src/HOL/GCD.thy
author haftmann
Sun, 22 Jul 2012 09:56:34 +0200
changeset 49442 571cb1df0768
parent 46863 15d14fa805b2
child 49577 f6d6d58fa318
permissions -rw-r--r--
library theories for debugging and parallel computing using code generation towards Isabelle/ML
haftmann@32478
     1
(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
nipkow@31796
     2
                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
huffman@31704
     3
huffman@31704
     4
haftmann@32478
     5
This file deals with the functions gcd and lcm.  Definitions and
haftmann@32478
     6
lemmas are proved uniformly for the natural numbers and integers.
huffman@31704
     7
huffman@31704
     8
This file combines and revises a number of prior developments.
huffman@31704
     9
huffman@31704
    10
The original theories "GCD" and "Primes" were by Christophe Tabacznyj
huffman@31704
    11
and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
huffman@31704
    12
gcd, lcm, and prime for the natural numbers.
huffman@31704
    13
huffman@31704
    14
The original theory "IntPrimes" was by Thomas M. Rasmussen, and
huffman@31704
    15
extended gcd, lcm, primes to the integers. Amine Chaieb provided
huffman@31704
    16
another extension of the notions to the integers, and added a number
huffman@31704
    17
of results to "Primes" and "GCD". IntPrimes also defined and developed
huffman@31704
    18
the congruence relations on the integers. The notion was extended to
berghofe@34915
    19
the natural numbers by Chaieb.
huffman@31704
    20
avigad@32029
    21
Jeremy Avigad combined all of these, made everything uniform for the
avigad@32029
    22
natural numbers and the integers, and added a number of new theorems.
avigad@32029
    23
nipkow@31796
    24
Tobias Nipkow cleaned up a lot.
wenzelm@21256
    25
*)
wenzelm@21256
    26
huffman@31704
    27
berghofe@34915
    28
header {* Greatest common divisor and least common multiple *}
wenzelm@21256
    29
wenzelm@21256
    30
theory GCD
haftmann@33301
    31
imports Fact Parity
wenzelm@21256
    32
begin
wenzelm@21256
    33
huffman@31704
    34
declare One_nat_def [simp del]
wenzelm@21256
    35
haftmann@34028
    36
subsection {* GCD and LCM definitions *}
huffman@31704
    37
nipkow@31992
    38
class gcd = zero + one + dvd +
wenzelm@41798
    39
  fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
wenzelm@41798
    40
    and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
huffman@31704
    41
begin
huffman@31704
    42
huffman@31704
    43
abbreviation
huffman@31704
    44
  coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
huffman@31704
    45
where
huffman@31704
    46
  "coprime x y == (gcd x y = 1)"
huffman@31704
    47
huffman@31704
    48
end
huffman@31704
    49
huffman@31704
    50
instantiation nat :: gcd
huffman@31704
    51
begin
huffman@31704
    52
huffman@31704
    53
fun
huffman@31704
    54
  gcd_nat  :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31704
    55
where
huffman@31704
    56
  "gcd_nat x y =
huffman@31704
    57
   (if y = 0 then x else gcd y (x mod y))"
wenzelm@21256
    58
haftmann@23687
    59
definition
huffman@31704
    60
  lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
huffman@31704
    61
where
huffman@31704
    62
  "lcm_nat x y = x * y div (gcd x y)"
haftmann@23687
    63
huffman@31704
    64
instance proof qed
haftmann@23687
    65
huffman@31704
    66
end
haftmann@23687
    67
huffman@31704
    68
instantiation int :: gcd
huffman@31704
    69
begin
huffman@31704
    70
huffman@31704
    71
definition
huffman@31704
    72
  gcd_int  :: "int \<Rightarrow> int \<Rightarrow> int"
chaieb@27568
    73
where
huffman@31704
    74
  "gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))"
huffman@31704
    75
huffman@31704
    76
definition
huffman@31704
    77
  lcm_int :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31704
    78
where
huffman@31704
    79
  "lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))"
huffman@31704
    80
huffman@31704
    81
instance proof qed
huffman@31704
    82
huffman@31704
    83
end
huffman@31704
    84
huffman@31704
    85
haftmann@34028
    86
subsection {* Transfer setup *}
huffman@31704
    87
huffman@31704
    88
lemma transfer_nat_int_gcd:
huffman@31704
    89
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)"
huffman@31704
    90
  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)"
haftmann@32478
    91
  unfolding gcd_int_def lcm_int_def
huffman@31704
    92
  by auto
huffman@31704
    93
huffman@31704
    94
lemma transfer_nat_int_gcd_closures:
huffman@31704
    95
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0"
huffman@31704
    96
  "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0"
huffman@31704
    97
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31704
    98
haftmann@35644
    99
declare transfer_morphism_nat_int[transfer add return:
huffman@31704
   100
    transfer_nat_int_gcd transfer_nat_int_gcd_closures]
huffman@31704
   101
huffman@31704
   102
lemma transfer_int_nat_gcd:
huffman@31704
   103
  "gcd (int x) (int y) = int (gcd x y)"
huffman@31704
   104
  "lcm (int x) (int y) = int (lcm x y)"
haftmann@32478
   105
  by (unfold gcd_int_def lcm_int_def, auto)
huffman@31704
   106
huffman@31704
   107
lemma transfer_int_nat_gcd_closures:
huffman@31704
   108
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0"
huffman@31704
   109
  "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0"
huffman@31704
   110
  by (auto simp add: gcd_int_def lcm_int_def)
huffman@31704
   111
haftmann@35644
   112
declare transfer_morphism_int_nat[transfer add return:
huffman@31704
   113
    transfer_int_nat_gcd transfer_int_nat_gcd_closures]
huffman@31704
   114
huffman@31704
   115
haftmann@34028
   116
subsection {* GCD properties *}
huffman@31704
   117
huffman@31704
   118
(* was gcd_induct *)
nipkow@31952
   119
lemma gcd_nat_induct:
haftmann@23687
   120
  fixes m n :: nat
haftmann@23687
   121
  assumes "\<And>m. P m 0"
haftmann@23687
   122
    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
haftmann@23687
   123
  shows "P m n"
huffman@31704
   124
  apply (rule gcd_nat.induct)
huffman@31704
   125
  apply (case_tac "y = 0")
huffman@31704
   126
  using assms apply simp_all
huffman@31704
   127
done
wenzelm@21256
   128
huffman@31704
   129
(* specific to int *)
huffman@31704
   130
nipkow@31952
   131
lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y"
huffman@31704
   132
  by (simp add: gcd_int_def)
huffman@31704
   133
nipkow@31952
   134
lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y"
huffman@31704
   135
  by (simp add: gcd_int_def)
huffman@31704
   136
nipkow@31813
   137
lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y"
nipkow@31813
   138
by(simp add: gcd_int_def)
nipkow@31813
   139
nipkow@31952
   140
lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)"
nipkow@31813
   141
by (simp add: gcd_int_def)
nipkow@31813
   142
nipkow@31813
   143
lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y"
nipkow@31952
   144
by (metis abs_idempotent gcd_abs_int)
nipkow@31813
   145
nipkow@31813
   146
lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y"
nipkow@31952
   147
by (metis abs_idempotent gcd_abs_int)
huffman@31704
   148
nipkow@31952
   149
lemma gcd_cases_int:
huffman@31704
   150
  fixes x :: int and y
huffman@31704
   151
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)"
huffman@31704
   152
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))"
huffman@31704
   153
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)"
huffman@31704
   154
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))"
huffman@31704
   155
  shows "P (gcd x y)"
huffman@35208
   156
by (insert assms, auto, arith)
huffman@31704
   157
nipkow@31952
   158
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0"
huffman@31704
   159
  by (simp add: gcd_int_def)
huffman@31704
   160
nipkow@31952
   161
lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y"
huffman@31704
   162
  by (simp add: lcm_int_def)
huffman@31704
   163
nipkow@31952
   164
lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y"
huffman@31704
   165
  by (simp add: lcm_int_def)
huffman@31704
   166
nipkow@31952
   167
lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)"
huffman@31704
   168
  by (simp add: lcm_int_def)
huffman@31704
   169
nipkow@31814
   170
lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j"
nipkow@31814
   171
by(simp add:lcm_int_def)
nipkow@31814
   172
nipkow@31814
   173
lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y"
nipkow@31814
   174
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   175
nipkow@31814
   176
lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y"
nipkow@31814
   177
by (metis abs_idempotent lcm_int_def)
nipkow@31814
   178
nipkow@31952
   179
lemma lcm_cases_int:
huffman@31704
   180
  fixes x :: int and y
huffman@31704
   181
  assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)"
huffman@31704
   182
      and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))"
huffman@31704
   183
      and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)"
huffman@31704
   184
      and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))"
huffman@31704
   185
  shows "P (lcm x y)"
wenzelm@41798
   186
  using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith
huffman@31704
   187
nipkow@31952
   188
lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0"
huffman@31704
   189
  by (simp add: lcm_int_def)
huffman@31704
   190
huffman@31704
   191
(* was gcd_0, etc. *)
nipkow@31952
   192
lemma gcd_0_nat [simp]: "gcd (x::nat) 0 = x"
wenzelm@21263
   193
  by simp
wenzelm@21256
   194
huffman@31704
   195
(* was igcd_0, etc. *)
nipkow@31952
   196
lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x"
huffman@31704
   197
  by (unfold gcd_int_def, auto)
huffman@31704
   198
nipkow@31952
   199
lemma gcd_0_left_nat [simp]: "gcd 0 (x::nat) = x"
haftmann@23687
   200
  by simp
haftmann@23687
   201
nipkow@31952
   202
lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x"
huffman@31704
   203
  by (unfold gcd_int_def, auto)
huffman@31704
   204
nipkow@31952
   205
lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)"
huffman@31704
   206
  by (case_tac "y = 0", auto)
huffman@31704
   207
huffman@31704
   208
(* weaker, but useful for the simplifier *)
huffman@31704
   209
nipkow@31952
   210
lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)"
haftmann@23687
   211
  by simp
haftmann@23687
   212
nipkow@31952
   213
lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1"
wenzelm@21263
   214
  by simp
wenzelm@21256
   215
nipkow@31952
   216
lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0"
huffman@31704
   217
  by (simp add: One_nat_def)
huffman@30019
   218
nipkow@31952
   219
lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1"
huffman@31704
   220
  by (simp add: gcd_int_def)
huffman@31704
   221
nipkow@31952
   222
lemma gcd_idem_nat: "gcd (x::nat) x = x"
nipkow@31796
   223
by simp
huffman@31704
   224
nipkow@31952
   225
lemma gcd_idem_int: "gcd (x::int) x = abs x"
nipkow@31813
   226
by (auto simp add: gcd_int_def)
huffman@31704
   227
huffman@31704
   228
declare gcd_nat.simps [simp del]
wenzelm@21256
   229
wenzelm@21256
   230
text {*
haftmann@27556
   231
  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
wenzelm@21256
   232
  conjunctions don't seem provable separately.
wenzelm@21256
   233
*}
wenzelm@21256
   234
nipkow@31952
   235
lemma gcd_dvd1_nat [iff]: "(gcd (m::nat)) n dvd m"
nipkow@31952
   236
  and gcd_dvd2_nat [iff]: "(gcd m n) dvd n"
nipkow@31952
   237
  apply (induct m n rule: gcd_nat_induct)
nipkow@31952
   238
  apply (simp_all add: gcd_non_0_nat)
wenzelm@21256
   239
  apply (blast dest: dvd_mod_imp_dvd)
huffman@31704
   240
done
wenzelm@21256
   241
nipkow@31952
   242
lemma gcd_dvd1_int [iff]: "gcd (x::int) y dvd x"
nipkow@31952
   243
by (metis gcd_int_def int_dvd_iff gcd_dvd1_nat)
wenzelm@21256
   244
nipkow@31952
   245
lemma gcd_dvd2_int [iff]: "gcd (x::int) y dvd y"
nipkow@31952
   246
by (metis gcd_int_def int_dvd_iff gcd_dvd2_nat)
wenzelm@21256
   247
nipkow@31730
   248
lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m"
nipkow@31952
   249
by(metis gcd_dvd1_nat dvd_trans)
nipkow@31730
   250
nipkow@31730
   251
lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n"
nipkow@31952
   252
by(metis gcd_dvd2_nat dvd_trans)
nipkow@31730
   253
nipkow@31730
   254
lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m"
nipkow@31952
   255
by(metis gcd_dvd1_int dvd_trans)
nipkow@31730
   256
nipkow@31730
   257
lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n"
nipkow@31952
   258
by(metis gcd_dvd2_int dvd_trans)
nipkow@31730
   259
nipkow@31952
   260
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a"
huffman@31704
   261
  by (rule dvd_imp_le, auto)
wenzelm@21256
   262
nipkow@31952
   263
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b"
huffman@31704
   264
  by (rule dvd_imp_le, auto)
wenzelm@21256
   265
nipkow@31952
   266
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a"
huffman@31704
   267
  by (rule zdvd_imp_le, auto)
wenzelm@21256
   268
nipkow@31952
   269
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b"
huffman@31704
   270
  by (rule zdvd_imp_le, auto)
wenzelm@21256
   271
nipkow@31952
   272
lemma gcd_greatest_nat: "(k::nat) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   273
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod)
wenzelm@21256
   274
nipkow@31952
   275
lemma gcd_greatest_int:
nipkow@31813
   276
  "(k::int) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
nipkow@31952
   277
  apply (subst gcd_abs_int)
huffman@31704
   278
  apply (subst abs_dvd_iff [symmetric])
nipkow@31952
   279
  apply (rule gcd_greatest_nat [transferred])
nipkow@31813
   280
  apply auto
huffman@31704
   281
done
wenzelm@21256
   282
nipkow@31952
   283
lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) =
huffman@31704
   284
    (k dvd m & k dvd n)"
nipkow@31952
   285
  by (blast intro!: gcd_greatest_nat intro: dvd_trans)
wenzelm@21256
   286
nipkow@31952
   287
lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)"
nipkow@31952
   288
  by (blast intro!: gcd_greatest_int intro: dvd_trans)
huffman@31704
   289
nipkow@31952
   290
lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)"
nipkow@31952
   291
  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat)
huffman@31704
   292
nipkow@31952
   293
lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)"
huffman@31704
   294
  by (auto simp add: gcd_int_def)
huffman@31704
   295
nipkow@31952
   296
lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   297
  by (insert gcd_zero_nat [of m n], arith)
huffman@31704
   298
nipkow@31952
   299
lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)"
nipkow@31952
   300
  by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith)
huffman@31704
   301
haftmann@37770
   302
interpretation gcd_nat: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@34960
   303
proof
haftmann@34960
   304
qed (auto intro: dvd_antisym dvd_trans)
huffman@31704
   305
haftmann@37770
   306
interpretation gcd_int: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@34960
   307
proof
haftmann@34960
   308
qed (simp_all add: gcd_int_def gcd_nat.assoc gcd_nat.commute gcd_nat.left_commute)
huffman@31704
   309
haftmann@34960
   310
lemmas gcd_assoc_nat = gcd_nat.assoc
haftmann@34960
   311
lemmas gcd_commute_nat = gcd_nat.commute
haftmann@34960
   312
lemmas gcd_left_commute_nat = gcd_nat.left_commute
haftmann@34960
   313
lemmas gcd_assoc_int = gcd_int.assoc
haftmann@34960
   314
lemmas gcd_commute_int = gcd_int.commute
haftmann@34960
   315
lemmas gcd_left_commute_int = gcd_int.left_commute
huffman@31704
   316
nipkow@31952
   317
lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat
huffman@31704
   318
nipkow@31952
   319
lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int
huffman@31704
   320
nipkow@31952
   321
lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and>
huffman@31704
   322
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
huffman@31704
   323
  apply auto
nipkow@33657
   324
  apply (rule dvd_antisym)
nipkow@31952
   325
  apply (erule (1) gcd_greatest_nat)
huffman@31704
   326
  apply auto
huffman@31704
   327
done
huffman@31704
   328
nipkow@31952
   329
lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and>
huffman@31704
   330
    (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
nipkow@33657
   331
apply (case_tac "d = 0")
nipkow@33657
   332
 apply simp
nipkow@33657
   333
apply (rule iffI)
nipkow@33657
   334
 apply (rule zdvd_antisym_nonneg)
nipkow@33657
   335
 apply (auto intro: gcd_greatest_int)
huffman@31704
   336
done
huffman@30019
   337
nipkow@31796
   338
lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x"
nipkow@31952
   339
by (metis dvd.eq_iff gcd_unique_nat)
nipkow@31796
   340
nipkow@31796
   341
lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y"
nipkow@31952
   342
by (metis dvd.eq_iff gcd_unique_nat)
nipkow@31796
   343
nipkow@31796
   344
lemma gcd_proj1_if_dvd_int[simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x"
nipkow@31952
   345
by (metis abs_dvd_iff abs_eq_0 gcd_0_left_int gcd_abs_int gcd_unique_int)
nipkow@31796
   346
nipkow@31796
   347
lemma gcd_proj2_if_dvd_int[simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y"
nipkow@31952
   348
by (metis gcd_proj1_if_dvd_int gcd_commute_int)
nipkow@31796
   349
nipkow@31796
   350
wenzelm@21256
   351
text {*
wenzelm@21256
   352
  \medskip Multiplication laws
wenzelm@21256
   353
*}
wenzelm@21256
   354
nipkow@31952
   355
lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)"
wenzelm@21256
   356
    -- {* \cite[page 27]{davenport92} *}
nipkow@31952
   357
  apply (induct m n rule: gcd_nat_induct)
huffman@31704
   358
  apply simp
wenzelm@21256
   359
  apply (case_tac "k = 0")
huffman@46141
   360
  apply (simp_all add: gcd_non_0_nat)
huffman@31704
   361
done
wenzelm@21256
   362
nipkow@31952
   363
lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)"
nipkow@31952
   364
  apply (subst (1 2) gcd_abs_int)
nipkow@31813
   365
  apply (subst (1 2) abs_mult)
nipkow@31952
   366
  apply (rule gcd_mult_distrib_nat [transferred])
huffman@31704
   367
  apply auto
huffman@31704
   368
done
wenzelm@21256
   369
nipkow@31952
   370
lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31952
   371
  apply (insert gcd_mult_distrib_nat [of m k n])
wenzelm@21256
   372
  apply simp
wenzelm@21256
   373
  apply (erule_tac t = m in ssubst)
wenzelm@21256
   374
  apply simp
wenzelm@21256
   375
  done
wenzelm@21256
   376
nipkow@31952
   377
lemma coprime_dvd_mult_int:
nipkow@31813
   378
  "coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m"
nipkow@31813
   379
apply (subst abs_dvd_iff [symmetric])
nipkow@31813
   380
apply (subst dvd_abs_iff [symmetric])
nipkow@31952
   381
apply (subst (asm) gcd_abs_int)
nipkow@31952
   382
apply (rule coprime_dvd_mult_nat [transferred])
nipkow@31813
   383
    prefer 4 apply assumption
nipkow@31813
   384
   apply auto
nipkow@31813
   385
apply (subst abs_mult [symmetric], auto)
huffman@31704
   386
done
huffman@31704
   387
nipkow@31952
   388
lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow>
huffman@31704
   389
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   390
  by (auto intro: coprime_dvd_mult_nat)
huffman@31704
   391
nipkow@31952
   392
lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow>
huffman@31704
   393
    (k dvd m * n) = (k dvd m)"
nipkow@31952
   394
  by (auto intro: coprime_dvd_mult_int)
huffman@31704
   395
nipkow@31952
   396
lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n"
nipkow@33657
   397
  apply (rule dvd_antisym)
nipkow@31952
   398
  apply (rule gcd_greatest_nat)
nipkow@31952
   399
  apply (rule_tac n = k in coprime_dvd_mult_nat)
nipkow@31952
   400
  apply (simp add: gcd_assoc_nat)
nipkow@31952
   401
  apply (simp add: gcd_commute_nat)
huffman@31704
   402
  apply (simp_all add: mult_commute)
huffman@31704
   403
done
wenzelm@21256
   404
nipkow@31952
   405
lemma gcd_mult_cancel_int:
nipkow@31813
   406
  "coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n"
nipkow@31952
   407
apply (subst (1 2) gcd_abs_int)
nipkow@31813
   408
apply (subst abs_mult)
nipkow@31952
   409
apply (rule gcd_mult_cancel_nat [transferred], auto)
huffman@31704
   410
done
wenzelm@21256
   411
haftmann@35368
   412
lemma coprime_crossproduct_nat:
haftmann@35368
   413
  fixes a b c d :: nat
haftmann@35368
   414
  assumes "coprime a d" and "coprime b c"
haftmann@35368
   415
  shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs")
haftmann@35368
   416
proof
haftmann@35368
   417
  assume ?rhs then show ?lhs by simp
haftmann@35368
   418
next
haftmann@35368
   419
  assume ?lhs
haftmann@35368
   420
  from `?lhs` have "a dvd b * d" by (auto intro: dvdI dest: sym)
haftmann@35368
   421
  with `coprime a d` have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat)
haftmann@35368
   422
  from `?lhs` have "b dvd a * c" by (auto intro: dvdI dest: sym)
haftmann@35368
   423
  with `coprime b c` have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat)
haftmann@35368
   424
  from `?lhs` have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult_commute)
haftmann@35368
   425
  with `coprime b c` have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat)
haftmann@35368
   426
  from `?lhs` have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult_commute)
haftmann@35368
   427
  with `coprime a d` have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat)
haftmann@35368
   428
  from `a dvd b` `b dvd a` have "a = b" by (rule Nat.dvd.antisym)
haftmann@35368
   429
  moreover from `c dvd d` `d dvd c` have "c = d" by (rule Nat.dvd.antisym)
haftmann@35368
   430
  ultimately show ?rhs ..
haftmann@35368
   431
qed
haftmann@35368
   432
haftmann@35368
   433
lemma coprime_crossproduct_int:
haftmann@35368
   434
  fixes a b c d :: int
haftmann@35368
   435
  assumes "coprime a d" and "coprime b c"
haftmann@35368
   436
  shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>"
haftmann@35368
   437
  using assms by (intro coprime_crossproduct_nat [transferred]) auto
haftmann@35368
   438
wenzelm@21256
   439
text {* \medskip Addition laws *}
wenzelm@21256
   440
nipkow@31952
   441
lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n"
huffman@31704
   442
  apply (case_tac "n = 0")
nipkow@31952
   443
  apply (simp_all add: gcd_non_0_nat)
huffman@31704
   444
done
wenzelm@21256
   445
nipkow@31952
   446
lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n"
nipkow@31952
   447
  apply (subst (1 2) gcd_commute_nat)
huffman@31704
   448
  apply (subst add_commute)
huffman@31704
   449
  apply simp
huffman@31704
   450
done
wenzelm@21256
   451
huffman@31704
   452
(* to do: add the other variations? *)
huffman@31704
   453
nipkow@31952
   454
lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n"
nipkow@31952
   455
  by (subst gcd_add1_nat [symmetric], auto)
huffman@31704
   456
nipkow@31952
   457
lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n"
nipkow@31952
   458
  apply (subst gcd_commute_nat)
nipkow@31952
   459
  apply (subst gcd_diff1_nat [symmetric])
huffman@31704
   460
  apply auto
nipkow@31952
   461
  apply (subst gcd_commute_nat)
nipkow@31952
   462
  apply (subst gcd_diff1_nat)
huffman@31704
   463
  apply assumption
nipkow@31952
   464
  apply (rule gcd_commute_nat)
huffman@31704
   465
done
huffman@31704
   466
nipkow@31952
   467
lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
huffman@31704
   468
  apply (frule_tac b = y and a = x in pos_mod_sign)
huffman@31704
   469
  apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)
nipkow@31952
   470
  apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric]
huffman@31704
   471
    zmod_zminus1_eq_if)
huffman@31704
   472
  apply (frule_tac a = x in pos_mod_bound)
nipkow@31952
   473
  apply (subst (1 2) gcd_commute_nat)
nipkow@31952
   474
  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat
huffman@31704
   475
    nat_le_eq_zle)
huffman@31704
   476
done
huffman@31704
   477
nipkow@31952
   478
lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)"
huffman@31704
   479
  apply (case_tac "y = 0")
huffman@31704
   480
  apply force
huffman@31704
   481
  apply (case_tac "y > 0")
nipkow@31952
   482
  apply (subst gcd_non_0_int, auto)
nipkow@31952
   483
  apply (insert gcd_non_0_int [of "-y" "-x"])
huffman@35208
   484
  apply auto
huffman@31704
   485
done
huffman@31704
   486
nipkow@31952
   487
lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n"
huffman@45692
   488
by (metis gcd_red_int mod_add_self1 add_commute)
huffman@31704
   489
nipkow@31952
   490
lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n"
huffman@45692
   491
by (metis gcd_add1_int gcd_commute_int add_commute)
wenzelm@21256
   492
nipkow@31952
   493
lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n"
nipkow@31952
   494
by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat)
wenzelm@21256
   495
nipkow@31952
   496
lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n"
huffman@45692
   497
by (metis gcd_commute_int gcd_red_int mod_mult_self1 add_commute)
nipkow@31796
   498
huffman@31704
   499
huffman@31704
   500
(* to do: differences, and all variations of addition rules
huffman@31704
   501
    as simplification rules for nat and int *)
huffman@31704
   502
nipkow@31796
   503
(* FIXME remove iff *)
nipkow@31952
   504
lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n"
haftmann@23687
   505
  using mult_dvd_mono [of 1] by auto
chaieb@22027
   506
huffman@31704
   507
(* to do: add the three variations of these, and for ints? *)
chaieb@22027
   508
nipkow@31992
   509
lemma finite_divisors_nat[simp]:
nipkow@31992
   510
  assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}"
nipkow@31734
   511
proof-
nipkow@31734
   512
  have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite)
nipkow@31734
   513
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   514
    by(bestsimp intro!:dvd_imp_le)
nipkow@31734
   515
qed
nipkow@31734
   516
nipkow@31995
   517
lemma finite_divisors_int[simp]:
nipkow@31734
   518
  assumes "(i::int) ~= 0" shows "finite{d. d dvd i}"
nipkow@31734
   519
proof-
nipkow@31734
   520
  have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if)
nipkow@31734
   521
  hence "finite{d. abs d <= abs i}" by simp
nipkow@31734
   522
  from finite_subset[OF _ this] show ?thesis using assms
nipkow@31734
   523
    by(bestsimp intro!:dvd_imp_le_int)
nipkow@31734
   524
qed
nipkow@31734
   525
nipkow@31995
   526
lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n"
nipkow@31995
   527
apply(rule antisym)
nipkow@45761
   528
 apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)
nipkow@31995
   529
apply simp
nipkow@31995
   530
done
nipkow@31995
   531
nipkow@31995
   532
lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n"
nipkow@31995
   533
apply(rule antisym)
haftmann@45141
   534
 apply(rule Max_le_iff [THEN iffD2])
haftmann@45141
   535
  apply (auto intro: abs_le_D1 dvd_imp_le_int)
nipkow@31995
   536
done
nipkow@31995
   537
nipkow@31734
   538
lemma gcd_is_Max_divisors_nat:
nipkow@31734
   539
  "m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   540
apply(rule Max_eqI[THEN sym])
nipkow@31995
   541
  apply (metis finite_Collect_conjI finite_divisors_nat)
nipkow@31734
   542
 apply simp
nipkow@31952
   543
 apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat)
nipkow@31734
   544
apply simp
nipkow@31734
   545
done
nipkow@31734
   546
nipkow@31734
   547
lemma gcd_is_Max_divisors_int:
nipkow@31734
   548
  "m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})"
nipkow@31734
   549
apply(rule Max_eqI[THEN sym])
nipkow@31995
   550
  apply (metis finite_Collect_conjI finite_divisors_int)
nipkow@31734
   551
 apply simp
nipkow@31952
   552
 apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le)
nipkow@31734
   553
apply simp
nipkow@31734
   554
done
nipkow@31734
   555
haftmann@34028
   556
lemma gcd_code_int [code]:
haftmann@34028
   557
  "gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
haftmann@34028
   558
  by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat)
haftmann@34028
   559
huffman@31704
   560
huffman@31704
   561
subsection {* Coprimality *}
huffman@31704
   562
nipkow@31952
   563
lemma div_gcd_coprime_nat:
huffman@31704
   564
  assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31704
   565
  shows "coprime (a div gcd a b) (b div gcd a b)"
wenzelm@22367
   566
proof -
haftmann@27556
   567
  let ?g = "gcd a b"
chaieb@22027
   568
  let ?a' = "a div ?g"
chaieb@22027
   569
  let ?b' = "b div ?g"
haftmann@27556
   570
  let ?g' = "gcd ?a' ?b'"
chaieb@22027
   571
  have dvdg: "?g dvd a" "?g dvd b" by simp_all
chaieb@22027
   572
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
wenzelm@22367
   573
  from dvdg dvdg' obtain ka kb ka' kb' where
wenzelm@22367
   574
      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
chaieb@22027
   575
    unfolding dvd_def by blast
huffman@31704
   576
  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"
huffman@31704
   577
    by simp_all
wenzelm@22367
   578
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
wenzelm@22367
   579
    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
wenzelm@22367
   580
      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
huffman@35208
   581
  have "?g \<noteq> 0" using nz by simp
huffman@31704
   582
  then have gp: "?g > 0" by arith
nipkow@31952
   583
  from gcd_greatest_nat [OF dvdgg'] have "?g * ?g' dvd ?g" .
wenzelm@22367
   584
  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
chaieb@22027
   585
qed
chaieb@22027
   586
nipkow@31952
   587
lemma div_gcd_coprime_int:
huffman@31704
   588
  assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0"
huffman@31704
   589
  shows "coprime (a div gcd a b) (b div gcd a b)"
nipkow@31952
   590
apply (subst (1 2 3) gcd_abs_int)
nipkow@31813
   591
apply (subst (1 2) abs_div)
nipkow@31813
   592
  apply simp
nipkow@31813
   593
 apply simp
nipkow@31813
   594
apply(subst (1 2) abs_gcd_int)
nipkow@31952
   595
apply (rule div_gcd_coprime_nat [transferred])
nipkow@31952
   596
using nz apply (auto simp add: gcd_abs_int [symmetric])
huffman@31704
   597
done
huffman@31704
   598
nipkow@31952
   599
lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   600
  using gcd_unique_nat[of 1 a b, simplified] by auto
huffman@31704
   601
nipkow@31952
   602
lemma coprime_Suc_0_nat:
huffman@31704
   603
    "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)"
nipkow@31952
   604
  using coprime_nat by (simp add: One_nat_def)
huffman@31704
   605
nipkow@31952
   606
lemma coprime_int: "coprime (a::int) b \<longleftrightarrow>
huffman@31704
   607
    (\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
nipkow@31952
   608
  using gcd_unique_int [of 1 a b]
huffman@31704
   609
  apply clarsimp
huffman@31704
   610
  apply (erule subst)
huffman@31704
   611
  apply (rule iffI)
huffman@31704
   612
  apply force
huffman@31704
   613
  apply (drule_tac x = "abs e" in exI)
huffman@31704
   614
  apply (case_tac "e >= 0")
huffman@31704
   615
  apply force
huffman@31704
   616
  apply force
huffman@31704
   617
done
huffman@31704
   618
nipkow@31952
   619
lemma gcd_coprime_nat:
huffman@31704
   620
  assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31704
   621
    b: "b = b' * gcd a b"
huffman@31704
   622
  shows    "coprime a' b'"
huffman@31704
   623
huffman@31704
   624
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31704
   625
  apply (erule ssubst)
huffman@31704
   626
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31704
   627
  apply (erule ssubst)
nipkow@31952
   628
  apply (rule div_gcd_coprime_nat)
wenzelm@41798
   629
  using z apply force
huffman@31704
   630
  apply (subst (1) b)
huffman@31704
   631
  using z apply force
huffman@31704
   632
  apply (subst (1) a)
huffman@31704
   633
  using z apply force
wenzelm@41798
   634
  done
huffman@31704
   635
nipkow@31952
   636
lemma gcd_coprime_int:
huffman@31704
   637
  assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and
huffman@31704
   638
    b: "b = b' * gcd a b"
huffman@31704
   639
  shows    "coprime a' b'"
huffman@31704
   640
huffman@31704
   641
  apply (subgoal_tac "a' = a div gcd a b")
huffman@31704
   642
  apply (erule ssubst)
huffman@31704
   643
  apply (subgoal_tac "b' = b div gcd a b")
huffman@31704
   644
  apply (erule ssubst)
nipkow@31952
   645
  apply (rule div_gcd_coprime_int)
wenzelm@41798
   646
  using z apply force
huffman@31704
   647
  apply (subst (1) b)
huffman@31704
   648
  using z apply force
huffman@31704
   649
  apply (subst (1) a)
huffman@31704
   650
  using z apply force
wenzelm@41798
   651
  done
huffman@31704
   652
nipkow@31952
   653
lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b"
huffman@31704
   654
    shows "coprime d (a * b)"
nipkow@31952
   655
  apply (subst gcd_commute_nat)
nipkow@31952
   656
  using da apply (subst gcd_mult_cancel_nat)
nipkow@31952
   657
  apply (subst gcd_commute_nat, assumption)
nipkow@31952
   658
  apply (subst gcd_commute_nat, rule db)
huffman@31704
   659
done
huffman@31704
   660
nipkow@31952
   661
lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b"
huffman@31704
   662
    shows "coprime d (a * b)"
nipkow@31952
   663
  apply (subst gcd_commute_int)
nipkow@31952
   664
  using da apply (subst gcd_mult_cancel_int)
nipkow@31952
   665
  apply (subst gcd_commute_int, assumption)
nipkow@31952
   666
  apply (subst gcd_commute_int, rule db)
huffman@31704
   667
done
huffman@31704
   668
nipkow@31952
   669
lemma coprime_lmult_nat:
huffman@31704
   670
  assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a"
huffman@31704
   671
proof -
huffman@31704
   672
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   673
    by (rule gcd_greatest_nat, auto)
huffman@31704
   674
  with dab show ?thesis
huffman@31704
   675
    by auto
chaieb@27669
   676
qed
chaieb@27669
   677
nipkow@31952
   678
lemma coprime_lmult_int:
nipkow@31796
   679
  assumes "coprime (d::int) (a * b)" shows "coprime d a"
huffman@31704
   680
proof -
huffman@31704
   681
  have "gcd d a dvd gcd d (a * b)"
nipkow@31952
   682
    by (rule gcd_greatest_int, auto)
nipkow@31796
   683
  with assms show ?thesis
huffman@31704
   684
    by auto
chaieb@27669
   685
qed
chaieb@27669
   686
nipkow@31952
   687
lemma coprime_rmult_nat:
nipkow@31796
   688
  assumes "coprime (d::nat) (a * b)" shows "coprime d b"
huffman@31704
   689
proof -
huffman@31704
   690
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   691
    by (rule gcd_greatest_nat, auto intro: dvd_mult)
nipkow@31796
   692
  with assms show ?thesis
huffman@31704
   693
    by auto
huffman@31704
   694
qed
huffman@31704
   695
nipkow@31952
   696
lemma coprime_rmult_int:
huffman@31704
   697
  assumes dab: "coprime (d::int) (a * b)" shows "coprime d b"
huffman@31704
   698
proof -
huffman@31704
   699
  have "gcd d b dvd gcd d (a * b)"
nipkow@31952
   700
    by (rule gcd_greatest_int, auto intro: dvd_mult)
huffman@31704
   701
  with dab show ?thesis
huffman@31704
   702
    by auto
huffman@31704
   703
qed
huffman@31704
   704
nipkow@31952
   705
lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow>
huffman@31704
   706
    coprime d a \<and>  coprime d b"
nipkow@31952
   707
  using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b]
nipkow@31952
   708
    coprime_mult_nat[of d a b]
huffman@31704
   709
  by blast
huffman@31704
   710
nipkow@31952
   711
lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow>
huffman@31704
   712
    coprime d a \<and>  coprime d b"
nipkow@31952
   713
  using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b]
nipkow@31952
   714
    coprime_mult_int[of d a b]
huffman@31704
   715
  by blast
huffman@31704
   716
nipkow@31952
   717
lemma gcd_coprime_exists_nat:
huffman@31704
   718
    assumes nz: "gcd (a::nat) b \<noteq> 0"
huffman@31704
   719
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31704
   720
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31704
   721
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   722
  using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult)
huffman@31704
   723
done
huffman@31704
   724
nipkow@31952
   725
lemma gcd_coprime_exists_int:
huffman@31704
   726
    assumes nz: "gcd (a::int) b \<noteq> 0"
huffman@31704
   727
    shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
huffman@31704
   728
  apply (rule_tac x = "a div gcd a b" in exI)
huffman@31704
   729
  apply (rule_tac x = "b div gcd a b" in exI)
nipkow@31952
   730
  using nz apply (auto simp add: div_gcd_coprime_int dvd_div_mult_self)
huffman@31704
   731
done
huffman@31704
   732
nipkow@31952
   733
lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   734
  by (induct n, simp_all add: coprime_mult_nat)
huffman@31704
   735
nipkow@31952
   736
lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)"
nipkow@31952
   737
  by (induct n, simp_all add: coprime_mult_int)
huffman@31704
   738
nipkow@31952
   739
lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   740
  apply (rule coprime_exp_nat)
nipkow@31952
   741
  apply (subst gcd_commute_nat)
nipkow@31952
   742
  apply (rule coprime_exp_nat)
nipkow@31952
   743
  apply (subst gcd_commute_nat, assumption)
huffman@31704
   744
done
huffman@31704
   745
nipkow@31952
   746
lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)"
nipkow@31952
   747
  apply (rule coprime_exp_int)
nipkow@31952
   748
  apply (subst gcd_commute_int)
nipkow@31952
   749
  apply (rule coprime_exp_int)
nipkow@31952
   750
  apply (subst gcd_commute_int, assumption)
huffman@31704
   751
done
huffman@31704
   752
nipkow@31952
   753
lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n"
huffman@31704
   754
proof (cases)
huffman@31704
   755
  assume "a = 0 & b = 0"
huffman@31704
   756
  thus ?thesis by simp
huffman@31704
   757
  next assume "~(a = 0 & b = 0)"
huffman@31704
   758
  hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)"
nipkow@31952
   759
    by (auto simp:div_gcd_coprime_nat)
huffman@31704
   760
  hence "gcd ((a div gcd a b)^n * (gcd a b)^n)
huffman@31704
   761
      ((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n"
huffman@31704
   762
    apply (subst (1 2) mult_commute)
nipkow@31952
   763
    apply (subst gcd_mult_distrib_nat [symmetric])
huffman@31704
   764
    apply simp
huffman@31704
   765
    done
huffman@31704
   766
  also have "(a div gcd a b)^n * (gcd a b)^n = a^n"
huffman@31704
   767
    apply (subst div_power)
huffman@31704
   768
    apply auto
huffman@31704
   769
    apply (rule dvd_div_mult_self)
huffman@31704
   770
    apply (rule dvd_power_same)
huffman@31704
   771
    apply auto
huffman@31704
   772
    done
huffman@31704
   773
  also have "(b div gcd a b)^n * (gcd a b)^n = b^n"
huffman@31704
   774
    apply (subst div_power)
huffman@31704
   775
    apply auto
huffman@31704
   776
    apply (rule dvd_div_mult_self)
huffman@31704
   777
    apply (rule dvd_power_same)
huffman@31704
   778
    apply auto
huffman@31704
   779
    done
huffman@31704
   780
  finally show ?thesis .
huffman@31704
   781
qed
huffman@31704
   782
nipkow@31952
   783
lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n"
nipkow@31952
   784
  apply (subst (1 2) gcd_abs_int)
huffman@31704
   785
  apply (subst (1 2) power_abs)
nipkow@31952
   786
  apply (rule gcd_exp_nat [where n = n, transferred])
huffman@31704
   787
  apply auto
huffman@31704
   788
done
huffman@31704
   789
nipkow@31952
   790
lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c"
huffman@31704
   791
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31704
   792
proof-
huffman@31704
   793
  let ?g = "gcd a b"
huffman@31704
   794
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31704
   795
  moreover
huffman@31704
   796
  {assume z: "?g \<noteq> 0"
nipkow@31952
   797
    from gcd_coprime_exists_nat[OF z]
huffman@31704
   798
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31704
   799
      by blast
huffman@31704
   800
    have thb: "?g dvd b" by auto
huffman@31704
   801
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31704
   802
    with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
huffman@31704
   803
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
huffman@31704
   804
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
huffman@31704
   805
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   806
    from coprime_dvd_mult_nat[OF ab'(3)] th_1
huffman@31704
   807
    have thc: "a' dvd c" by (subst (asm) mult_commute, blast)
huffman@31704
   808
    from ab' have "a = ?g*a'" by algebra
huffman@31704
   809
    with thb thc have ?thesis by blast }
huffman@31704
   810
  ultimately show ?thesis by blast
huffman@31704
   811
qed
huffman@31704
   812
nipkow@31952
   813
lemma division_decomp_int: assumes dc: "(a::int) dvd b * c"
huffman@31704
   814
  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
huffman@31704
   815
proof-
huffman@31704
   816
  let ?g = "gcd a b"
huffman@31704
   817
  {assume "?g = 0" with dc have ?thesis by auto}
huffman@31704
   818
  moreover
huffman@31704
   819
  {assume z: "?g \<noteq> 0"
nipkow@31952
   820
    from gcd_coprime_exists_int[OF z]
huffman@31704
   821
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31704
   822
      by blast
huffman@31704
   823
    have thb: "?g dvd b" by auto
huffman@31704
   824
    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast
huffman@31704
   825
    with dc have th0: "a' dvd b*c"
huffman@31704
   826
      using dvd_trans[of a' a "b*c"] by simp
huffman@31704
   827
    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
huffman@31704
   828
    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
huffman@31704
   829
    with z have th_1: "a' dvd b' * c" by auto
nipkow@31952
   830
    from coprime_dvd_mult_int[OF ab'(3)] th_1
huffman@31704
   831
    have thc: "a' dvd c" by (subst (asm) mult_commute, blast)
huffman@31704
   832
    from ab' have "a = ?g*a'" by algebra
huffman@31704
   833
    with thb thc have ?thesis by blast }
huffman@31704
   834
  ultimately show ?thesis by blast
huffman@31704
   835
qed
huffman@31704
   836
nipkow@31952
   837
lemma pow_divides_pow_nat:
huffman@31704
   838
  assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31704
   839
  shows "a dvd b"
huffman@31704
   840
proof-
huffman@31704
   841
  let ?g = "gcd a b"
huffman@31704
   842
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31704
   843
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31704
   844
  moreover
huffman@31704
   845
  {assume z: "?g \<noteq> 0"
huffman@35208
   846
    hence zn: "?g ^ n \<noteq> 0" using n by simp
nipkow@31952
   847
    from gcd_coprime_exists_nat[OF z]
huffman@31704
   848
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31704
   849
      by blast
huffman@31704
   850
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31704
   851
      by (simp add: ab'(1,2)[symmetric])
huffman@31704
   852
    hence "?g^n*a'^n dvd ?g^n *b'^n"
huffman@31704
   853
      by (simp only: power_mult_distrib mult_commute)
huffman@31704
   854
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31704
   855
    have "a' dvd a'^n" by (simp add: m)
huffman@31704
   856
    with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp
huffman@31704
   857
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
nipkow@31952
   858
    from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1
huffman@31704
   859
    have "a' dvd b'" by (subst (asm) mult_commute, blast)
huffman@31704
   860
    hence "a'*?g dvd b'*?g" by simp
huffman@31704
   861
    with ab'(1,2)  have ?thesis by simp }
huffman@31704
   862
  ultimately show ?thesis by blast
huffman@31704
   863
qed
huffman@31704
   864
nipkow@31952
   865
lemma pow_divides_pow_int:
huffman@31704
   866
  assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0"
huffman@31704
   867
  shows "a dvd b"
huffman@31704
   868
proof-
huffman@31704
   869
  let ?g = "gcd a b"
huffman@31704
   870
  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
huffman@31704
   871
  {assume "?g = 0" with ab n have ?thesis by auto }
huffman@31704
   872
  moreover
huffman@31704
   873
  {assume z: "?g \<noteq> 0"
huffman@35208
   874
    hence zn: "?g ^ n \<noteq> 0" using n by simp
nipkow@31952
   875
    from gcd_coprime_exists_int[OF z]
huffman@31704
   876
    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'"
huffman@31704
   877
      by blast
huffman@31704
   878
    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n"
huffman@31704
   879
      by (simp add: ab'(1,2)[symmetric])
huffman@31704
   880
    hence "?g^n*a'^n dvd ?g^n *b'^n"
huffman@31704
   881
      by (simp only: power_mult_distrib mult_commute)
huffman@31704
   882
    with zn z n have th0:"a'^n dvd b'^n" by auto
huffman@31704
   883
    have "a' dvd a'^n" by (simp add: m)
huffman@31704
   884
    with th0 have "a' dvd b'^n"
huffman@31704
   885
      using dvd_trans[of a' "a'^n" "b'^n"] by simp
huffman@31704
   886
    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
nipkow@31952
   887
    from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1
huffman@31704
   888
    have "a' dvd b'" by (subst (asm) mult_commute, blast)
huffman@31704
   889
    hence "a'*?g dvd b'*?g" by simp
huffman@31704
   890
    with ab'(1,2)  have ?thesis by simp }
huffman@31704
   891
  ultimately show ?thesis by blast
huffman@31704
   892
qed
huffman@31704
   893
nipkow@31952
   894
lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)"
nipkow@31952
   895
  by (auto intro: pow_divides_pow_nat dvd_power_same)
huffman@31704
   896
nipkow@31952
   897
lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)"
nipkow@31952
   898
  by (auto intro: pow_divides_pow_int dvd_power_same)
huffman@31704
   899
nipkow@31952
   900
lemma divides_mult_nat:
huffman@31704
   901
  assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31704
   902
  shows "m * n dvd r"
huffman@31704
   903
proof-
huffman@31704
   904
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31704
   905
    unfolding dvd_def by blast
huffman@31704
   906
  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
nipkow@31952
   907
  hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp
huffman@31704
   908
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31704
   909
  from n' k show ?thesis unfolding dvd_def by auto
huffman@31704
   910
qed
huffman@31704
   911
nipkow@31952
   912
lemma divides_mult_int:
huffman@31704
   913
  assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n"
huffman@31704
   914
  shows "m * n dvd r"
huffman@31704
   915
proof-
huffman@31704
   916
  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
huffman@31704
   917
    unfolding dvd_def by blast
huffman@31704
   918
  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
nipkow@31952
   919
  hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp
huffman@31704
   920
  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
huffman@31704
   921
  from n' k show ?thesis unfolding dvd_def by auto
huffman@31704
   922
qed
huffman@31704
   923
nipkow@31952
   924
lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n"
huffman@31704
   925
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31704
   926
  apply force
nipkow@31952
   927
  apply (rule dvd_diff_nat)
huffman@31704
   928
  apply auto
huffman@31704
   929
done
huffman@31704
   930
nipkow@31952
   931
lemma coprime_Suc_nat [simp]: "coprime (Suc n) n"
nipkow@31952
   932
  using coprime_plus_one_nat by (simp add: One_nat_def)
huffman@31704
   933
nipkow@31952
   934
lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n"
huffman@31704
   935
  apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)")
huffman@31704
   936
  apply force
huffman@31704
   937
  apply (rule dvd_diff)
huffman@31704
   938
  apply auto
huffman@31704
   939
done
huffman@31704
   940
nipkow@31952
   941
lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n"
nipkow@31952
   942
  using coprime_plus_one_nat [of "n - 1"]
nipkow@31952
   943
    gcd_commute_nat [of "n - 1" n] by auto
huffman@31704
   944
nipkow@31952
   945
lemma coprime_minus_one_int: "coprime ((n::int) - 1) n"
nipkow@31952
   946
  using coprime_plus_one_int [of "n - 1"]
nipkow@31952
   947
    gcd_commute_int [of "n - 1" n] by auto
huffman@31704
   948
nipkow@31952
   949
lemma setprod_coprime_nat [rule_format]:
huffman@31704
   950
    "(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x"
huffman@31704
   951
  apply (case_tac "finite A")
huffman@31704
   952
  apply (induct set: finite)
nipkow@31952
   953
  apply (auto simp add: gcd_mult_cancel_nat)
huffman@31704
   954
done
huffman@31704
   955
nipkow@31952
   956
lemma setprod_coprime_int [rule_format]:
huffman@31704
   957
    "(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x"
huffman@31704
   958
  apply (case_tac "finite A")
huffman@31704
   959
  apply (induct set: finite)
nipkow@31952
   960
  apply (auto simp add: gcd_mult_cancel_int)
huffman@31704
   961
done
huffman@31704
   962
nipkow@31952
   963
lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31704
   964
    x dvd b \<Longrightarrow> x = 1"
huffman@31704
   965
  apply (subgoal_tac "x dvd gcd a b")
huffman@31704
   966
  apply simp
nipkow@31952
   967
  apply (erule (1) gcd_greatest_nat)
huffman@31704
   968
done
huffman@31704
   969
nipkow@31952
   970
lemma coprime_common_divisor_int: "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow>
huffman@31704
   971
    x dvd b \<Longrightarrow> abs x = 1"
huffman@31704
   972
  apply (subgoal_tac "x dvd gcd a b")
huffman@31704
   973
  apply simp
nipkow@31952
   974
  apply (erule (1) gcd_greatest_int)
huffman@31704
   975
done
huffman@31704
   976
nipkow@31952
   977
lemma coprime_divisors_nat: "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow>
huffman@31704
   978
    coprime d e"
huffman@31704
   979
  apply (auto simp add: dvd_def)
nipkow@31952
   980
  apply (frule coprime_lmult_int)
nipkow@31952
   981
  apply (subst gcd_commute_int)
nipkow@31952
   982
  apply (subst (asm) (2) gcd_commute_int)
nipkow@31952
   983
  apply (erule coprime_lmult_int)
huffman@31704
   984
done
huffman@31704
   985
nipkow@31952
   986
lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
   987
apply (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat)
huffman@31704
   988
done
huffman@31704
   989
nipkow@31952
   990
lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m"
nipkow@31952
   991
apply (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int)
huffman@31704
   992
done
huffman@31704
   993
huffman@31704
   994
huffman@31704
   995
subsection {* Bezout's theorem *}
huffman@31704
   996
huffman@31704
   997
(* Function bezw returns a pair of witnesses to Bezout's theorem --
huffman@31704
   998
   see the theorems that follow the definition. *)
huffman@31704
   999
fun
huffman@31704
  1000
  bezw  :: "nat \<Rightarrow> nat \<Rightarrow> int * int"
huffman@31704
  1001
where
huffman@31704
  1002
  "bezw x y =
huffman@31704
  1003
  (if y = 0 then (1, 0) else
huffman@31704
  1004
      (snd (bezw y (x mod y)),
huffman@31704
  1005
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))"
huffman@31704
  1006
huffman@31704
  1007
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp
huffman@31704
  1008
huffman@31704
  1009
lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)),
huffman@31704
  1010
       fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))"
huffman@31704
  1011
  by simp
huffman@31704
  1012
huffman@31704
  1013
declare bezw.simps [simp del]
huffman@31704
  1014
huffman@31704
  1015
lemma bezw_aux [rule_format]:
huffman@31704
  1016
    "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"
nipkow@31952
  1017
proof (induct x y rule: gcd_nat_induct)
huffman@31704
  1018
  fix m :: nat
huffman@31704
  1019
  show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"
huffman@31704
  1020
    by auto
huffman@31704
  1021
  next fix m :: nat and n
huffman@31704
  1022
    assume ngt0: "n > 0" and
huffman@31704
  1023
      ih: "fst (bezw n (m mod n)) * int n +
huffman@31704
  1024
        snd (bezw n (m mod n)) * int (m mod n) =
huffman@31704
  1025
        int (gcd n (m mod n))"
huffman@31704
  1026
    thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"
nipkow@31952
  1027
      apply (simp add: bezw_non_0 gcd_non_0_nat)
huffman@31704
  1028
      apply (erule subst)
haftmann@36349
  1029
      apply (simp add: field_simps)
huffman@31704
  1030
      apply (subst mod_div_equality [of m n, symmetric])
huffman@31704
  1031
      (* applying simp here undoes the last substitution!
huffman@31704
  1032
         what is procedure cancel_div_mod? *)
huffman@45692
  1033
      apply (simp only: field_simps of_nat_add of_nat_mult)
huffman@31704
  1034
      done
huffman@31704
  1035
qed
huffman@31704
  1036
nipkow@31952
  1037
lemma bezout_int:
huffman@31704
  1038
  fixes x y
huffman@31704
  1039
  shows "EX u v. u * (x::int) + v * y = gcd x y"
huffman@31704
  1040
proof -
huffman@31704
  1041
  have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow>
huffman@31704
  1042
      EX u v. u * x + v * y = gcd x y"
huffman@31704
  1043
    apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)
huffman@31704
  1044
    apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)
huffman@31704
  1045
    apply (unfold gcd_int_def)
huffman@31704
  1046
    apply simp
huffman@31704
  1047
    apply (subst bezw_aux [symmetric])
huffman@31704
  1048
    apply auto
huffman@31704
  1049
    done
huffman@31704
  1050
  have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) |
huffman@31704
  1051
      (x \<le> 0 \<and> y \<le> 0)"
huffman@31704
  1052
    by auto
huffman@31704
  1053
  moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis"
huffman@31704
  1054
    by (erule (1) bezout_aux)
huffman@31704
  1055
  moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31704
  1056
    apply (insert bezout_aux [of x "-y"])
huffman@31704
  1057
    apply auto
huffman@31704
  1058
    apply (rule_tac x = u in exI)
huffman@31704
  1059
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1060
    apply (subst gcd_neg2_int [symmetric])
huffman@31704
  1061
    apply auto
huffman@31704
  1062
    done
huffman@31704
  1063
  moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis"
huffman@31704
  1064
    apply (insert bezout_aux [of "-x" y])
huffman@31704
  1065
    apply auto
huffman@31704
  1066
    apply (rule_tac x = "-u" in exI)
huffman@31704
  1067
    apply (rule_tac x = v in exI)
nipkow@31952
  1068
    apply (subst gcd_neg1_int [symmetric])
huffman@31704
  1069
    apply auto
huffman@31704
  1070
    done
huffman@31704
  1071
  moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis"
huffman@31704
  1072
    apply (insert bezout_aux [of "-x" "-y"])
huffman@31704
  1073
    apply auto
huffman@31704
  1074
    apply (rule_tac x = "-u" in exI)
huffman@31704
  1075
    apply (rule_tac x = "-v" in exI)
nipkow@31952
  1076
    apply (subst gcd_neg1_int [symmetric])
nipkow@31952
  1077
    apply (subst gcd_neg2_int [symmetric])
huffman@31704
  1078
    apply auto
huffman@31704
  1079
    done
huffman@31704
  1080
  ultimately show ?thesis by blast
huffman@31704
  1081
qed
huffman@31704
  1082
huffman@31704
  1083
text {* versions of Bezout for nat, by Amine Chaieb *}
huffman@31704
  1084
huffman@31704
  1085
lemma ind_euclid:
huffman@31704
  1086
  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0"
huffman@31704
  1087
  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
chaieb@27669
  1088
  shows "P a b"
berghofe@34915
  1089
proof(induct "a + b" arbitrary: a b rule: less_induct)
berghofe@34915
  1090
  case less
chaieb@27669
  1091
  have "a = b \<or> a < b \<or> b < a" by arith
chaieb@27669
  1092
  moreover {assume eq: "a= b"
huffman@31704
  1093
    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq
huffman@31704
  1094
    by simp}
chaieb@27669
  1095
  moreover
chaieb@27669
  1096
  {assume lt: "a < b"
berghofe@34915
  1097
    hence "a + b - a < a + b \<or> a = 0" by arith
chaieb@27669
  1098
    moreover
chaieb@27669
  1099
    {assume "a =0" with z c have "P a b" by blast }
chaieb@27669
  1100
    moreover
berghofe@34915
  1101
    {assume "a + b - a < a + b"
berghofe@34915
  1102
      also have th0: "a + b - a = a + (b - a)" using lt by arith
berghofe@34915
  1103
      finally have "a + (b - a) < a + b" .
berghofe@34915
  1104
      then have "P a (a + (b - a))" by (rule add[rule_format, OF less])
berghofe@34915
  1105
      then have "P a b" by (simp add: th0[symmetric])}
chaieb@27669
  1106
    ultimately have "P a b" by blast}
chaieb@27669
  1107
  moreover
chaieb@27669
  1108
  {assume lt: "a > b"
berghofe@34915
  1109
    hence "b + a - b < a + b \<or> b = 0" by arith
chaieb@27669
  1110
    moreover
chaieb@27669
  1111
    {assume "b =0" with z c have "P a b" by blast }
chaieb@27669
  1112
    moreover
berghofe@34915
  1113
    {assume "b + a - b < a + b"
berghofe@34915
  1114
      also have th0: "b + a - b = b + (a - b)" using lt by arith
berghofe@34915
  1115
      finally have "b + (a - b) < a + b" .
berghofe@34915
  1116
      then have "P b (b + (a - b))" by (rule add[rule_format, OF less])
berghofe@34915
  1117
      then have "P b a" by (simp add: th0[symmetric])
chaieb@27669
  1118
      hence "P a b" using c by blast }
chaieb@27669
  1119
    ultimately have "P a b" by blast}
chaieb@27669
  1120
ultimately  show "P a b" by blast
chaieb@27669
  1121
qed
chaieb@27669
  1122
nipkow@31952
  1123
lemma bezout_lemma_nat:
huffman@31704
  1124
  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31704
  1125
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31704
  1126
  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>
huffman@31704
  1127
    (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
huffman@31704
  1128
  using ex
huffman@31704
  1129
  apply clarsimp
huffman@35208
  1130
  apply (rule_tac x="d" in exI, simp)
huffman@31704
  1131
  apply (case_tac "a * x = b * y + d" , simp_all)
huffman@31704
  1132
  apply (rule_tac x="x + y" in exI)
huffman@31704
  1133
  apply (rule_tac x="y" in exI)
huffman@31704
  1134
  apply algebra
huffman@31704
  1135
  apply (rule_tac x="x" in exI)
huffman@31704
  1136
  apply (rule_tac x="x + y" in exI)
huffman@31704
  1137
  apply algebra
chaieb@27669
  1138
done
chaieb@27669
  1139
nipkow@31952
  1140
lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31704
  1141
    (a * x = b * y + d \<or> b * x = a * y + d)"
huffman@31704
  1142
  apply(induct a b rule: ind_euclid)
huffman@31704
  1143
  apply blast
huffman@31704
  1144
  apply clarify
huffman@35208
  1145
  apply (rule_tac x="a" in exI, simp)
huffman@31704
  1146
  apply clarsimp
huffman@31704
  1147
  apply (rule_tac x="d" in exI)
huffman@35208
  1148
  apply (case_tac "a * x = b * y + d", simp_all)
huffman@31704
  1149
  apply (rule_tac x="x+y" in exI)
huffman@31704
  1150
  apply (rule_tac x="y" in exI)
huffman@31704
  1151
  apply algebra
huffman@31704
  1152
  apply (rule_tac x="x" in exI)
huffman@31704
  1153
  apply (rule_tac x="x+y" in exI)
huffman@31704
  1154
  apply algebra
chaieb@27669
  1155
done
chaieb@27669
  1156
nipkow@31952
  1157
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
huffman@31704
  1158
    (a * x - b * y = d \<or> b * x - a * y = d)"
nipkow@31952
  1159
  using bezout_add_nat[of a b]
huffman@31704
  1160
  apply clarsimp
huffman@31704
  1161
  apply (rule_tac x="d" in exI, simp)
huffman@31704
  1162
  apply (rule_tac x="x" in exI)
huffman@31704
  1163
  apply (rule_tac x="y" in exI)
huffman@31704
  1164
  apply auto
chaieb@27669
  1165
done
chaieb@27669
  1166
nipkow@31952
  1167
lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)"
chaieb@27669
  1168
  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
chaieb@27669
  1169
proof-
huffman@31704
  1170
 from nz have ap: "a > 0" by simp
nipkow@31952
  1171
 from bezout_add_nat[of a b]
huffman@31704
  1172
 have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or>
huffman@31704
  1173
   (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
chaieb@27669
  1174
 moreover
huffman@31704
  1175
    {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
huffman@31704
  1176
     from H have ?thesis by blast }
chaieb@27669
  1177
 moreover
chaieb@27669
  1178
 {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
chaieb@27669
  1179
   {assume b0: "b = 0" with H  have ?thesis by simp}
huffman@31704
  1180
   moreover
chaieb@27669
  1181
   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
huffman@31704
  1182
     from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b"
huffman@31704
  1183
       by auto
chaieb@27669
  1184
     moreover
chaieb@27669
  1185
     {assume db: "d=b"
wenzelm@41798
  1186
       with nz H have ?thesis apply simp
wenzelm@32962
  1187
         apply (rule exI[where x = b], simp)
wenzelm@32962
  1188
         apply (rule exI[where x = b])
wenzelm@32962
  1189
        by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
chaieb@27669
  1190
    moreover
huffman@31704
  1191
    {assume db: "d < b"
wenzelm@41798
  1192
        {assume "x=0" hence ?thesis using nz H by simp }
wenzelm@32962
  1193
        moreover
wenzelm@32962
  1194
        {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
wenzelm@32962
  1195
          from db have "d \<le> b - 1" by simp
wenzelm@32962
  1196
          hence "d*b \<le> b*(b - 1)" by simp
wenzelm@32962
  1197
          with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
wenzelm@32962
  1198
          have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
wenzelm@32962
  1199
          from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)"
huffman@31704
  1200
            by simp
wenzelm@32962
  1201
          hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x"
wenzelm@32962
  1202
            by (simp only: mult_assoc right_distrib)
wenzelm@32962
  1203
          hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)"
huffman@31704
  1204
            by algebra
wenzelm@32962
  1205
          hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
wenzelm@32962
  1206
          hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)"
wenzelm@32962
  1207
            by (simp only: diff_add_assoc[OF dble, of d, symmetric])
wenzelm@32962
  1208
          hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
wenzelm@32962
  1209
            by (simp only: diff_mult_distrib2 add_commute mult_ac)
wenzelm@32962
  1210
          hence ?thesis using H(1,2)
wenzelm@32962
  1211
            apply -
wenzelm@32962
  1212
            apply (rule exI[where x=d], simp)
wenzelm@32962
  1213
            apply (rule exI[where x="(b - 1) * y"])
wenzelm@32962
  1214
            by (rule exI[where x="x*(b - 1) - d"], simp)}
wenzelm@32962
  1215
        ultimately have ?thesis by blast}
chaieb@27669
  1216
    ultimately have ?thesis by blast}
chaieb@27669
  1217
  ultimately have ?thesis by blast}
chaieb@27669
  1218
 ultimately show ?thesis by blast
chaieb@27669
  1219
qed
chaieb@27669
  1220
nipkow@31952
  1221
lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0"
chaieb@27669
  1222
  shows "\<exists>x y. a * x = b * y + gcd a b"
chaieb@27669
  1223
proof-
chaieb@27669
  1224
  let ?g = "gcd a b"
nipkow@31952
  1225
  from bezout_add_strong_nat[OF a, of b]
chaieb@27669
  1226
  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
chaieb@27669
  1227
  from d(1,2) have "d dvd ?g" by simp
chaieb@27669
  1228
  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
huffman@31704
  1229
  from d(3) have "a * x * k = (b * y + d) *k " by auto
chaieb@27669
  1230
  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
chaieb@27669
  1231
  thus ?thesis by blast
chaieb@27669
  1232
qed
chaieb@27669
  1233
chaieb@27669
  1234
haftmann@34028
  1235
subsection {* LCM properties *}
huffman@31704
  1236
haftmann@34028
  1237
lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b"
huffman@31704
  1238
  by (simp add: lcm_int_def lcm_nat_def zdiv_int
huffman@45692
  1239
    of_nat_mult gcd_int_def)
huffman@31704
  1240
nipkow@31952
  1241
lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n"
huffman@31704
  1242
  unfolding lcm_nat_def
nipkow@31952
  1243
  by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat])
huffman@31704
  1244
nipkow@31952
  1245
lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n"
huffman@31704
  1246
  unfolding lcm_int_def gcd_int_def
huffman@31704
  1247
  apply (subst int_mult [symmetric])
nipkow@31952
  1248
  apply (subst prod_gcd_lcm_nat [symmetric])
huffman@31704
  1249
  apply (subst nat_abs_mult_distrib [symmetric])
huffman@31704
  1250
  apply (simp, simp add: abs_mult)
huffman@31704
  1251
done
huffman@31704
  1252
nipkow@31952
  1253
lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0"
huffman@31704
  1254
  unfolding lcm_nat_def by simp
huffman@31704
  1255
nipkow@31952
  1256
lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0"
huffman@31704
  1257
  unfolding lcm_int_def by simp
huffman@31704
  1258
nipkow@31952
  1259
lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0"
huffman@31704
  1260
  unfolding lcm_nat_def by simp
huffman@31704
  1261
nipkow@31952
  1262
lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0"
huffman@31704
  1263
  unfolding lcm_int_def by simp
huffman@31704
  1264
nipkow@31952
  1265
lemma lcm_pos_nat:
nipkow@31796
  1266
  "(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1267
by (metis gr0I mult_is_0 prod_gcd_lcm_nat)
chaieb@27669
  1268
nipkow@31952
  1269
lemma lcm_pos_int:
nipkow@31796
  1270
  "(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0"
nipkow@31952
  1271
  apply (subst lcm_abs_int)
nipkow@31952
  1272
  apply (rule lcm_pos_nat [transferred])
nipkow@31796
  1273
  apply auto
huffman@31704
  1274
done
chaieb@27669
  1275
nipkow@31952
  1276
lemma dvd_pos_nat:
haftmann@23687
  1277
  fixes n m :: nat
haftmann@23687
  1278
  assumes "n > 0" and "m dvd n"
haftmann@23687
  1279
  shows "m > 0"
haftmann@23687
  1280
using assms by (cases m) auto
haftmann@23687
  1281
nipkow@31952
  1282
lemma lcm_least_nat:
huffman@31704
  1283
  assumes "(m::nat) dvd k" and "n dvd k"
haftmann@27556
  1284
  shows "lcm m n dvd k"
haftmann@23687
  1285
proof (cases k)
haftmann@23687
  1286
  case 0 then show ?thesis by auto
haftmann@23687
  1287
next
haftmann@23687
  1288
  case (Suc _) then have pos_k: "k > 0" by auto
nipkow@31952
  1289
  from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto
nipkow@31952
  1290
  with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp
haftmann@23687
  1291
  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
haftmann@23687
  1292
  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
haftmann@23687
  1293
  from pos_k k_m have pos_p: "p > 0" by auto
haftmann@23687
  1294
  from pos_k k_n have pos_q: "q > 0" by auto
haftmann@27556
  1295
  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
nipkow@31952
  1296
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1297
  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
haftmann@23687
  1298
    by (simp add: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1299
  also have "\<dots> = k * p * q * gcd m n"
nipkow@31952
  1300
    by (simp add: mult_ac gcd_mult_distrib_nat)
haftmann@27556
  1301
  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
haftmann@23687
  1302
    by (simp only: k_m [symmetric] k_n [symmetric])
haftmann@27556
  1303
  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
haftmann@23687
  1304
    by (simp add: mult_ac)
haftmann@27556
  1305
  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
haftmann@23687
  1306
    by simp
nipkow@31952
  1307
  with prod_gcd_lcm_nat [of m n]
haftmann@27556
  1308
  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
haftmann@23687
  1309
    by (simp add: mult_ac)
huffman@31704
  1310
  with pos_gcd have "lcm m n * gcd q p = k" by auto
haftmann@23687
  1311
  then show ?thesis using dvd_def by auto
haftmann@23687
  1312
qed
haftmann@23687
  1313
nipkow@31952
  1314
lemma lcm_least_int:
nipkow@31796
  1315
  "(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k"
nipkow@31952
  1316
apply (subst lcm_abs_int)
nipkow@31796
  1317
apply (rule dvd_trans)
nipkow@31952
  1318
apply (rule lcm_least_nat [transferred, of _ "abs k" _])
nipkow@31796
  1319
apply auto
huffman@31704
  1320
done
huffman@31704
  1321
nipkow@31952
  1322
lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n"
haftmann@23687
  1323
proof (cases m)
haftmann@23687
  1324
  case 0 then show ?thesis by simp
haftmann@23687
  1325
next
haftmann@23687
  1326
  case (Suc _)
haftmann@23687
  1327
  then have mpos: "m > 0" by simp
haftmann@23687
  1328
  show ?thesis
haftmann@23687
  1329
  proof (cases n)
haftmann@23687
  1330
    case 0 then show ?thesis by simp
haftmann@23687
  1331
  next
haftmann@23687
  1332
    case (Suc _)
haftmann@23687
  1333
    then have npos: "n > 0" by simp
haftmann@27556
  1334
    have "gcd m n dvd n" by simp
haftmann@27556
  1335
    then obtain k where "n = gcd m n * k" using dvd_def by auto
huffman@31704
  1336
    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n"
huffman@31704
  1337
      by (simp add: mult_ac)
nipkow@31952
  1338
    also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp
huffman@31704
  1339
    finally show ?thesis by (simp add: lcm_nat_def)
haftmann@23687
  1340
  qed
haftmann@23687
  1341
qed
haftmann@23687
  1342
nipkow@31952
  1343
lemma lcm_dvd1_int: "(m::int) dvd lcm m n"
nipkow@31952
  1344
  apply (subst lcm_abs_int)
huffman@31704
  1345
  apply (rule dvd_trans)
huffman@31704
  1346
  prefer 2
nipkow@31952
  1347
  apply (rule lcm_dvd1_nat [transferred])
huffman@31704
  1348
  apply auto
huffman@31704
  1349
done
huffman@31704
  1350
nipkow@31952
  1351
lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n"
haftmann@35722
  1352
  using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def mult.commute gcd_nat.commute)
huffman@31704
  1353
nipkow@31952
  1354
lemma lcm_dvd2_int: "(n::int) dvd lcm m n"
haftmann@35722
  1355
  using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def mult.commute gcd_nat.commute)
huffman@31704
  1356
nipkow@31730
  1357
lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1358
by(metis lcm_dvd1_nat dvd_trans)
nipkow@31729
  1359
nipkow@31730
  1360
lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n"
nipkow@31952
  1361
by(metis lcm_dvd2_nat dvd_trans)
nipkow@31729
  1362
nipkow@31730
  1363
lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1364
by(metis lcm_dvd1_int dvd_trans)
nipkow@31729
  1365
nipkow@31730
  1366
lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n"
nipkow@31952
  1367
by(metis lcm_dvd2_int dvd_trans)
nipkow@31729
  1368
nipkow@31952
  1369
lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and>
huffman@31704
  1370
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1371
  by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat)
huffman@31704
  1372
nipkow@31952
  1373
lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and>
huffman@31704
  1374
    (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
nipkow@33657
  1375
  by (auto intro: dvd_antisym [transferred] lcm_least_int)
huffman@31704
  1376
haftmann@37770
  1377
interpretation lcm_nat: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@34960
  1378
proof
haftmann@34960
  1379
  fix n m p :: nat
haftmann@34960
  1380
  show "lcm (lcm n m) p = lcm n (lcm m p)"
haftmann@34960
  1381
    by (rule lcm_unique_nat [THEN iffD1]) (metis dvd.order_trans lcm_unique_nat)
haftmann@34960
  1382
  show "lcm m n = lcm n m"
haftmann@36349
  1383
    by (simp add: lcm_nat_def gcd_commute_nat field_simps)
haftmann@34960
  1384
qed
haftmann@34960
  1385
haftmann@37770
  1386
interpretation lcm_int: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int"
haftmann@34960
  1387
proof
haftmann@34960
  1388
  fix n m p :: int
haftmann@34960
  1389
  show "lcm (lcm n m) p = lcm n (lcm m p)"
haftmann@34960
  1390
    by (rule lcm_unique_int [THEN iffD1]) (metis dvd_trans lcm_unique_int)
haftmann@34960
  1391
  show "lcm m n = lcm n m"
haftmann@34960
  1392
    by (simp add: lcm_int_def lcm_nat.commute)
haftmann@34960
  1393
qed
haftmann@34960
  1394
haftmann@34960
  1395
lemmas lcm_assoc_nat = lcm_nat.assoc
haftmann@34960
  1396
lemmas lcm_commute_nat = lcm_nat.commute
haftmann@34960
  1397
lemmas lcm_left_commute_nat = lcm_nat.left_commute
haftmann@34960
  1398
lemmas lcm_assoc_int = lcm_int.assoc
haftmann@34960
  1399
lemmas lcm_commute_int = lcm_int.commute
haftmann@34960
  1400
lemmas lcm_left_commute_int = lcm_int.left_commute
haftmann@34960
  1401
haftmann@34960
  1402
lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat
haftmann@34960
  1403
lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int
haftmann@34960
  1404
nipkow@31796
  1405
lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y"
huffman@31704
  1406
  apply (rule sym)
nipkow@31952
  1407
  apply (subst lcm_unique_nat [symmetric])
huffman@31704
  1408
  apply auto
huffman@31704
  1409
done
huffman@31704
  1410
nipkow@31796
  1411
lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y"
huffman@31704
  1412
  apply (rule sym)
nipkow@31952
  1413
  apply (subst lcm_unique_int [symmetric])
huffman@31704
  1414
  apply auto
huffman@31704
  1415
done
huffman@31704
  1416
nipkow@31796
  1417
lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y"
nipkow@31952
  1418
by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat)
huffman@31704
  1419
nipkow@31796
  1420
lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y"
nipkow@31952
  1421
by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int)
huffman@31704
  1422
nipkow@31992
  1423
lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m"
nipkow@31992
  1424
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1425
nipkow@31992
  1426
lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n"
nipkow@31992
  1427
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat)
nipkow@31992
  1428
nipkow@31992
  1429
lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m"
nipkow@31992
  1430
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int)
nipkow@31992
  1431
nipkow@31992
  1432
lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n"
nipkow@31992
  1433
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int)
huffman@31704
  1434
haftmann@43740
  1435
lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1436
proof qed (auto simp add: gcd_ac_nat)
nipkow@31992
  1437
haftmann@43740
  1438
lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1439
proof qed (auto simp add: gcd_ac_int)
nipkow@31992
  1440
haftmann@43740
  1441
lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)"
nipkow@31992
  1442
proof qed (auto simp add: lcm_ac_nat)
nipkow@31992
  1443
haftmann@43740
  1444
lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)"
nipkow@31992
  1445
proof qed (auto simp add: lcm_ac_int)
nipkow@31992
  1446
huffman@31704
  1447
nipkow@31995
  1448
(* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *)
nipkow@31995
  1449
nipkow@31995
  1450
lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
nipkow@31995
  1451
by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat)
nipkow@31995
  1452
nipkow@31995
  1453
lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0"
huffman@45637
  1454
by (metis lcm_0_int lcm_0_left_int lcm_pos_int less_le)
nipkow@31995
  1455
nipkow@31995
  1456
lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1"
nipkow@31995
  1457
by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat)
nipkow@31995
  1458
nipkow@31995
  1459
lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)"
berghofe@31996
  1460
by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff)
nipkow@31995
  1461
haftmann@34028
  1462
huffman@46135
  1463
subsection {* The complete divisibility lattice *}
nipkow@32090
  1464
krauss@45716
  1465
interpretation gcd_semilattice_nat: semilattice_inf gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)"
nipkow@32090
  1466
proof
nipkow@32090
  1467
  case goal3 thus ?case by(metis gcd_unique_nat)
nipkow@32090
  1468
qed auto
nipkow@32090
  1469
krauss@45716
  1470
interpretation lcm_semilattice_nat: semilattice_sup lcm "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)"
nipkow@32090
  1471
proof
nipkow@32090
  1472
  case goal3 thus ?case by(metis lcm_unique_nat)
nipkow@32090
  1473
qed auto
nipkow@32090
  1474
krauss@45716
  1475
interpretation gcd_lcm_lattice_nat: lattice gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm ..
nipkow@32090
  1476
huffman@46135
  1477
text{* Lifting gcd and lcm to sets (Gcd/Lcm).
huffman@46135
  1478
Gcd is defined via Lcm to facilitate the proof that we have a complete lattice.
nipkow@32090
  1479
*}
huffman@46135
  1480
huffman@46135
  1481
class Gcd = gcd +
huffman@46135
  1482
  fixes Gcd :: "'a set \<Rightarrow> 'a"
huffman@46135
  1483
  fixes Lcm :: "'a set \<Rightarrow> 'a"
huffman@46135
  1484
huffman@46135
  1485
instantiation nat :: Gcd
nipkow@32090
  1486
begin
nipkow@32090
  1487
huffman@46135
  1488
definition
haftmann@46863
  1489
  "Lcm (M::nat set) = (if finite M then Finite_Set.fold lcm 1 M else 0)"
nipkow@32090
  1490
huffman@46135
  1491
definition
huffman@46135
  1492
  "Gcd (M::nat set) = Lcm {d. \<forall>m\<in>M. d dvd m}"
nipkow@32090
  1493
huffman@46135
  1494
instance ..
nipkow@32090
  1495
end
nipkow@32090
  1496
huffman@46135
  1497
lemma dvd_Lcm_nat [simp]:
huffman@46135
  1498
  fixes M :: "nat set" assumes "m \<in> M" shows "m dvd Lcm M"
huffman@46135
  1499
  using lcm_semilattice_nat.sup_le_fold_sup[OF _ assms, of 1]
huffman@46135
  1500
  by (simp add: Lcm_nat_def)
nipkow@32090
  1501
huffman@46135
  1502
lemma Lcm_dvd_nat [simp]:
huffman@46135
  1503
  fixes M :: "nat set" assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n"
huffman@46135
  1504
proof (cases "n = 0")
huffman@46135
  1505
  assume "n \<noteq> 0"
huffman@46135
  1506
  hence "finite {d. d dvd n}" by (rule finite_divisors_nat)
huffman@46135
  1507
  moreover have "M \<subseteq> {d. d dvd n}" using assms by fast
huffman@46135
  1508
  ultimately have "finite M" by (rule rev_finite_subset)
huffman@46135
  1509
  thus ?thesis
huffman@46135
  1510
    using lcm_semilattice_nat.fold_sup_le_sup [OF _ assms, of 1]
huffman@46135
  1511
    by (simp add: Lcm_nat_def)
huffman@46135
  1512
qed simp
nipkow@32090
  1513
huffman@46135
  1514
interpretation gcd_lcm_complete_lattice_nat:
huffman@46135
  1515
  complete_lattice Gcd Lcm gcd "op dvd" "%m n::nat. m dvd n & ~ n dvd m" lcm 1 0
huffman@46135
  1516
proof
huffman@46135
  1517
  case goal1 show ?case by simp
huffman@46135
  1518
next
huffman@46135
  1519
  case goal2 show ?case by simp
huffman@46135
  1520
next
huffman@46135
  1521
  case goal5 thus ?case by (rule dvd_Lcm_nat)
huffman@46135
  1522
next
huffman@46135
  1523
  case goal6 thus ?case by simp
huffman@46135
  1524
next
huffman@46135
  1525
  case goal3 thus ?case by (simp add: Gcd_nat_def)
huffman@46135
  1526
next
huffman@46135
  1527
  case goal4 thus ?case by (simp add: Gcd_nat_def)
huffman@46135
  1528
qed
huffman@46135
  1529
(* bh: This interpretation generates many lemmas about
huffman@46135
  1530
"complete_lattice.SUPR Lcm" and "complete_lattice.INFI Gcd".
huffman@46135
  1531
Should we define binder versions of LCM and GCD to correspond
huffman@46135
  1532
with these? *)
nipkow@32090
  1533
huffman@46135
  1534
lemma Lcm_empty_nat: "Lcm {} = (1::nat)"
huffman@46135
  1535
  by (fact gcd_lcm_complete_lattice_nat.Sup_empty) (* already simp *)
huffman@46135
  1536
huffman@46135
  1537
lemma Gcd_empty_nat: "Gcd {} = (0::nat)"
huffman@46135
  1538
  by (fact gcd_lcm_complete_lattice_nat.Inf_empty) (* already simp *)
nipkow@32090
  1539
nipkow@32090
  1540
lemma Lcm_insert_nat [simp]:
nipkow@32090
  1541
  shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)"
huffman@46135
  1542
  by (fact gcd_lcm_complete_lattice_nat.Sup_insert)
nipkow@32090
  1543
nipkow@32090
  1544
lemma Gcd_insert_nat [simp]:
nipkow@32090
  1545
  shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)"
huffman@46135
  1546
  by (fact gcd_lcm_complete_lattice_nat.Inf_insert)
nipkow@32090
  1547
nipkow@32090
  1548
lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M"
nipkow@32090
  1549
by(induct rule:finite_ne_induct) auto
nipkow@32090
  1550
nipkow@32090
  1551
lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0"
nipkow@32090
  1552
by (metis Lcm0_iff empty_iff)
nipkow@32090
  1553
nipkow@32090
  1554
lemma Gcd_dvd_nat [simp]:
huffman@46135
  1555
  fixes M :: "nat set"
huffman@46135
  1556
  assumes "m \<in> M" shows "Gcd M dvd m"
huffman@46135
  1557
  using assms by (fact gcd_lcm_complete_lattice_nat.Inf_lower)
nipkow@32090
  1558
nipkow@32090
  1559
lemma dvd_Gcd_nat[simp]:
huffman@46135
  1560
  fixes M :: "nat set"
huffman@46135
  1561
  assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M"
huffman@46135
  1562
  using assms by (simp only: gcd_lcm_complete_lattice_nat.Inf_greatest)
nipkow@32090
  1563
huffman@46135
  1564
text{* Alternative characterizations of Gcd: *}
nipkow@32090
  1565
nipkow@32090
  1566
lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})"
nipkow@32090
  1567
apply(rule antisym)
nipkow@32090
  1568
 apply(rule Max_ge)
nipkow@32090
  1569
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@32090
  1570
 apply simp
nipkow@32090
  1571
apply (rule Max_le_iff[THEN iffD2])
nipkow@32090
  1572
  apply (metis all_not_in_conv finite_divisors_nat finite_INT)
nipkow@45761
  1573
 apply fastforce
nipkow@32090
  1574
apply clarsimp
nipkow@32090
  1575
apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0)
nipkow@32090
  1576
done
nipkow@32090
  1577
nipkow@32090
  1578
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})"
nipkow@32090
  1579
apply(induct pred:finite)
nipkow@32090
  1580
 apply simp
nipkow@32090
  1581
apply(case_tac "x=0")
nipkow@32090
  1582
 apply simp
nipkow@32090
  1583
apply(subgoal_tac "insert x F - {0} = insert x (F - {0})")
nipkow@32090
  1584
 apply simp
nipkow@32090
  1585
apply blast
nipkow@32090
  1586
done
nipkow@32090
  1587
nipkow@32090
  1588
lemma Lcm_in_lcm_closed_set_nat:
nipkow@32090
  1589
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M"
nipkow@32090
  1590
apply(induct rule:finite_linorder_min_induct)
nipkow@32090
  1591
 apply simp
nipkow@32090
  1592
apply simp
nipkow@32090
  1593
apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A")
nipkow@32090
  1594
 apply simp
nipkow@32090
  1595
 apply(case_tac "A={}")
nipkow@32090
  1596
  apply simp
nipkow@32090
  1597
 apply simp
nipkow@32090
  1598
apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)
nipkow@32090
  1599
done
nipkow@32090
  1600
nipkow@32090
  1601
lemma Lcm_eq_Max_nat:
nipkow@32090
  1602
  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M"
nipkow@32090
  1603
apply(rule antisym)
nipkow@32090
  1604
 apply(rule Max_ge, assumption)
nipkow@32090
  1605
 apply(erule (2) Lcm_in_lcm_closed_set_nat)
nipkow@32090
  1606
apply clarsimp
nipkow@32090
  1607
apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv)
nipkow@32090
  1608
done
nipkow@32090
  1609
nipkow@32090
  1610
lemma Lcm_set_nat [code_unfold]:
haftmann@46863
  1611
  "Lcm (set ns) = fold lcm ns (1::nat)"
huffman@46135
  1612
  by (fact gcd_lcm_complete_lattice_nat.Sup_set_fold)
nipkow@32090
  1613
nipkow@32090
  1614
lemma Gcd_set_nat [code_unfold]:
haftmann@46863
  1615
  "Gcd (set ns) = fold gcd ns (0::nat)"
huffman@46135
  1616
  by (fact gcd_lcm_complete_lattice_nat.Inf_set_fold)
nipkow@34218
  1617
nipkow@34218
  1618
lemma mult_inj_if_coprime_nat:
nipkow@34218
  1619
  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b)
nipkow@34218
  1620
   \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)"
nipkow@34218
  1621
apply(auto simp add:inj_on_def)
huffman@35208
  1622
apply (metis coprime_dvd_mult_iff_nat dvd.neq_le_trans dvd_triv_left)
nipkow@34219
  1623
apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat
nipkow@34219
  1624
             dvd.neq_le_trans dvd_triv_right mult_commute)
nipkow@34218
  1625
done
nipkow@34218
  1626
nipkow@34218
  1627
text{* Nitpick: *}
nipkow@34218
  1628
blanchet@42663
  1629
lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y"
blanchet@42663
  1630
by (induct x y rule: nat_gcd.induct)
blanchet@42663
  1631
   (simp add: gcd_nat.simps Nitpick.nat_gcd.simps)
blanchet@33197
  1632
blanchet@42663
  1633
lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y"
blanchet@33197
  1634
by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd)
blanchet@33197
  1635
huffman@46135
  1636
subsubsection {* Setwise gcd and lcm for integers *}
huffman@46135
  1637
huffman@46135
  1638
instantiation int :: Gcd
huffman@46135
  1639
begin
huffman@46135
  1640
huffman@46135
  1641
definition
huffman@46135
  1642
  "Lcm M = int (Lcm (nat ` abs ` M))"
huffman@46135
  1643
huffman@46135
  1644
definition
huffman@46135
  1645
  "Gcd M = int (Gcd (nat ` abs ` M))"
huffman@46135
  1646
huffman@46135
  1647
instance ..
wenzelm@21256
  1648
end
huffman@46135
  1649
huffman@46135
  1650
lemma Lcm_empty_int [simp]: "Lcm {} = (1::int)"
huffman@46135
  1651
  by (simp add: Lcm_int_def)
huffman@46135
  1652
huffman@46135
  1653
lemma Gcd_empty_int [simp]: "Gcd {} = (0::int)"
huffman@46135
  1654
  by (simp add: Gcd_int_def)
huffman@46135
  1655
huffman@46135
  1656
lemma Lcm_insert_int [simp]:
huffman@46135
  1657
  shows "Lcm (insert (n::int) N) = lcm n (Lcm N)"
huffman@46135
  1658
  by (simp add: Lcm_int_def lcm_int_def)
huffman@46135
  1659
huffman@46135
  1660
lemma Gcd_insert_int [simp]:
huffman@46135
  1661
  shows "Gcd (insert (n::int) N) = gcd n (Gcd N)"
huffman@46135
  1662
  by (simp add: Gcd_int_def gcd_int_def)
huffman@46135
  1663
huffman@46135
  1664
lemma dvd_int_iff: "x dvd y \<longleftrightarrow> nat (abs x) dvd nat (abs y)"
huffman@46135
  1665
  by (simp add: zdvd_int)
huffman@46135
  1666
huffman@46135
  1667
lemma dvd_Lcm_int [simp]:
huffman@46135
  1668
  fixes M :: "int set" assumes "m \<in> M" shows "m dvd Lcm M"
huffman@46135
  1669
  using assms by (simp add: Lcm_int_def dvd_int_iff)
huffman@46135
  1670
huffman@46135
  1671
lemma Lcm_dvd_int [simp]:
huffman@46135
  1672
  fixes M :: "int set"
huffman@46135
  1673
  assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n"
huffman@46135
  1674
  using assms by (simp add: Lcm_int_def dvd_int_iff)
huffman@46135
  1675
huffman@46135
  1676
lemma Gcd_dvd_int [simp]:
huffman@46135
  1677
  fixes M :: "int set"
huffman@46135
  1678
  assumes "m \<in> M" shows "Gcd M dvd m"
huffman@46135
  1679
  using assms by (simp add: Gcd_int_def dvd_int_iff)
huffman@46135
  1680
huffman@46135
  1681
lemma dvd_Gcd_int[simp]:
huffman@46135
  1682
  fixes M :: "int set"
huffman@46135
  1683
  assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M"
huffman@46135
  1684
  using assms by (simp add: Gcd_int_def dvd_int_iff)
huffman@46135
  1685
huffman@46135
  1686
lemma Lcm_set_int [code_unfold]:
huffman@46135
  1687
  "Lcm (set xs) = foldl lcm (1::int) xs"
huffman@46135
  1688
  by (induct xs rule: rev_induct, simp_all add: lcm_commute_int)
huffman@46135
  1689
huffman@46135
  1690
lemma Gcd_set_int [code_unfold]:
huffman@46135
  1691
  "Gcd (set xs) = foldl gcd (0::int) xs"
huffman@46135
  1692
  by (induct xs rule: rev_induct, simp_all add: gcd_commute_int)
huffman@46135
  1693
huffman@46135
  1694
end