * x ^ (n + 1)) ----> 0"
nipkow@31790
  2740
      unfolding inverse_eq_divide Suc_eq_plus1 by simp
huffman@30019
  2741
    then show ?thesis using pos2 by (rule LIMSEQ_linear)
hoelzl@29740
  2742
  next
hoelzl@29740
  2743
    case False hence "x = -1 \<or> x = 1" using `\<bar>x\<bar> \<le> 1` by auto
huffman@30019
  2744
    hence n_eq: "\<And> n. x ^ (n * 2 + 1) = x" unfolding One_nat_def by auto
hoelzl@29740
  2745
    from LIMSEQ_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] LIMSEQ_const[of x]]
nipkow@31790
  2746
    show ?thesis unfolding n_eq Suc_eq_plus1 by auto
hoelzl@29740
  2747
  qed
hoelzl@29740
  2748
qed
hoelzl@29740
  2749
hoelzl@29740
  2750
lemma summable_arctan_series: fixes x :: real and n :: nat
hoelzl@29740
  2751
  assumes "\<bar>x\<bar> \<le> 1" shows "summable (\<lambda> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" (is "summable (?c x)")
hoelzl@29740
  2752
  by (rule summable_Leibniz(1), rule zeroseq_arctan_series[OF assms], rule monoseq_arctan_series[OF assms])
hoelzl@29740
  2753
hoelzl@29740
  2754
lemma less_one_imp_sqr_less_one: fixes x :: real assumes "\<bar>x\<bar> < 1" shows "x^2 < 1"
hoelzl@29740
  2755
proof -
haftmann@38880
  2756
  from mult_left_mono[OF less_imp_le[OF `\<bar>x\<bar> < 1`] abs_ge_zero[of x]]
hoelzl@29740
  2757
  have "\<bar> x^2 \<bar> < 1" using `\<bar> x \<bar> < 1` unfolding numeral_2_eq_2 power_Suc2 by auto
hoelzl@29740
  2758
  thus ?thesis using zero_le_power2 by auto
hoelzl@42841
  2759
qed
hoelzl@29740
  2760
hoelzl@29740
  2761
lemma DERIV_arctan_series: assumes "\<bar> x \<bar> < 1"
hoelzl@29740
  2762
  shows "DERIV (\<lambda> x'. \<Sum> k. (-1)^k * (1 / real (k*2+1) * x' ^ (k*2+1))) x :> (\<Sum> k. (-1)^k * x^(k*2))" (is "DERIV ?arctan _ :> ?Int")
hoelzl@29740
  2763
proof -
hoelzl@29740
  2764
  let "?f n" = "if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
hoelzl@29740
  2765
hoelzl@29740
  2766
  { fix n :: nat assume "even n" hence "2 * (n div 2) = n" by presburger } note n_even=this
hoelzl@29740
  2767
  have if_eq: "\<And> n x'. ?f n * real (Suc n) * x'^n = (if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)" using n_even by auto
hoelzl@29740
  2768
hoelzl@29740
  2769
  { fix x :: real assume "\<bar>x\<bar> < 1" hence "x^2 < 1" by (rule less_one_imp_sqr_less_one)
hoelzl@29740
  2770
    have "summable (\<lambda> n. -1 ^ n * (x^2) ^n)"
hoelzl@29740
  2771
      by (rule summable_Leibniz(1), auto intro!: LIMSEQ_realpow_zero monoseq_realpow `x^2 < 1` order_less_imp_le[OF `x^2 < 1`])
hoelzl@29740
  2772
    hence "summable (\<lambda> n. -1 ^ n * x^(2*n))" unfolding power_mult .
hoelzl@29740
  2773
  } note summable_Integral = this
hoelzl@29740
  2774
hoelzl@29740
  2775
  { fix f :: "nat \<Rightarrow> real"
hoelzl@29740
  2776
    have "\<And> x. f sums x = (\<lambda> n. if even n then f (n div 2) else 0) sums x"
hoelzl@29740
  2777
    proof
hoelzl@42841
  2778
      fix x :: real assume "f sums x"
hoelzl@29740
  2779
      from sums_if[OF sums_zero this]
hoelzl@29740
  2780
      show "(\<lambda> n. if even n then f (n div 2) else 0) sums x" by auto
hoelzl@29740
  2781
    next
hoelzl@29740
  2782
      fix x :: real assume "(\<lambda> n. if even n then f (n div 2) else 0) sums x"
hoelzl@29740
  2783
      from LIMSEQ_linear[OF this[unfolded sums_def] pos2, unfolded sum_split_even_odd[unfolded mult_commute]]
hoelzl@29740
  2784
      show "f sums x" unfolding sums_def by auto
hoelzl@29740
  2785
    qed
hoelzl@29740
  2786
    hence "op sums f = op sums (\<lambda> n. if even n then f (n div 2) else 0)" ..
hoelzl@29740
  2787
  } note sums_even = this
hoelzl@29740
  2788
hoelzl@29740
  2789
  have Int_eq: "(\<Sum> n. ?f n * real (Suc n) * x^n) = ?Int" unfolding if_eq mult_commute[of _ 2] suminf_def sums_even[of "\<lambda> n. -1 ^ n * x ^ (2 * n)", symmetric]
hoelzl@29740
  2790
    by auto
hoelzl@29740
  2791
hoelzl@29740
  2792
  { fix x :: real
hoelzl@42841
  2793
    have if_eq': "\<And> n. (if even n then -1 ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
hoelzl@29740
  2794
      (if even n then -1 ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
hoelzl@29740
  2795
      using n_even by auto
hoelzl@42841
  2796
    have idx_eq: "\<And> n. n * 2 + 1 = Suc (2 * n)" by auto
hoelzl@29740
  2797
    have "(\<Sum> n. ?f n * x^(Suc n)) = ?arctan x" unfolding if_eq' idx_eq suminf_def sums_even[of "\<lambda> n. -1 ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
hoelzl@29740
  2798
      by auto
hoelzl@29740
  2799
  } note arctan_eq = this
hoelzl@29740
  2800
hoelzl@29740
  2801
  have "DERIV (\<lambda> x. \<Sum> n. ?f n * x^(Suc n)) x :> (\<Sum> n. ?f n * real (Suc n) * x^n)"
hoelzl@29740
  2802
  proof (rule DERIV_power_series')
hoelzl@29740
  2803
    show "x \<in> {- 1 <..< 1}" using `\<bar> x \<bar> < 1` by auto
hoelzl@29740
  2804
    { fix x' :: real assume x'_bounds: "x' \<in> {- 1 <..< 1}"
hoelzl@29740
  2805
      hence "\<bar>x'\<bar> < 1" by auto
hoelzl@29740
  2806
hoelzl@29740
  2807
      let ?S = "\<Sum> n. (-1)^n * x'^(2 * n)"
hoelzl@29740
  2808
      show "summable (\<lambda> n. ?f n * real (Suc n) * x'^n)" unfolding if_eq
wenzelm@32962
  2809
        by (rule sums_summable[where l="0 + ?S"], rule sums_if, rule sums_zero, rule summable_sums, rule summable_Integral[OF `\<bar>x'\<bar> < 1`])
hoelzl@29740
  2810
    }
hoelzl@29740
  2811
  qed auto
hoelzl@29740
  2812
  thus ?thesis unfolding Int_eq arctan_eq .
hoelzl@29740
  2813
qed
hoelzl@29740
  2814
hoelzl@29740
  2815
lemma arctan_series: assumes "\<bar> x \<bar> \<le> 1"
hoelzl@29740
  2816
  shows "arctan x = (\<Sum> k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))" (is "_ = suminf (\<lambda> n. ?c x n)")
hoelzl@29740
  2817
proof -
hoelzl@29740
  2818
  let "?c' x n" = "(-1)^n * x^(n*2)"
hoelzl@29740
  2819
hoelzl@29740
  2820
  { fix r x :: real assume "0 < r" and "r < 1" and "\<bar> x \<bar> < r"
hoelzl@29740
  2821
    have "\<bar>x\<bar> < 1" using `r < 1` and `\<bar>x\<bar> < r` by auto
hoelzl@29740
  2822
    from DERIV_arctan_series[OF this]
hoelzl@29740
  2823
    have "DERIV (\<lambda> x. suminf (?c x)) x :> (suminf (?c' x))" .
hoelzl@29740
  2824
  } note DERIV_arctan_suminf = this
hoelzl@29740
  2825
hoelzl@29740
  2826
  { fix x :: real assume "\<bar>x\<bar> \<le> 1" note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]] }
hoelzl@29740
  2827
  note arctan_series_borders = this
hoelzl@29740
  2828
hoelzl@29740
  2829
  { fix x :: real assume "\<bar>x\<bar> < 1" have "arctan x = (\<Sum> k. ?c x k)"
hoelzl@29740
  2830
  proof -
hoelzl@29740
  2831
    obtain r where "\<bar>x\<bar> < r" and "r < 1" using dense[OF `\<bar>x\<bar> < 1`] by blast
hoelzl@29740
  2832
    hence "0 < r" and "-r < x" and "x < r" by auto
hoelzl@29740
  2833
hoelzl@29740
  2834
    have suminf_eq_arctan_bounded: "\<And> x a b. \<lbrakk> -r < a ; b < r ; a < b ; a \<le> x ; x \<le> b \<rbrakk> \<Longrightarrow> suminf (?c x) - arctan x = suminf (?c a) - arctan a"
hoelzl@29740
  2835
    proof -
hoelzl@29740
  2836
      fix x a b assume "-r < a" and "b < r" and "a < b" and "a \<le> x" and "x \<le> b"
hoelzl@29740
  2837
      hence "\<bar>x\<bar> < r" by auto
hoelzl@29740
  2838
      show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
hoelzl@29740
  2839
      proof (rule DERIV_isconst2[of "a" "b"])
wenzelm@32962
  2840
        show "a < b" and "a \<le> x" and "x \<le> b" using `a < b` `a \<le> x` `x \<le> b` by auto
wenzelm@32962
  2841
        have "\<forall> x. -r < x \<and> x < r \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0"
wenzelm@32962
  2842
        proof (rule allI, rule impI)
wenzelm@32962
  2843
          fix x assume "-r < x \<and> x < r" hence "\<bar>x\<bar> < r" by auto
wenzelm@32962
  2844
          hence "\<bar>x\<bar> < 1" using `r < 1` by auto
wenzelm@32962
  2845
          have "\<bar> - (x^2) \<bar> < 1" using less_one_imp_sqr_less_one[OF `\<bar>x\<bar> < 1`] by auto
wenzelm@32962
  2846
          hence "(\<lambda> n. (- (x^2)) ^ n) sums (1 / (1 - (- (x^2))))" unfolding real_norm_def[symmetric] by (rule geometric_sums)
wenzelm@32962
  2847
          hence "(?c' x) sums (1 / (1 - (- (x^2))))" unfolding power_mult_distrib[symmetric] power_mult nat_mult_commute[of _ 2] by auto
wenzelm@32962
  2848
          hence suminf_c'_eq_geom: "inverse (1 + x^2) = suminf (?c' x)" using sums_unique unfolding inverse_eq_divide by auto
wenzelm@32962
  2849
          have "DERIV (\<lambda> x. suminf (?c x)) x :> (inverse (1 + x^2))" unfolding suminf_c'_eq_geom
wenzelm@32962
  2850
            by (rule DERIV_arctan_suminf[OF `0 < r` `r < 1` `\<bar>x\<bar> < r`])
wenzelm@32962
  2851
          from DERIV_add_minus[OF this DERIV_arctan]
wenzelm@32962
  2852
          show "DERIV (\<lambda> x. suminf (?c x) - arctan x) x :> 0" unfolding diff_minus by auto
wenzelm@32962
  2853
        qed
wenzelm@32962
  2854
        hence DERIV_in_rball: "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" using `-r < a` `b < r` by auto
wenzelm@32962
  2855
        thus "\<forall> y. a < y \<and> y < b \<longrightarrow> DERIV (\<lambda> x. suminf (?c x) - arctan x) y :> 0" using `\<bar>x\<bar> < r` by auto
wenzelm@32962
  2856
        show "\<forall> y. a \<le> y \<and> y \<le> b \<longrightarrow> isCont (\<lambda> x. suminf (?c x) - arctan x) y" using DERIV_in_rball DERIV_isCont by auto
hoelzl@29740
  2857
      qed
hoelzl@29740
  2858
    qed
hoelzl@42841
  2859
hoelzl@29740
  2860
    have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
nipkow@31790
  2861
      unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero by auto
hoelzl@42841
  2862
hoelzl@29740
  2863
    have "suminf (?c x) - arctan x = 0"
hoelzl@29740
  2864
    proof (cases "x = 0")
hoelzl@29740
  2865
      case True thus ?thesis using suminf_arctan_zero by auto
hoelzl@29740
  2866
    next
hoelzl@29740
  2867
      case False hence "0 < \<bar>x\<bar>" and "- \<bar>x\<bar> < \<bar>x\<bar>" by auto
hoelzl@29740
  2868
      have "suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>) = suminf (?c 0) - arctan 0"
haftmann@35038
  2869
        by (rule suminf_eq_arctan_bounded[where x="0" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>", symmetric])
haftmann@35038
  2870
          (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
hoelzl@29740
  2871
      moreover
hoelzl@29740
  2872
      have "suminf (?c x) - arctan x = suminf (?c (-\<bar>x\<bar>)) - arctan (-\<bar>x\<bar>)"
haftmann@35038
  2873
        by (rule suminf_eq_arctan_bounded[where x="x" and a="-\<bar>x\<bar>" and b="\<bar>x\<bar>"])
haftmann@35038
  2874
          (simp_all only: `\<bar>x\<bar> < r` `-\<bar>x\<bar> < \<bar>x\<bar>` neg_less_iff_less)
hoelzl@42841
  2875
      ultimately
hoelzl@29740
  2876
      show ?thesis using suminf_arctan_zero by auto
hoelzl@29740
  2877
    qed
hoelzl@29740
  2878
    thus ?thesis by auto
hoelzl@29740
  2879
  qed } note when_less_one = this
hoelzl@29740
  2880
hoelzl@29740
  2881
  show "arctan x = suminf (\<lambda> n. ?c x n)"
hoelzl@29740
  2882
  proof (cases "\<bar>x\<bar> < 1")
hoelzl@29740
  2883
    case True thus ?thesis by (rule when_less_one)
hoelzl@29740
  2884
  next case False hence "\<bar>x\<bar> = 1" using `\<bar>x\<bar> \<le> 1` by auto
hoelzl@29740
  2885
    let "?a x n" = "\<bar>1 / real (n*2+1) * x^(n*2+1)\<bar>"
hoelzl@29740
  2886
    let "?diff x n" = "\<bar> arctan x - (\<Sum> i = 0..<n. ?c x i)\<bar>"
hoelzl@29740
  2887
    { fix n :: nat
hoelzl@29740
  2888
      have "0 < (1 :: real)" by auto
hoelzl@29740
  2889
      moreover
hoelzl@29740
  2890
      { fix x :: real assume "0 < x" and "x < 1" hence "\<bar>x\<bar> \<le> 1" and "\<bar>x\<bar> < 1" by auto
wenzelm@32962
  2891
        from `0 < x` have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)" by auto
wenzelm@32962
  2892
        note bounds = mp[OF arctan_series_borders(2)[OF `\<bar>x\<bar> \<le> 1`] this, unfolded when_less_one[OF `\<bar>x\<bar> < 1`, symmetric], THEN spec]
wenzelm@32962
  2893
        have "0 < 1 / real (n*2+1) * x^(n*2+1)" by (rule mult_pos_pos, auto simp only: zero_less_power[OF `0 < x`], auto)
wenzelm@32962
  2894
        hence a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)" by (rule abs_of_pos)
hoelzl@29740
  2895
        have "?diff x n \<le> ?a x n"
wenzelm@32962
  2896
        proof (cases "even n")
wenzelm@32962
  2897
          case True hence sgn_pos: "(-1)^n = (1::real)" by auto
wenzelm@32962
  2898
          from `even n` obtain m where "2 * m = n" unfolding even_mult_two_ex by auto
wenzelm@32962
  2899
          from bounds[of m, unfolded this atLeastAtMost_iff]
wenzelm@32962
  2900
          have "\<bar>arctan x - (\<Sum>i = 0..<n. (?c x i))\<bar> \<le> (\<Sum>i = 0..<n + 1. (?c x i)) - (\<Sum>i = 0..<n. (?c x i))" by auto
wenzelm@32962
  2901
          also have "\<dots> = ?c x n" unfolding One_nat_def by auto
wenzelm@32962
  2902
          also have "\<dots> = ?a x n" unfolding sgn_pos a_pos by auto
wenzelm@32962
  2903
          finally show ?thesis .
wenzelm@32962
  2904
        next
wenzelm@32962
  2905
          case False hence sgn_neg: "(-1)^n = (-1::real)" by auto
wenzelm@32962
  2906
          from `odd n` obtain m where m_def: "2 * m + 1 = n" unfolding odd_Suc_mult_two_ex by auto
wenzelm@32962
  2907
          hence m_plus: "2 * (m + 1) = n + 1" by auto
wenzelm@32962
  2908
          from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
wenzelm@32962
  2909
          have "\<bar>arctan x - (\<Sum>i = 0..<n. (?c x i))\<bar> \<le> (\<Sum>i = 0..<n. (?c x i)) - (\<Sum>i = 0..<n+1. (?c x i))" by auto
wenzelm@32962
  2910
          also have "\<dots> = - ?c x n" unfolding One_nat_def by auto
wenzelm@32962
  2911
          also have "\<dots> = ?a x n" unfolding sgn_neg a_pos by auto
wenzelm@32962
  2912
          finally show ?thesis .
wenzelm@32962
  2913
        qed
hoelzl@29740
  2914
        hence "0 \<le> ?a x n - ?diff x n" by auto
hoelzl@29740
  2915
      }
hoelzl@29740
  2916
      hence "\<forall> x \<in> { 0 <..< 1 }. 0 \<le> ?a x n - ?diff x n" by auto
hoelzl@29740
  2917
      moreover have "\<And>x. isCont (\<lambda> x. ?a x n - ?diff x n) x"
haftmann@37860
  2918
        unfolding diff_minus divide_inverse
wenzelm@32962
  2919
        by (auto intro!: isCont_add isCont_rabs isCont_ident isCont_minus isCont_arctan isCont_inverse isCont_mult isCont_power isCont_const isCont_setsum)
hoelzl@29740
  2920
      ultimately have "0 \<le> ?a 1 n - ?diff 1 n" by (rule LIM_less_bound)
hoelzl@29740
  2921
      hence "?diff 1 n \<le> ?a 1 n" by auto
hoelzl@29740
  2922
    }
huffman@30019
  2923
    have "?a 1 ----> 0"
huffman@30019
  2924
      unfolding LIMSEQ_rabs_zero power_one divide_inverse One_nat_def
huffman@30019
  2925
      by (auto intro!: LIMSEQ_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat)
hoelzl@29740
  2926
    have "?diff 1 ----> 0"
hoelzl@29740
  2927
    proof (rule LIMSEQ_I)
hoelzl@29740
  2928
      fix r :: real assume "0 < r"
hoelzl@29740
  2929
      obtain N :: nat where N_I: "\<And> n. N \<le> n \<Longrightarrow> ?a 1 n < r" using LIMSEQ_D[OF `?a 1 ----> 0` `0 < r`] by auto
hoelzl@29740
  2930
      { fix n assume "N \<le> n" from `?diff 1 n \<le> ?a 1 n` N_I[OF this]
wenzelm@32962
  2931
        have "norm (?diff 1 n - 0) < r" by auto }
hoelzl@29740
  2932
      thus "\<exists> N. \<forall> n \<ge> N. norm (?diff 1 n - 0) < r" by blast
hoelzl@29740
  2933
    qed
haftmann@37860
  2934
    from this[unfolded LIMSEQ_rabs_zero diff_minus add_commute[of "arctan 1"], THEN LIMSEQ_add_const, of "- arctan 1", THEN LIMSEQ_minus]
hoelzl@29740
  2935
    have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
hoelzl@29740
  2936
    hence "arctan 1 = (\<Sum> i. ?c 1 i)" by (rule sums_unique)
hoelzl@42841
  2937
hoelzl@29740
  2938
    show ?thesis
hoelzl@29740
  2939
    proof (cases "x = 1", simp add: `arctan 1 = (\<Sum> i. ?c 1 i)`)
hoelzl@29740
  2940
      assume "x \<noteq> 1" hence "x = -1" using `\<bar>x\<bar> = 1` by auto
hoelzl@42841
  2941
hoelzl@29740
  2942
      have "- (pi / 2) < 0" using pi_gt_zero by auto
hoelzl@29740
  2943
      have "- (2 * pi) < 0" using pi_gt_zero by auto
hoelzl@42841
  2944
huffman@30019
  2945
      have c_minus_minus: "\<And> i. ?c (- 1) i = - ?c 1 i" unfolding One_nat_def by auto
hoelzl@42841
  2946
hoelzl@29740
  2947
      have "arctan (- 1) = arctan (tan (-(pi / 4)))" unfolding tan_45 tan_minus ..
hoelzl@29740
  2948
      also have "\<dots> = - (pi / 4)" by (rule arctan_tan, auto simp add: order_less_trans[OF `- (pi / 2) < 0` pi_gt_zero])
hoelzl@29740
  2949
      also have "\<dots> = - (arctan (tan (pi / 4)))" unfolding neg_equal_iff_equal by (rule arctan_tan[symmetric], auto simp add: order_less_trans[OF `- (2 * pi) < 0` pi_gt_zero])
hoelzl@29740
  2950
      also have "\<dots> = - (arctan 1)" unfolding tan_45 ..
hoelzl@29740
  2951
      also have "\<dots> = - (\<Sum> i. ?c 1 i)" using `arctan 1 = (\<Sum> i. ?c 1 i)` by auto
hoelzl@29740
  2952
      also have "\<dots> = (\<Sum> i. ?c (- 1) i)" using suminf_minus[OF sums_summable[OF `(?c 1) sums (arctan 1)`]] unfolding c_minus_minus by auto
hoelzl@29740
  2953
      finally show ?thesis using `x = -1` by auto
hoelzl@29740
  2954
    qed
hoelzl@29740
  2955
  qed
hoelzl@29740
  2956
qed
hoelzl@29740
  2957
hoelzl@29740
  2958
lemma arctan_half: fixes x :: real
hoelzl@29740
  2959
  shows "arctan x = 2 * arctan (x / (1 + sqrt(1 + x^2)))"
hoelzl@29740
  2960
proof -
hoelzl@29740
  2961
  obtain y where low: "- (pi / 2) < y" and high: "y < pi / 2" and y_eq: "tan y = x" using tan_total by blast
hoelzl@29740
  2962
  hence low2: "- (pi / 2) < y / 2" and high2: "y / 2 < pi / 2" by auto
hoelzl@29740
  2963
hoelzl@29740
  2964
  have divide_nonzero_divide: "\<And> A B C :: real. C \<noteq> 0 \<Longrightarrow> A / B = (A / C) / (B / C)" by auto
hoelzl@42841
  2965
hoelzl@29740
  2966
  have "0 < cos y" using cos_gt_zero_pi[OF low high] .
hoelzl@29740
  2967
  hence "cos y \<noteq> 0" and cos_sqrt: "sqrt ((cos y) ^ 2) = cos y" by auto
hoelzl@29740
  2968
hoelzl@29740
  2969
  have "1 + (tan y)^2 = 1 + sin y^2 / cos y^2" unfolding tan_def power_divide ..
hoelzl@29740
  2970
  also have "\<dots> = cos y^2 / cos y^2 + sin y^2 / cos y^2" using `cos y \<noteq> 0` by auto
hoelzl@29740
  2971
  also have "\<dots> = 1 / cos y^2" unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
hoelzl@29740
  2972
  finally have "1 + (tan y)^2 = 1 / cos y^2" .
hoelzl@29740
  2973
hoelzl@29740
  2974
  have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)" unfolding tan_def divide_nonzero_divide[OF `cos y \<noteq> 0`, symmetric] ..
hoelzl@29740
  2975
  also have "\<dots> = tan y / (1 + 1 / cos y)" using `cos y \<noteq> 0` unfolding add_divide_distrib by auto
hoelzl@29740
  2976
  also have "\<dots> = tan y / (1 + 1 / sqrt(cos y^2))" unfolding cos_sqrt ..
hoelzl@29740
  2977
  also have "\<dots> = tan y / (1 + sqrt(1 / cos y^2))" unfolding real_sqrt_divide by auto
hoelzl@29740
  2978
  finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)^2))" unfolding `1 + (tan y)^2 = 1 / cos y^2` .
hoelzl@29740
  2979
hoelzl@29740
  2980
  have "arctan x = y" using arctan_tan low high y_eq by auto
hoelzl@29740
  2981
  also have "\<dots> = 2 * (arctan (tan (y/2)))" using arctan_tan[OF low2 high2] by auto
hoelzl@29740
  2982
  also have "\<dots> = 2 * (arctan (sin y / (cos y + 1)))" unfolding tan_half[OF low2 high2] by auto
hoelzl@29740
  2983
  finally show ?thesis unfolding eq `tan y = x` .
hoelzl@29740
  2984
qed
hoelzl@29740
  2985
hoelzl@29740
  2986
lemma arctan_monotone: assumes "x < y"
hoelzl@29740
  2987
  shows "arctan x < arctan y"
hoelzl@29740
  2988
proof -
hoelzl@29740
  2989
  obtain z where "-(pi / 2) < z" and "z < pi / 2" and "tan z = x" using tan_total by blast
hoelzl@29740
  2990
  obtain w where "-(pi / 2) < w" and "w < pi / 2" and "tan w = y" using tan_total by blast
hoelzl@29740
  2991
  have "z < w" unfolding tan_monotone'[OF `-(pi / 2) < z` `z < pi / 2` `-(pi / 2) < w` `w < pi / 2`] `tan z = x` `tan w = y` using `x < y` .
hoelzl@29740
  2992
  thus ?thesis
hoelzl@29740
  2993
    unfolding `tan z = x`[symmetric] arctan_tan[OF `-(pi / 2) < z` `z < pi / 2`]
hoelzl@29740
  2994
    unfolding `tan w = y`[symmetric] arctan_tan[OF `-(pi / 2) < w` `w < pi / 2`] .
hoelzl@29740
  2995
qed
hoelzl@29740
  2996
hoelzl@29740
  2997
lemma arctan_monotone': assumes "x \<le> y" shows "arctan x \<le> arctan y"
hoelzl@42841
  2998
proof (cases "x = y")
hoelzl@29740
  2999
  case False hence "x < y" using `x \<le> y` by auto from arctan_monotone[OF this] show ?thesis by auto
hoelzl@29740
  3000
qed auto
hoelzl@29740
  3001
hoelzl@42841
  3002
lemma arctan_minus: "arctan (- x) = - arctan x"
hoelzl@29740
  3003
proof -
hoelzl@29740
  3004
  obtain y where "- (pi / 2) < y" and "y < pi / 2" and "tan y = x" using tan_total by blast
hoelzl@42841
  3005
  thus ?thesis unfolding `tan y = x`[symmetric] tan_minus[symmetric] using arctan_tan[of y] arctan_tan[of "-y"] by auto
hoelzl@29740
  3006
qed
hoelzl@29740
  3007
hoelzl@29740
  3008
lemma arctan_inverse: assumes "x \<noteq> 0" shows "arctan (1 / x) = sgn x * pi / 2 - arctan x"
hoelzl@29740
  3009
proof -
hoelzl@29740
  3010
  obtain y where "- (pi / 2) < y" and "y < pi / 2" and "tan y = x" using tan_total by blast
hoelzl@29740
  3011
  hence "y = arctan x" unfolding `tan y = x`[symmetric] using arctan_tan by auto
hoelzl@29740
  3012
hoelzl@29740
  3013
  { fix y x :: real assume "0 < y" and "y < pi /2" and "y = arctan x" and "tan y = x" hence "- (pi / 2) < y" by auto
hoelzl@29740
  3014
    have "tan y > 0" using tan_monotone'[OF _ _ `- (pi / 2) < y` `y < pi / 2`, of 0] tan_zero `0 < y` by auto
hoelzl@29740
  3015
    hence "x > 0" using `tan y = x` by auto
hoelzl@29740
  3016
hoelzl@29740
  3017
    have "- (pi / 2) < pi / 2 - y" using `y > 0` `y < pi / 2` by auto
hoelzl@29740
  3018
    moreover have "pi / 2 - y < pi / 2" using `y > 0` `y < pi / 2` by auto
hoelzl@29740
  3019
    ultimately have "arctan (1 / x) = pi / 2 - y" unfolding `tan y = x`[symmetric] tan_inverse using arctan_tan by auto
hoelzl@29740
  3020
    hence "arctan (1 / x) = sgn x * pi / 2 - arctan x" unfolding `y = arctan x` real_sgn_pos[OF `x > 0`] by auto
hoelzl@29740
  3021
  } note pos_y = this
hoelzl@29740
  3022
hoelzl@29740
  3023
  show ?thesis
hoelzl@29740
  3024
  proof (cases "y > 0")
hoelzl@29740
  3025
    case True from pos_y[OF this `y < pi / 2` `y = arctan x` `tan y = x`] show ?thesis .
hoelzl@29740
  3026
  next
hoelzl@29740
  3027
    case False hence "y \<le> 0" by auto
hoelzl@42841
  3028
    moreover have "y \<noteq> 0"
hoelzl@29740
  3029
    proof (rule ccontr)
hoelzl@29740
  3030
      assume "\<not> y \<noteq> 0" hence "y = 0" by auto
hoelzl@29740
  3031
      have "x = 0" unfolding `tan y = x`[symmetric] `y = 0` tan_zero ..
hoelzl@29740
  3032
      thus False using `x \<noteq> 0` by auto
hoelzl@29740
  3033
    qed
hoelzl@29740
  3034
    ultimately have "y < 0" by auto
hoelzl@29740
  3035
    hence "0 < - y" and "-y < pi / 2" using `- (pi / 2) < y` by auto
hoelzl@29740
  3036
    moreover have "-y = arctan (-x)" unfolding arctan_minus `y = arctan x` ..
hoelzl@29740
  3037
    moreover have "tan (-y) = -x" unfolding tan_minus `tan y = x` ..
hoelzl@29740
  3038
    ultimately have "arctan (1 / -x) = sgn (-x) * pi / 2 - arctan (-x)" using pos_y by blast
hoelzl@29740
  3039
    hence "arctan (- (1 / x)) = - (sgn x * pi / 2 - arctan x)" unfolding arctan_minus[of x] divide_minus_right sgn_minus by auto
hoelzl@29740
  3040
    thus ?thesis unfolding arctan_minus neg_equal_iff_equal .
hoelzl@29740
  3041
  qed
hoelzl@29740
  3042
qed
hoelzl@29740
  3043
hoelzl@29740
  3044
theorem pi_series: "pi / 4 = (\<Sum> k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")
hoelzl@29740
  3045
proof -
hoelzl@29740
  3046
  have "pi / 4 = arctan 1" using arctan1_eq_pi4 by auto
hoelzl@29740
  3047
  also have "\<dots> = ?SUM" using arctan_series[of 1] by auto
hoelzl@29740
  3048
  finally show ?thesis by auto
hoelzl@29740
  3049
qed
paulson@15077
  3050
huffman@22978
  3051
subsection {* Existence of Polar Coordinates *}
paulson@15077
  3052
huffman@22978
  3053
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<twosuperior> + y\<twosuperior>)\<bar> \<le> 1"
huffman@22978
  3054
apply (rule power2_le_imp_le [OF _ zero_le_one])
huffman@35208
  3055
apply (simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
huffman@22976
  3056
done
paulson@15077
  3057
huffman@22978
  3058
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y"
huffman@22978
  3059
by (simp add: abs_le_iff)
paulson@15077
  3060
huffman@23045
  3061
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<twosuperior>)"
huffman@23045
  3062
by (simp add: sin_arccos abs_le_iff)
paulson@15077
  3063
huffman@22978
  3064
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one]
paulson@15077
  3065
huffman@23045
  3066
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one]
paulson@15077
  3067
paulson@15229
  3068
lemma polar_ex1:
huffman@22978
  3069
     "0 < y ==> \<exists>r a. x = r * cos a & y = r * sin a"
paulson@15229
  3070
apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI)
huffman@22978
  3071
apply (rule_tac x = "arccos (x / sqrt (x\<twosuperior> + y\<twosuperior>))" in exI)
huffman@22978
  3072
apply (simp add: cos_arccos_lemma1)
huffman@23045
  3073
apply (simp add: sin_arccos_lemma1)
huffman@23045
  3074
apply (simp add: power_divide)
huffman@23045
  3075
apply (simp add: real_sqrt_mult [symmetric])
huffman@23045
  3076
apply (simp add: right_diff_distrib)
paulson@15077
  3077
done
paulson@15077
  3078
paulson@15229
  3079
lemma polar_ex2:
huffman@22978
  3080
     "y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a"
huffman@22978
  3081
apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify)
paulson@33667
  3082
apply (metis cos_minus minus_minus minus_mult_right sin_minus)
paulson@15077
  3083
done
paulson@15077
  3084
paulson@15077
  3085
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a"
huffman@22978
  3086
apply (rule_tac x=0 and y=y in linorder_cases)
huffman@22978
  3087
apply (erule polar_ex1)
huffman@22978
  3088
apply (rule_tac x=x in exI, rule_tac x=0 in exI, simp)
huffman@22978
  3089
apply (erule polar_ex2)
paulson@15077
  3090
done
paulson@15077
  3091
huffman@30019
  3092
end