doc-isac/jrocnik/FFT.thy
author wneuper <Walther.Neuper@jku.at>
Sun, 31 Dec 2023 09:42:27 +0100
changeset 60787 26037efefd61
parent 52107 f8845fc8f38d
permissions -rwxr-xr-x
Doc/Specify_Phase 2: copy finished
jan@42245
     1
(*  Title:      Fast Fourier Transform
jan@42245
     2
    Author:     Clemens Ballarin <ballarin at in.tum.de>, started 12 April 2005
jan@42245
     3
    Maintainer: Clemens Ballarin <ballarin at in.tum.de>
jan@42245
     4
*)
jan@42245
     5
jan@42245
     6
theory FFT
jan@42245
     7
imports Complex_Main
jan@42245
     8
begin
jan@42245
     9
jan@42245
    10
text {* We formalise a functional implementation of the FFT algorithm
jan@42245
    11
  over the complex numbers, and its inverse.  Both are shown
jan@42245
    12
  equivalent to the usual definitions
jan@42245
    13
  of these operations through Vandermonde matrices.  They are also
jan@42245
    14
  shown to be inverse to each other, more precisely, that composition
jan@42245
    15
  of the inverse and the transformation yield the identity up to a
jan@42245
    16
  scalar.
jan@42245
    17
jan@42245
    18
  The presentation closely follows Section 30.2 of Cormen \textit{et
jan@42245
    19
  al.}, \emph{Introduction to Algorithms}, 2nd edition, MIT Press,
jan@42245
    20
  2003. *}
jan@42245
    21
jan@42245
    22
jan@42245
    23
section {* Preliminaries *}
jan@42245
    24
jan@42245
    25
lemma of_nat_cplx:
jan@42245
    26
  "of_nat n = Complex (of_nat n) 0"
jan@42245
    27
  by (induct n) (simp_all add: complex_one_def)
jan@42245
    28
jan@42245
    29
jan@42245
    30
text {* The following two lemmas are useful for experimenting with the
jan@42245
    31
  transformations, at a vector length of four. *}
jan@42245
    32
jan@42245
    33
lemma Ivl4:
jan@42245
    34
  "{0..<4::nat} = {0, 1, 2, 3}"
jan@42245
    35
proof -
jan@42245
    36
  have "{0..<4::nat} = {0..<Suc (Suc (Suc (Suc 0)))}" by (simp add: eval_nat_numeral)
jan@42245
    37
  also have "... = {0, 1, 2, 3}"
jan@42245
    38
    by (simp add: atLeastLessThanSuc eval_nat_numeral insert_commute)
jan@42245
    39
  finally show ?thesis .
jan@42245
    40
qed
jan@42245
    41
jan@42245
    42
lemma Sum4:
jan@42245
    43
  "(\<Sum>i=0..<4::nat. x i) = x 0 + x 1 + x 2 + x 3"
jan@42245
    44
  by (simp add: Ivl4 eval_nat_numeral)
jan@42245
    45
jan@42245
    46
jan@42245
    47
text {* A number of specialised lemmas for the summation operator,
jan@42245
    48
  where the index set is the natural numbers *}
jan@42245
    49
jan@42245
    50
lemma setsum_add_nat_ivl_singleton:
jan@42245
    51
  assumes less: "m < (n::nat)"
jan@42245
    52
  shows "f m + setsum f {m<..<n} = setsum f {m..<n}"
jan@42245
    53
proof -
jan@42245
    54
  have "f m + setsum f {m<..<n} = setsum f ({m} \<union> {m<..<n})"
jan@42245
    55
    by (simp add: setsum_Un_disjoint ivl_disj_int)
jan@42245
    56
  also from less have "... = setsum f {m..<n}"
jan@42245
    57
    by (simp only: ivl_disj_un)
jan@42245
    58
  finally show ?thesis .
jan@42245
    59
qed
jan@42245
    60
jan@42245
    61
lemma setsum_add_split_nat_ivl_singleton:
jan@42245
    62
  assumes less: "m < (n::nat)"
jan@42245
    63
    and g: "!!i. [| m < i; i < n |] ==> g i = f i"
jan@42245
    64
  shows "f m + setsum g {m<..<n} = setsum f {m..<n}"
jan@42245
    65
  using less g
jan@42245
    66
  by(simp add: setsum_add_nat_ivl_singleton cong: strong_setsum_cong)
jan@42245
    67
jan@42245
    68
lemma setsum_add_split_nat_ivl:
jan@42245
    69
  assumes le: "m <= (k::nat)" "k <= n"
jan@42245
    70
    and g: "!!i. [| m <= i; i < k |] ==> g i = f i"
jan@42245
    71
    and h: "!!i. [| k <= i; i < n |] ==> h i = f i"
jan@42245
    72
  shows "setsum g {m..<k} + setsum h {k..<n} = setsum f {m..<n}"
jan@42245
    73
  using le g h by (simp add: setsum_add_nat_ivl cong: strong_setsum_cong)
jan@42245
    74
jan@42245
    75
lemma ivl_splice_Un:
jan@42245
    76
  "{0..<2*n::nat} = (op * 2 ` {0..<n}) \<union> ((%i. Suc (2*i)) ` {0..<n})"
jan@42245
    77
  apply (unfold image_def Bex_def)
jan@42245
    78
  apply auto
jan@42245
    79
  apply arith
jan@42245
    80
  done
jan@42245
    81
jan@42245
    82
lemma ivl_splice_Int:
jan@42245
    83
  "(op * 2 ` {0..<n}) \<inter> ((%i. Suc (2*i)) ` {0..<n}) = {}"
jan@42245
    84
  by auto arith
jan@42245
    85
jan@42245
    86
lemma double_inj_on:
jan@42245
    87
  "inj_on (%i. 2*i::nat) A"
jan@42245
    88
  by (simp add: inj_onI)
jan@42245
    89
jan@42245
    90
lemma Suc_double_inj_on:
jan@42245
    91
  "inj_on (%i. Suc (2*i)) A"
jan@42245
    92
  by (rule inj_onI) simp
jan@42245
    93
jan@42245
    94
lemma setsum_splice:
jan@42245
    95
  "(\<Sum>i::nat = 0..<2*n. f i) = (\<Sum>i = 0..<n. f (2*i)) + (\<Sum>i = 0..<n. f (2*i+1))"
jan@42245
    96
proof -
jan@42245
    97
  have "(\<Sum>i::nat = 0..<2*n. f i) =
jan@42245
    98
    setsum f (op * 2 ` {0..<n}) + setsum f ((%i. 2*i+1) ` {0..<n})"
jan@42245
    99
    by (simp add: ivl_splice_Un ivl_splice_Int setsum_Un_disjoint)
jan@42245
   100
  also have "... = (\<Sum>i = 0..<n. f (2*i)) + (\<Sum>i = 0..<n. f (2*i+1))"
jan@42245
   101
    by (simp add: setsum_reindex [OF double_inj_on]
jan@42245
   102
      setsum_reindex [OF Suc_double_inj_on])
jan@42245
   103
  finally show ?thesis .
jan@42245
   104
qed
jan@42245
   105
jan@42245
   106
jan@42245
   107
section {* Complex Roots of Unity *}
jan@42245
   108
jan@42245
   109
text {* The function @{term cis} from the complex library returns the
jan@42245
   110
  point on the unity circle corresponding to the argument angle.  It
jan@42245
   111
  is the base for our definition of @{text root}.  The main property,
jan@42245
   112
  De Moirve's formula is already there in the library. *}
jan@42245
   113
jan@42245
   114
definition root :: "nat => complex" where
jan@42245
   115
  "root n == cis (2*pi/(real (n::nat)))"
jan@42245
   116
jan@42245
   117
lemma sin_periodic_pi_diff [simp]: "sin (x - pi) = - sin x"
jan@42245
   118
  by (simp add: sin_diff)
jan@42245
   119
jan@42245
   120
lemma sin_cos_between_zero_two_pi:
jan@42245
   121
  assumes 0: "0 < x" and pi: "x < 2 * pi"
jan@42245
   122
  shows "sin x \<noteq> 0 \<or> cos x \<noteq> 1"
jan@42245
   123
proof -
jan@42245
   124
  { assume "0 < x" and "x < pi"
jan@42245
   125
    then have "sin x \<noteq> 0" by (auto dest: sin_gt_zero_pi) }
jan@42245
   126
  moreover
jan@42245
   127
  { assume "x = pi"
jan@42245
   128
    then have "cos x \<noteq> 1" by simp }
jan@42245
   129
  moreover
jan@42245
   130
  { assume pi1: "pi < x" and pi2: "x < 2 * pi"
jan@42245
   131
    then have "0 < x - pi" and "x - pi < pi" by arith+
jan@42245
   132
    then have "sin (x - pi) \<noteq> 0" by (auto dest: sin_gt_zero_pi)
jan@42245
   133
    with pi1 pi2 have "sin x \<noteq> 0" by simp }
jan@42245
   134
  ultimately show ?thesis using 0 pi by arith
jan@42245
   135
qed
jan@42245
   136
jan@42245
   137
jan@42245
   138
subsection {* Basic Lemmas *}
jan@42245
   139
jan@42245
   140
lemma root_nonzero:
jan@42245
   141
  "root n ~= 0"
jan@42245
   142
  apply (unfold root_def)
jan@42245
   143
  apply (unfold cis_def)
jan@42245
   144
  apply auto
jan@42245
   145
  apply (drule sin_zero_abs_cos_one)
jan@42245
   146
  apply arith
jan@42245
   147
  done
jan@42245
   148
jan@42245
   149
lemma root_unity:
jan@42245
   150
  "root n ^ n = 1"
jan@42245
   151
  apply (unfold root_def)
jan@42245
   152
  apply (simp add: DeMoivre)
jan@42245
   153
  apply (simp add: cis_def)
jan@42245
   154
  done
jan@42245
   155
jan@42245
   156
lemma root_cancel:
jan@42245
   157
  "0 < d ==> root (d * n) ^ (d * k) = root n ^ k"
jan@42245
   158
  apply (unfold root_def)
jan@42245
   159
  apply (simp add: DeMoivre)
jan@42245
   160
  done
jan@42245
   161
jan@42245
   162
lemma root_summation:
jan@42245
   163
  assumes k: "0 < k" "k < n"
jan@42245
   164
  shows "(\<Sum>i=0..<n. (root n ^ k) ^ i) = 0"
jan@42245
   165
proof -
jan@42245
   166
  from k have real0: "0 < real k * (2 * pi) / real n"
jan@42245
   167
    by (simp add: zero_less_divide_iff
jan@42245
   168
      mult_strict_right_mono [where a = 0, simplified])
jan@42245
   169
  from k mult_strict_right_mono [where a = "real k" and
jan@42245
   170
    b = "real n" and c = "2 * pi / real n", simplified]
jan@42245
   171
  have realk: "real k * (2 * pi) / real n < 2 * pi"
jan@42245
   172
    by (simp add: zero_less_divide_iff)
jan@42245
   173
  txt {* Main part of the proof *}
jan@42245
   174
  have "(\<Sum>i=0..<n. (root n ^ k) ^ i) =
jan@42245
   175
    ((root n ^ k) ^ n - 1) / (root n ^ k - 1)"
jan@42245
   176
    apply (rule geometric_sum)
jan@42245
   177
    apply (unfold root_def)
jan@42245
   178
    apply (simp add: DeMoivre)
jan@42245
   179
    using real0 realk sin_cos_between_zero_two_pi 
jan@42245
   180
    apply (auto simp add: cis_def complex_one_def)
jan@42245
   181
    done
jan@42245
   182
  also have "... = ((root n ^ n) ^ k - 1) / (root n ^ k - 1)"
jan@42245
   183
    by (simp add: power_mult [THEN sym] mult_ac)
jan@42245
   184
  also have "... = 0"
jan@42245
   185
    by (simp add: root_unity)
jan@42245
   186
  finally show ?thesis .
jan@42245
   187
qed
jan@42245
   188
jan@42245
   189
lemma root_summation_inv:
jan@42245
   190
  assumes k: "0 < k" "k < n"
jan@42245
   191
  shows "(\<Sum>i=0..<n. ((1 / root n) ^ k) ^ i) = 0"
jan@42245
   192
proof -
jan@42245
   193
  from k have real0: "0 < real k * (2 * pi) / real n"
jan@42245
   194
    by (simp add: zero_less_divide_iff
jan@42245
   195
      mult_strict_right_mono [where a = 0, simplified])
jan@42245
   196
  from k mult_strict_right_mono [where a = "real k" and
jan@42245
   197
    b = "real n" and c = "2 * pi / real n", simplified]
jan@42245
   198
  have realk: "real k * (2 * pi) / real n < 2 * pi"
jan@42245
   199
    by (simp add: zero_less_divide_iff)
jan@42245
   200
  txt {* Main part of the proof *}
jan@42245
   201
  have "(\<Sum>i=0..<n. ((1 / root n) ^ k) ^ i) =
jan@42245
   202
    (((1 / root n) ^ k) ^ n - 1) / ((1 / root n) ^ k - 1)"
jan@42245
   203
    apply (rule geometric_sum)
jan@42245
   204
    apply (simp add: nonzero_inverse_eq_divide [THEN sym] root_nonzero)
jan@42245
   205
    apply (unfold root_def)
jan@42245
   206
    apply (simp add: DeMoivre)
jan@42245
   207
    using real0 realk sin_cos_between_zero_two_pi
jan@42245
   208
    apply (auto simp add: cis_def complex_one_def)
jan@42245
   209
    done
jan@42245
   210
  also have "... = (((1 / root n) ^ n) ^ k - 1) / ((1 / root n) ^ k - 1)"
jan@42245
   211
    by (simp add: power_mult [THEN sym] mult_ac)
jan@42245
   212
  also have "... = 0"
jan@42245
   213
    by (simp add: power_divide root_unity)
jan@42245
   214
  finally show ?thesis .
jan@42245
   215
qed
jan@42245
   216
jan@42245
   217
lemma root0 [simp]:
jan@42245
   218
  "root 0 = 1"
jan@42245
   219
  by (simp add: root_def cis_def)
jan@42245
   220
jan@42245
   221
lemma root1 [simp]:
jan@42245
   222
  "root 1 = 1"
jan@42245
   223
  by (simp add: root_def cis_def)
jan@42245
   224
jan@42245
   225
lemma root2 [simp]:
jan@42245
   226
  "root 2 = Complex -1 0"
jan@42245
   227
  by (simp add: root_def cis_def)
jan@42245
   228
jan@42245
   229
lemma root4 [simp]:
jan@42245
   230
  "root 4 = ii"
jan@42245
   231
  by (simp add: root_def cis_def)
jan@42245
   232
jan@42245
   233
jan@42245
   234
subsection {* Derived Lemmas *}
jan@42245
   235
jan@42245
   236
lemma root_cancel1:
jan@42245
   237
  "root (2 * m) ^ (i * (2 * j)) = root m ^ (i * j)"
jan@42245
   238
proof -
jan@42245
   239
  have "root (2 * m) ^ (i * (2 * j)) = root (2 * m) ^ (2 * (i * j))"
jan@42245
   240
    by (simp add: mult_ac)
jan@42245
   241
  also have "... = root m ^ (i * j)"
jan@42245
   242
    by (simp add: root_cancel)
jan@42245
   243
  finally show ?thesis .
jan@42245
   244
qed
jan@42245
   245
jan@42245
   246
lemma root_cancel2:
jan@42245
   247
  "0 < n ==> root (2 * n) ^ n = - 1"
jan@42245
   248
  txt {* Note the space between @{text "-"} and @{text "1"}. *}
jan@42245
   249
  using root_cancel [where n = 2 and k = 1]
jan@42245
   250
  apply (simp only: mult_ac)
jan@42245
   251
  apply (simp add: complex_one_def)
jan@42245
   252
  done
jan@42245
   253
jan@42245
   254
jan@42245
   255
section {* Discrete Fourier Transformation *}
jan@42245
   256
jan@42245
   257
text {*
jan@42245
   258
  We define operations  @{text DFT} and @{text IDFT} for the discrete
jan@42245
   259
  Fourier Transform and its inverse.  Vectors are simply functions of
jan@42245
   260
  type @{text "nat => complex"}. *}
jan@42245
   261
jan@42245
   262
text {*
jan@42245
   263
  @{text "DFT n a"} is the transform of vector @{text a}
jan@42245
   264
  of length @{text n}, @{text IDFT} its inverse. *}
jan@42245
   265
jan@42245
   266
definition DFT :: "nat => (nat => complex) => (nat => complex)" where
jan@42245
   267
  "DFT n a == (%i. \<Sum>j=0..<n. (root n) ^ (i * j) * (a j))"
jan@42245
   268
jan@42245
   269
definition IDFT :: "nat => (nat => complex) => (nat => complex)" where
jan@42245
   270
  "IDFT n a == (%i. (\<Sum>k=0..<n. (a k) / (root n) ^ (i * k)))"
jan@42245
   271
jan@42245
   272
schematic_lemma "map (DFT 4 a) [0, 1, 2, 3] = ?x"
jan@42245
   273
  by(simp add: DFT_def Sum4)
jan@42245
   274
jan@42245
   275
text {* Lemmas for the correctness proof. *}
jan@42245
   276
jan@42245
   277
lemma DFT_lower:
jan@42245
   278
  "DFT (2 * m) a i =
jan@42245
   279
  DFT m (%i. a (2 * i)) i +
jan@42245
   280
  (root (2 * m)) ^ i * DFT m (%i. a (2 * i + 1)) i"
jan@42245
   281
proof (unfold DFT_def)
jan@42245
   282
  have "(\<Sum>j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) =
jan@42245
   283
    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j)) * a (2 * j)) +
jan@42245
   284
    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j + 1)) * a (2 * j + 1))"
jan@42245
   285
    (is "?s = _")
jan@42245
   286
    by (simp add: setsum_splice)
jan@42245
   287
  also have "... = (\<Sum>j = 0..<m. root m ^ (i * j) * a (2 * j)) +
jan@42245
   288
    root (2 * m) ^ i *
jan@42245
   289
    (\<Sum>j = 0..<m. root m ^ (i * j) * a (2 * j + 1))"
jan@42245
   290
    (is "_ = ?t")
jan@42245
   291
    txt {* First pair of sums *}
jan@42245
   292
    apply (simp add: root_cancel1)
jan@42245
   293
    txt {* Second pair of sums *}
jan@42245
   294
    apply (simp add: setsum_right_distrib)
jan@42245
   295
    apply (simp add: power_add)
jan@42245
   296
    apply (simp add: root_cancel1)
jan@42245
   297
    apply (simp add: mult_ac)
jan@42245
   298
    done
jan@42245
   299
  finally show "?s = ?t" .
jan@42245
   300
qed
jan@42245
   301
jan@42245
   302
lemma DFT_upper:
jan@42245
   303
  assumes mbound: "0 < m" and ibound: "m <= i"
jan@42245
   304
  shows "DFT (2 * m) a i =
jan@42245
   305
    DFT m (%i. a (2 * i)) (i - m) -
jan@42245
   306
    root (2 * m) ^ (i - m) * DFT m (%i. a (2 * i + 1)) (i - m)"
jan@42245
   307
proof (unfold DFT_def)
jan@42245
   308
  have "(\<Sum>j = 0..<2 * m. root (2 * m) ^ (i * j) * a j) =
jan@42245
   309
    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j)) * a (2 * j)) +
jan@42245
   310
    (\<Sum>j = 0..<m. root (2 * m) ^ (i * (2 * j + 1)) * a (2 * j + 1))"
jan@42245
   311
    (is "?s = _")
jan@42245
   312
    by (simp add: setsum_splice)
jan@42245
   313
  also have "... =
jan@42245
   314
    (\<Sum>j = 0..<m. root m ^ ((i - m) * j) * a (2 * j)) -
jan@42245
   315
    root (2 * m) ^ (i - m) *
jan@42245
   316
    (\<Sum>j = 0..<m. root m ^ ((i - m) * j) * a (2 * j + 1))"
jan@42245
   317
    (is "_ = ?t")
jan@42245
   318
    txt {* First pair of sums *}
jan@42245
   319
    apply (simp add: root_cancel1)
jan@42245
   320
    apply (simp add: root_unity ibound root_nonzero power_diff power_mult)
jan@42245
   321
    txt {* Second pair of sums *}
jan@42245
   322
    apply (simp add: mbound root_cancel2)
jan@42245
   323
    apply (simp add: setsum_right_distrib)
jan@42245
   324
    apply (simp add: power_add)
jan@42245
   325
    apply (simp add: root_cancel1)
jan@42245
   326
    apply (simp add: power_mult)
jan@42245
   327
    apply (simp add: mult_ac)
jan@42245
   328
    done
jan@42245
   329
  finally show "?s = ?t" .
jan@42245
   330
qed
jan@42245
   331
jan@42245
   332
lemma IDFT_lower:
jan@42245
   333
  "IDFT (2 * m) a i =
jan@42245
   334
  IDFT m (%i. a (2 * i)) i +
jan@42245
   335
  (1 / root (2 * m)) ^ i * IDFT m (%i. a (2 * i + 1)) i"
jan@42245
   336
proof (unfold IDFT_def)
jan@42245
   337
  have "(\<Sum>j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) =
jan@42245
   338
    (\<Sum>j = 0..<m. a (2 * j) / root (2 * m) ^ (i * (2 * j))) +
jan@42245
   339
    (\<Sum>j = 0..<m. a (2 * j + 1) / root (2 * m) ^ (i * (2 * j + 1)))"
jan@42245
   340
    (is "?s = _")
jan@42245
   341
    by (simp add: setsum_splice)
jan@42245
   342
  also have "... = (\<Sum>j = 0..<m. a (2 * j) / root m ^ (i * j)) +
jan@42245
   343
    (1 / root (2 * m)) ^ i *
jan@42245
   344
    (\<Sum>j = 0..<m. a (2 * j + 1) / root m ^ (i * j))"
jan@42245
   345
    (is "_ = ?t")
jan@42245
   346
    txt {* First pair of sums *}
jan@42245
   347
    apply (simp add: root_cancel1)
jan@42245
   348
    txt {* Second pair of sums *}
jan@42245
   349
    apply (simp add: setsum_right_distrib)
jan@42245
   350
    apply (simp add: power_add)
jan@42245
   351
    apply (simp add: nonzero_power_divide root_nonzero)
jan@42245
   352
    apply (simp add: root_cancel1)
jan@42245
   353
    done
jan@42245
   354
  finally show "?s = ?t" .
jan@42245
   355
qed
jan@42245
   356
jan@42245
   357
lemma IDFT_upper:
jan@42245
   358
  assumes mbound: "0 < m" and ibound: "m <= i"
jan@42245
   359
  shows "IDFT (2 * m) a i =
jan@42245
   360
    IDFT m (%i. a (2 * i)) (i - m) -
jan@42245
   361
    (1 / root (2 * m)) ^ (i - m) *
jan@42245
   362
    IDFT m (%i. a (2 * i + 1)) (i - m)"
jan@42245
   363
proof (unfold IDFT_def)
jan@42245
   364
  have "(\<Sum>j = 0..<2 * m. a j / root (2 * m) ^ (i * j)) =
jan@42245
   365
    (\<Sum>j = 0..<m. a (2 * j) / root (2 * m) ^ (i * (2 * j))) +
jan@42245
   366
    (\<Sum>j = 0..<m. a (2 * j + 1) / root (2 * m) ^ (i * (2 * j + 1)))"
jan@42245
   367
    (is "?s = _")
jan@42245
   368
    by (simp add: setsum_splice)
jan@42245
   369
  also have "... =
jan@42245
   370
    (\<Sum>j = 0..<m. a (2 * j) / root m ^ ((i - m) * j)) -
jan@42245
   371
    (1 / root (2 * m)) ^ (i - m) *
jan@42245
   372
    (\<Sum>j = 0..<m. a (2 * j + 1) / root m ^ ((i - m) * j))"
jan@42245
   373
    (is "_ = ?t")
jan@42245
   374
    txt {* First pair of sums *}
jan@42245
   375
    apply (simp add: root_cancel1)
jan@42245
   376
    apply (simp add: root_unity ibound root_nonzero power_diff power_mult)
jan@42245
   377
    txt {* Second pair of sums *}
jan@42245
   378
    apply (simp add: nonzero_power_divide root_nonzero)
jan@42245
   379
    apply (simp add: mbound root_cancel2)
jan@42245
   380
    apply (simp add: setsum_divide_distrib)
jan@42245
   381
    apply (simp add: power_add)
jan@42245
   382
    apply (simp add: root_cancel1)
jan@42245
   383
    apply (simp add: power_mult)
jan@42245
   384
    apply (simp add: mult_ac)
jan@42245
   385
    done
jan@42245
   386
  finally show "?s = ?t" .
jan@42245
   387
qed
jan@42245
   388
jan@42245
   389
text {* @{text DFT} und @{text IDFT} are inverses. *}
jan@42245
   390
jan@42245
   391
declare divide_divide_eq_right [simp del]
jan@42245
   392
  divide_divide_eq_left [simp del]
jan@42245
   393
jan@42245
   394
lemma power_diff_inverse:
jan@42245
   395
  assumes nz: "(a::'a::field) ~= 0"
jan@42245
   396
  shows "m <= n ==> (inverse a) ^ (n-m) = (a^m) / (a^n)"
jan@42245
   397
  apply (induct n m rule: diff_induct)
jan@42245
   398
    apply (simp add: nonzero_power_inverse
jan@42245
   399
      nonzero_inverse_eq_divide [THEN sym] nz)
jan@42245
   400
   apply simp
jan@42245
   401
  apply (simp add: nz)
jan@42245
   402
  done
jan@42245
   403
jan@42245
   404
lemma power_diff_rev_if:
jan@42245
   405
  assumes nz: "(a::'a::field) ~= 0"
jan@42245
   406
  shows "(a^m) / (a^n) = (if n <= m then a ^ (m-n) else (1/a) ^ (n-m))"
jan@42245
   407
proof (cases "n <= m")
jan@42245
   408
  case True with nz show ?thesis
jan@42245
   409
    by (simp add: power_diff)
jan@42245
   410
next
jan@42245
   411
  case False with nz show ?thesis
jan@42245
   412
    by (simp add: power_diff_inverse nonzero_inverse_eq_divide [THEN sym])
jan@42245
   413
qed
jan@42245
   414
jan@42245
   415
lemma power_divides_special:
jan@42245
   416
  "(a::'a::field) ~= 0 ==>
jan@42245
   417
  a ^ (i * j) / a ^ (k * i) = (a ^ j / a ^ k) ^ i"
jan@42245
   418
  by (simp add: nonzero_power_divide power_mult [THEN sym] mult_ac)
jan@42245
   419
jan@42245
   420
theorem DFT_inverse:
jan@42245
   421
  assumes i_less: "i < n"
jan@42245
   422
  shows  "IDFT n (DFT n a) i = of_nat n * a i"
jan@42245
   423
  using [[linarith_split_limit = 0]]
jan@42245
   424
  apply (unfold DFT_def IDFT_def)
jan@42245
   425
  apply (simp add: setsum_divide_distrib)
jan@42245
   426
  apply (subst setsum_commute)
jan@42245
   427
  apply (simp only: times_divide_eq_left [THEN sym])
jan@42245
   428
  apply (simp only: power_divides_special [OF root_nonzero])
jan@42245
   429
  apply (simp add: power_diff_rev_if root_nonzero)
jan@42245
   430
  apply (simp add: setsum_divide_distrib [THEN sym]
jan@42245
   431
    setsum_left_distrib [THEN sym])
jan@42245
   432
  proof -
jan@42245
   433
    from i_less have i_diff: "!!k. i - k < n" by arith
jan@42245
   434
    have diff_i: "!!k. k < n ==> k - i < n" by arith
jan@42245
   435
jan@42245
   436
    let ?sum = "%i j n. setsum (op ^ (if i <= j then root n ^ (j - i)
jan@42245
   437
                  else (1 / root n) ^ (i - j))) {0..<n} * a j"
jan@42245
   438
    let ?sum1 = "%i j n. setsum (op ^ (root n ^ (j - i))) {0..<n} * a j"
jan@42245
   439
    let ?sum2 = "%i j n. setsum (op ^ ((1 / root n) ^ (i - j))) {0..<n} * a j"
jan@42245
   440
jan@42245
   441
    from i_less have "(\<Sum>j = 0..<n. ?sum i j n) =
jan@42245
   442
      (\<Sum>j = 0..<i. ?sum2 i j n) + (\<Sum>j = i..<n. ?sum1 i j n)"
jan@42245
   443
      (is "?s = _")
jan@42245
   444
      by (simp add: root_summation_inv nat_dvd_not_less
jan@42245
   445
        setsum_add_split_nat_ivl [where f = "%j. ?sum i j n"])
jan@42245
   446
    also from i_less i_diff
jan@42245
   447
    have "... = (\<Sum>j = i..<n. ?sum1 i j n)"
jan@42245
   448
      by (simp add: root_summation_inv nat_dvd_not_less)
jan@42245
   449
    also from i_less have "... =
jan@42245
   450
      (\<Sum>j\<in>{i} \<union> {i<..<n}. ?sum1 i j n)"
jan@42245
   451
      by (simp only: ivl_disj_un)
jan@42245
   452
    also have "... =
jan@42245
   453
      (?sum1 i i n + (\<Sum>j\<in>{i<..<n}. ?sum1 i j n))"
jan@42245
   454
      by (simp add: setsum_Un_disjoint ivl_disj_int)
jan@42245
   455
    also from i_less diff_i have "... = ?sum1 i i n"
jan@42245
   456
      by (simp add: root_summation nat_dvd_not_less)
jan@42245
   457
    also from i_less have "... = of_nat n * a i" (is "_ = ?t")
jan@42245
   458
      by (simp add: of_nat_cplx)
jan@42245
   459
    finally show "?s = ?t" .
jan@42245
   460
  qed
jan@42245
   461
jan@42245
   462
jan@42245
   463
section {* Discrete, Fast Fourier Transformation *}
jan@42245
   464
jan@42245
   465
text {* @{text "FFT k a"} is the transform of vector @{text a}
jan@42245
   466
  of length @{text "2 ^ k"}, @{text IFFT} its inverse. *}
jan@42245
   467
jan@42245
   468
primrec FFT :: "nat => (nat => complex) => (nat => complex)" where
jan@42245
   469
  "FFT 0 a = a"
jan@42245
   470
| "FFT (Suc k) a =
jan@42245
   471
     (let (x, y) = (FFT k (%i. a (2*i)), FFT k (%i. a (2*i+1)))
jan@42245
   472
      in (%i. if i < 2^k
jan@42245
   473
            then x i + (root (2 ^ (Suc k))) ^ i * y i
jan@42245
   474
            else x (i- 2^k) - (root (2 ^ (Suc k))) ^ (i- 2^k) * y (i- 2^k)))"
jan@42245
   475
jan@42245
   476
primrec IFFT :: "nat => (nat => complex) => (nat => complex)" where
jan@42245
   477
  "IFFT 0 a = a"
jan@42245
   478
| "IFFT (Suc k) a =
jan@42245
   479
     (let (x, y) = (IFFT k (%i. a (2*i)), IFFT k (%i. a (2*i+1)))
jan@42245
   480
      in (%i. if i < 2^k
jan@42245
   481
            then x i + (1 / root (2 ^ (Suc k))) ^ i * y i
jan@42245
   482
            else x (i - 2^k) -
jan@42245
   483
              (1 / root (2 ^ (Suc k))) ^ (i - 2^k) * y (i - 2^k)))"
jan@42245
   484
jan@42245
   485
text {* Finally, for vectors of length @{text "2 ^ k"},
jan@42245
   486
  @{text DFT} and @{text FFT}, and @{text IDFT} and
jan@42245
   487
  @{text IFFT} are equivalent. *}
jan@42245
   488
jan@42245
   489
theorem DFT_FFT:
jan@42245
   490
  "!!a i. i < 2 ^ k ==> DFT (2 ^ k) a i = FFT k a i"
jan@42245
   491
proof (induct k)
jan@42245
   492
  case 0
jan@42245
   493
  then show ?case by (simp add: DFT_def)
jan@42245
   494
next
jan@42245
   495
  case (Suc k)
jan@42245
   496
  assume i: "i < 2 ^ Suc k"
jan@42245
   497
  show ?case proof (cases "i < 2 ^ k")
jan@42245
   498
    case True
jan@42245
   499
    then show ?thesis apply simp apply (simp add: DFT_lower)
jan@42245
   500
      apply (simp add: Suc) done
jan@42245
   501
  next
jan@42245
   502
    case False
jan@42245
   503
    from i have "i - 2 ^ k < 2 ^ k" by simp
jan@42245
   504
    with False i show ?thesis apply simp apply (simp add: DFT_upper)
jan@42245
   505
      apply (simp add: Suc) done
jan@42245
   506
  qed
jan@42245
   507
qed
jan@42245
   508
jan@42245
   509
theorem IDFT_IFFT:
jan@42245
   510
  "!!a i. i < 2 ^ k ==> IDFT (2 ^ k) a i = IFFT k a i"
jan@42245
   511
proof (induct k)
jan@42245
   512
  case 0
jan@42245
   513
  then show ?case by (simp add: IDFT_def)
jan@42245
   514
next
jan@42245
   515
  case (Suc k)
jan@42245
   516
  assume i: "i < 2 ^ Suc k"
jan@42245
   517
  show ?case proof (cases "i < 2 ^ k")
jan@42245
   518
    case True
jan@42245
   519
    then show ?thesis apply simp apply (simp add: IDFT_lower)
jan@42245
   520
      apply (simp add: Suc) done
jan@42245
   521
  next
jan@42245
   522
    case False
jan@42245
   523
    from i have "i - 2 ^ k < 2 ^ k" by simp
jan@42245
   524
    with False i show ?thesis apply simp apply (simp add: IDFT_upper)
jan@42245
   525
      apply (simp add: Suc) done
jan@42245
   526
  qed
jan@42245
   527
qed
jan@42245
   528
jan@42245
   529
schematic_lemma "map (FFT (Suc (Suc 0)) a) [0, 1, 2, 3] = ?x"
jan@42245
   530
  by simp
jan@42245
   531
jan@42245
   532
end