doc-src/IsarRef/Thy/Spec.thy
author Walther Neuper <neuper@ist.tugraz.at>
Thu, 12 Aug 2010 15:03:34 +0200
branchisac-from-Isabelle2009-2
changeset 37913 20e3616b2d9c
parent 37096 67934c40a5f7
child 37768 e86221f3bac7
permissions -rw-r--r--
prepare reactivation of isac-update-Isa09-2
wenzelm@26869
     1
theory Spec
wenzelm@26869
     2
imports Main
wenzelm@26869
     3
begin
wenzelm@26869
     4
wenzelm@27046
     5
chapter {* Theory specifications *}
wenzelm@26869
     6
wenzelm@30071
     7
text {*
wenzelm@30071
     8
  The Isabelle/Isar theory format integrates specifications and
wenzelm@30071
     9
  proofs, supporting interactive development with unlimited undo
wenzelm@30071
    10
  operation.  There is an integrated document preparation system (see
wenzelm@30071
    11
  \chref{ch:document-prep}), for typesetting formal developments
wenzelm@30071
    12
  together with informal text.  The resulting hyper-linked PDF
wenzelm@30071
    13
  documents can be used both for WWW presentation and printed copies.
wenzelm@30071
    14
wenzelm@30071
    15
  The Isar proof language (see \chref{ch:proofs}) is embedded into the
wenzelm@30071
    16
  theory language as a proper sub-language.  Proof mode is entered by
wenzelm@30071
    17
  stating some @{command theorem} or @{command lemma} at the theory
wenzelm@30071
    18
  level, and left again with the final conclusion (e.g.\ via @{command
wenzelm@30071
    19
  qed}).  Some theory specification mechanisms also require a proof,
wenzelm@30071
    20
  such as @{command typedef} in HOL, which demands non-emptiness of
wenzelm@30071
    21
  the representing sets.
wenzelm@30071
    22
*}
wenzelm@30071
    23
wenzelm@30071
    24
wenzelm@26870
    25
section {* Defining theories \label{sec:begin-thy} *}
wenzelm@26870
    26
wenzelm@26870
    27
text {*
wenzelm@26870
    28
  \begin{matharray}{rcl}
wenzelm@28761
    29
    @{command_def "theory"} & : & @{text "toplevel \<rightarrow> theory"} \\
wenzelm@28761
    30
    @{command_def (global) "end"} & : & @{text "theory \<rightarrow> toplevel"} \\
wenzelm@26870
    31
  \end{matharray}
wenzelm@26870
    32
wenzelm@28745
    33
  Isabelle/Isar theories are defined via theory files, which may
wenzelm@28745
    34
  contain both specifications and proofs; occasionally definitional
wenzelm@28745
    35
  mechanisms also require some explicit proof.  The theory body may be
wenzelm@28745
    36
  sub-structured by means of \emph{local theory targets}, such as
wenzelm@28745
    37
  @{command "locale"} and @{command "class"}.
wenzelm@26870
    38
wenzelm@28745
    39
  The first proper command of a theory is @{command "theory"}, which
wenzelm@28745
    40
  indicates imports of previous theories and optional dependencies on
wenzelm@28745
    41
  other source files (usually in ML).  Just preceding the initial
wenzelm@28745
    42
  @{command "theory"} command there may be an optional @{command
wenzelm@28745
    43
  "header"} declaration, which is only relevant to document
wenzelm@28745
    44
  preparation: see also the other section markup commands in
wenzelm@28745
    45
  \secref{sec:markup}.
wenzelm@28745
    46
wenzelm@28745
    47
  A theory is concluded by a final @{command (global) "end"} command,
wenzelm@28745
    48
  one that does not belong to a local theory target.  No further
wenzelm@28745
    49
  commands may follow such a global @{command (global) "end"},
wenzelm@28745
    50
  although some user-interfaces might pretend that trailing input is
wenzelm@28745
    51
  admissible.
wenzelm@26870
    52
wenzelm@26870
    53
  \begin{rail}
wenzelm@26870
    54
    'theory' name 'imports' (name +) uses? 'begin'
wenzelm@26870
    55
    ;
wenzelm@26870
    56
wenzelm@26870
    57
    uses: 'uses' ((name | parname) +);
wenzelm@26870
    58
  \end{rail}
wenzelm@26870
    59
wenzelm@28760
    60
  \begin{description}
wenzelm@26870
    61
wenzelm@28760
    62
  \item @{command "theory"}~@{text "A \<IMPORTS> B\<^sub>1 \<dots> B\<^sub>n \<BEGIN>"}
wenzelm@28760
    63
  starts a new theory @{text A} based on the merge of existing
wenzelm@28760
    64
  theories @{text "B\<^sub>1 \<dots> B\<^sub>n"}.
wenzelm@26870
    65
  
wenzelm@28745
    66
  Due to the possibility to import more than one ancestor, the
wenzelm@28745
    67
  resulting theory structure of an Isabelle session forms a directed
wenzelm@28745
    68
  acyclic graph (DAG).  Isabelle's theory loader ensures that the
wenzelm@28745
    69
  sources contributing to the development graph are always up-to-date:
wenzelm@28745
    70
  changed files are automatically reloaded whenever a theory header
wenzelm@28745
    71
  specification is processed.
wenzelm@26870
    72
  
wenzelm@26870
    73
  The optional @{keyword_def "uses"} specification declares additional
wenzelm@26870
    74
  dependencies on extra files (usually ML sources).  Files will be
wenzelm@28745
    75
  loaded immediately (as ML), unless the name is parenthesized.  The
wenzelm@28745
    76
  latter case records a dependency that needs to be resolved later in
wenzelm@28745
    77
  the text, usually via explicit @{command_ref "use"} for ML files;
wenzelm@28745
    78
  other file formats require specific load commands defined by the
wenzelm@28745
    79
  corresponding tools or packages.
wenzelm@26870
    80
  
wenzelm@28760
    81
  \item @{command (global) "end"} concludes the current theory
wenzelm@28745
    82
  definition.  Note that local theory targets involve a local
wenzelm@28745
    83
  @{command (local) "end"}, which is clear from the nesting.
wenzelm@26870
    84
wenzelm@28760
    85
  \end{description}
wenzelm@26870
    86
*}
wenzelm@26870
    87
wenzelm@27040
    88
wenzelm@27040
    89
section {* Local theory targets \label{sec:target} *}
wenzelm@27040
    90
wenzelm@27040
    91
text {*
wenzelm@27040
    92
  A local theory target is a context managed separately within the
wenzelm@27040
    93
  enclosing theory.  Contexts may introduce parameters (fixed
wenzelm@27040
    94
  variables) and assumptions (hypotheses).  Definitions and theorems
wenzelm@27040
    95
  depending on the context may be added incrementally later on.  Named
wenzelm@27040
    96
  contexts refer to locales (cf.\ \secref{sec:locale}) or type classes
wenzelm@27040
    97
  (cf.\ \secref{sec:class}); the name ``@{text "-"}'' signifies the
wenzelm@27040
    98
  global theory context.
wenzelm@27040
    99
wenzelm@27040
   100
  \begin{matharray}{rcll}
wenzelm@28761
   101
    @{command_def "context"} & : & @{text "theory \<rightarrow> local_theory"} \\
wenzelm@28761
   102
    @{command_def (local) "end"} & : & @{text "local_theory \<rightarrow> theory"} \\
wenzelm@27040
   103
  \end{matharray}
wenzelm@27040
   104
wenzelm@27040
   105
  \indexouternonterm{target}
wenzelm@27040
   106
  \begin{rail}
wenzelm@27040
   107
    'context' name 'begin'
wenzelm@27040
   108
    ;
wenzelm@27040
   109
wenzelm@27040
   110
    target: '(' 'in' name ')'
wenzelm@27040
   111
    ;
wenzelm@27040
   112
  \end{rail}
wenzelm@27040
   113
wenzelm@28760
   114
  \begin{description}
wenzelm@27040
   115
  
wenzelm@28760
   116
  \item @{command "context"}~@{text "c \<BEGIN>"} recommences an
wenzelm@27040
   117
  existing locale or class context @{text c}.  Note that locale and
wenzelm@27051
   118
  class definitions allow to include the @{keyword "begin"} keyword as
wenzelm@27051
   119
  well, in order to continue the local theory immediately after the
wenzelm@27051
   120
  initial specification.
wenzelm@27040
   121
  
wenzelm@28760
   122
  \item @{command (local) "end"} concludes the current local theory
wenzelm@27040
   123
  and continues the enclosing global theory.  Note that a global
wenzelm@27040
   124
  @{command (global) "end"} has a different meaning: it concludes the
wenzelm@27040
   125
  theory itself (\secref{sec:begin-thy}).
wenzelm@27040
   126
  
wenzelm@30071
   127
  \item @{text "("}@{keyword_def "in"}~@{text "c)"} given after any
wenzelm@30071
   128
  local theory command specifies an immediate target, e.g.\
wenzelm@30071
   129
  ``@{command "definition"}~@{text "(\<IN> c) \<dots>"}'' or ``@{command
wenzelm@27040
   130
  "theorem"}~@{text "(\<IN> c) \<dots>"}''.  This works both in a local or
wenzelm@27040
   131
  global theory context; the current target context will be suspended
wenzelm@27040
   132
  for this command only.  Note that ``@{text "(\<IN> -)"}'' will
wenzelm@27040
   133
  always produce a global result independently of the current target
wenzelm@27040
   134
  context.
wenzelm@27040
   135
wenzelm@28760
   136
  \end{description}
wenzelm@27040
   137
wenzelm@27040
   138
  The exact meaning of results produced within a local theory context
wenzelm@27040
   139
  depends on the underlying target infrastructure (locale, type class
wenzelm@27040
   140
  etc.).  The general idea is as follows, considering a context named
wenzelm@27040
   141
  @{text c} with parameter @{text x} and assumption @{text "A[x]"}.
wenzelm@27040
   142
  
wenzelm@27040
   143
  Definitions are exported by introducing a global version with
wenzelm@27040
   144
  additional arguments; a syntactic abbreviation links the long form
wenzelm@27040
   145
  with the abstract version of the target context.  For example,
wenzelm@27040
   146
  @{text "a \<equiv> t[x]"} becomes @{text "c.a ?x \<equiv> t[?x]"} at the theory
wenzelm@27040
   147
  level (for arbitrary @{text "?x"}), together with a local
wenzelm@27040
   148
  abbreviation @{text "c \<equiv> c.a x"} in the target context (for the
wenzelm@27040
   149
  fixed parameter @{text x}).
wenzelm@27040
   150
wenzelm@27040
   151
  Theorems are exported by discharging the assumptions and
wenzelm@27040
   152
  generalizing the parameters of the context.  For example, @{text "a:
wenzelm@27040
   153
  B[x]"} becomes @{text "c.a: A[?x] \<Longrightarrow> B[?x]"}, again for arbitrary
wenzelm@27040
   154
  @{text "?x"}.
wenzelm@27040
   155
*}
wenzelm@27040
   156
wenzelm@27040
   157
wenzelm@27040
   158
section {* Basic specification elements *}
wenzelm@27040
   159
wenzelm@27040
   160
text {*
wenzelm@27040
   161
  \begin{matharray}{rcll}
wenzelm@28761
   162
    @{command_def "axiomatization"} & : & @{text "theory \<rightarrow> theory"} & (axiomatic!)\\
wenzelm@28761
   163
    @{command_def "definition"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   164
    @{attribute_def "defn"} & : & @{text attribute} \\
wenzelm@28761
   165
    @{command_def "abbreviation"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   166
    @{command_def "print_abbrevs"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow> "} \\
wenzelm@27040
   167
  \end{matharray}
wenzelm@27040
   168
wenzelm@27040
   169
  These specification mechanisms provide a slightly more abstract view
wenzelm@27040
   170
  than the underlying primitives of @{command "consts"}, @{command
wenzelm@27040
   171
  "defs"} (see \secref{sec:consts}), and @{command "axioms"} (see
wenzelm@27040
   172
  \secref{sec:axms-thms}).  In particular, type-inference is commonly
wenzelm@27040
   173
  available, and result names need not be given.
wenzelm@27040
   174
wenzelm@27040
   175
  \begin{rail}
wenzelm@27040
   176
    'axiomatization' target? fixes? ('where' specs)?
wenzelm@27040
   177
    ;
wenzelm@27040
   178
    'definition' target? (decl 'where')? thmdecl? prop
wenzelm@27040
   179
    ;
wenzelm@27040
   180
    'abbreviation' target? mode? (decl 'where')? prop
wenzelm@27040
   181
    ;
wenzelm@27040
   182
wenzelm@27040
   183
    fixes: ((name ('::' type)? mixfix? | vars) + 'and')
wenzelm@27040
   184
    ;
wenzelm@27040
   185
    specs: (thmdecl? props + 'and')
wenzelm@27040
   186
    ;
wenzelm@27040
   187
    decl: name ('::' type)? mixfix?
wenzelm@27040
   188
    ;
wenzelm@27040
   189
  \end{rail}
wenzelm@27040
   190
wenzelm@28760
   191
  \begin{description}
wenzelm@27040
   192
  
wenzelm@28760
   193
  \item @{command "axiomatization"}~@{text "c\<^sub>1 \<dots> c\<^sub>m \<WHERE> \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}
wenzelm@28760
   194
  introduces several constants simultaneously and states axiomatic
wenzelm@28760
   195
  properties for these.  The constants are marked as being specified
wenzelm@28760
   196
  once and for all, which prevents additional specifications being
wenzelm@28760
   197
  issued later on.
wenzelm@27040
   198
  
wenzelm@27040
   199
  Note that axiomatic specifications are only appropriate when
wenzelm@28114
   200
  declaring a new logical system; axiomatic specifications are
wenzelm@28114
   201
  restricted to global theory contexts.  Normal applications should
wenzelm@28114
   202
  only use definitional mechanisms!
wenzelm@27040
   203
wenzelm@28760
   204
  \item @{command "definition"}~@{text "c \<WHERE> eq"} produces an
wenzelm@27040
   205
  internal definition @{text "c \<equiv> t"} according to the specification
wenzelm@27040
   206
  given as @{text eq}, which is then turned into a proven fact.  The
wenzelm@27040
   207
  given proposition may deviate from internal meta-level equality
wenzelm@27040
   208
  according to the rewrite rules declared as @{attribute defn} by the
wenzelm@27040
   209
  object-logic.  This usually covers object-level equality @{text "x =
wenzelm@27040
   210
  y"} and equivalence @{text "A \<leftrightarrow> B"}.  End-users normally need not
wenzelm@27040
   211
  change the @{attribute defn} setup.
wenzelm@27040
   212
  
wenzelm@27040
   213
  Definitions may be presented with explicit arguments on the LHS, as
wenzelm@27040
   214
  well as additional conditions, e.g.\ @{text "f x y = t"} instead of
wenzelm@27040
   215
  @{text "f \<equiv> \<lambda>x y. t"} and @{text "y \<noteq> 0 \<Longrightarrow> g x y = u"} instead of an
wenzelm@27040
   216
  unrestricted @{text "g \<equiv> \<lambda>x y. u"}.
wenzelm@27040
   217
  
wenzelm@28760
   218
  \item @{command "abbreviation"}~@{text "c \<WHERE> eq"} introduces a
wenzelm@28760
   219
  syntactic constant which is associated with a certain term according
wenzelm@28760
   220
  to the meta-level equality @{text eq}.
wenzelm@27040
   221
  
wenzelm@27040
   222
  Abbreviations participate in the usual type-inference process, but
wenzelm@27040
   223
  are expanded before the logic ever sees them.  Pretty printing of
wenzelm@27040
   224
  terms involves higher-order rewriting with rules stemming from
wenzelm@27040
   225
  reverted abbreviations.  This needs some care to avoid overlapping
wenzelm@27040
   226
  or looping syntactic replacements!
wenzelm@27040
   227
  
wenzelm@27040
   228
  The optional @{text mode} specification restricts output to a
wenzelm@27040
   229
  particular print mode; using ``@{text input}'' here achieves the
wenzelm@27040
   230
  effect of one-way abbreviations.  The mode may also include an
wenzelm@27040
   231
  ``@{keyword "output"}'' qualifier that affects the concrete syntax
wenzelm@27040
   232
  declared for abbreviations, cf.\ @{command "syntax"} in
wenzelm@27040
   233
  \secref{sec:syn-trans}.
wenzelm@27040
   234
  
wenzelm@28760
   235
  \item @{command "print_abbrevs"} prints all constant abbreviations
wenzelm@27040
   236
  of the current context.
wenzelm@27040
   237
  
wenzelm@28760
   238
  \end{description}
wenzelm@27040
   239
*}
wenzelm@27040
   240
wenzelm@27040
   241
wenzelm@27040
   242
section {* Generic declarations *}
wenzelm@27040
   243
wenzelm@27040
   244
text {*
wenzelm@27040
   245
  Arbitrary operations on the background context may be wrapped-up as
wenzelm@27040
   246
  generic declaration elements.  Since the underlying concept of local
wenzelm@27040
   247
  theories may be subject to later re-interpretation, there is an
wenzelm@27040
   248
  additional dependency on a morphism that tells the difference of the
wenzelm@27040
   249
  original declaration context wrt.\ the application context
wenzelm@27040
   250
  encountered later on.  A fact declaration is an important special
wenzelm@27040
   251
  case: it consists of a theorem which is applied to the context by
wenzelm@27040
   252
  means of an attribute.
wenzelm@27040
   253
wenzelm@27040
   254
  \begin{matharray}{rcl}
wenzelm@28761
   255
    @{command_def "declaration"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   256
    @{command_def "declare"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@27040
   257
  \end{matharray}
wenzelm@27040
   258
wenzelm@27040
   259
  \begin{rail}
wenzelm@33516
   260
    'declaration' ('(pervasive)')? target? text
wenzelm@27040
   261
    ;
wenzelm@27040
   262
    'declare' target? (thmrefs + 'and')
wenzelm@27040
   263
    ;
wenzelm@27040
   264
  \end{rail}
wenzelm@27040
   265
wenzelm@28760
   266
  \begin{description}
wenzelm@27040
   267
wenzelm@28760
   268
  \item @{command "declaration"}~@{text d} adds the declaration
wenzelm@27040
   269
  function @{text d} of ML type @{ML_type declaration}, to the current
wenzelm@27040
   270
  local theory under construction.  In later application contexts, the
wenzelm@27040
   271
  function is transformed according to the morphisms being involved in
wenzelm@27040
   272
  the interpretation hierarchy.
wenzelm@27040
   273
wenzelm@33516
   274
  If the @{text "(pervasive)"} option is given, the corresponding
wenzelm@33516
   275
  declaration is applied to all possible contexts involved, including
wenzelm@33516
   276
  the global background theory.
wenzelm@33516
   277
wenzelm@28760
   278
  \item @{command "declare"}~@{text thms} declares theorems to the
wenzelm@27040
   279
  current local theory context.  No theorem binding is involved here,
wenzelm@27040
   280
  unlike @{command "theorems"} or @{command "lemmas"} (cf.\
wenzelm@27040
   281
  \secref{sec:axms-thms}), so @{command "declare"} only has the effect
wenzelm@27040
   282
  of applying attributes as included in the theorem specification.
wenzelm@27040
   283
wenzelm@28760
   284
  \end{description}
wenzelm@27040
   285
*}
wenzelm@27040
   286
wenzelm@27040
   287
wenzelm@27040
   288
section {* Locales \label{sec:locale} *}
wenzelm@27040
   289
wenzelm@27040
   290
text {*
ballarin@33845
   291
  Locales are parametric named local contexts, consisting of a list of
wenzelm@27040
   292
  declaration elements that are modeled after the Isar proof context
wenzelm@27040
   293
  commands (cf.\ \secref{sec:proof-context}).
wenzelm@27040
   294
*}
wenzelm@27040
   295
wenzelm@27040
   296
ballarin@33845
   297
subsection {* Locale expressions \label{sec:locale-expr} *}
ballarin@33845
   298
ballarin@33845
   299
text {*
ballarin@33845
   300
  A \emph{locale expression} denotes a structured context composed of
ballarin@33845
   301
  instances of existing locales.  The context consists of a list of
ballarin@33845
   302
  instances of declaration elements from the locales.  Two locale
ballarin@33845
   303
  instances are equal if they are of the same locale and the
ballarin@33845
   304
  parameters are instantiated with equivalent terms.  Declaration
ballarin@33845
   305
  elements from equal instances are never repeated, thus avoiding
ballarin@33845
   306
  duplicate declarations.
ballarin@33845
   307
ballarin@33845
   308
  \indexouternonterm{localeexpr}
ballarin@33845
   309
  \begin{rail}
ballarin@33845
   310
    localeexpr: (instance + '+') ('for' (fixes + 'and'))?
ballarin@33845
   311
    ;
ballarin@33845
   312
    instance: (qualifier ':')? nameref (posinsts | namedinsts)
ballarin@33845
   313
    ;
ballarin@33845
   314
    qualifier: name ('?' | '!')?
ballarin@33845
   315
    ;
ballarin@33845
   316
    posinsts: (term | '_')*
ballarin@33845
   317
    ;
ballarin@33845
   318
    namedinsts: 'where' (name '=' term + 'and')
ballarin@33845
   319
    ;
ballarin@33845
   320
  \end{rail}
ballarin@33845
   321
ballarin@33845
   322
  A locale instance consists of a reference to a locale and either
ballarin@33845
   323
  positional or named parameter instantiations.  Identical
ballarin@33845
   324
  instantiations (that is, those that instante a parameter by itself)
ballarin@33845
   325
  may be omitted.  The notation `\_' enables to omit the instantiation
ballarin@33845
   326
  for a parameter inside a positional instantiation.
ballarin@33845
   327
ballarin@33845
   328
  Terms in instantiations are from the context the locale expressions
ballarin@33845
   329
  is declared in.  Local names may be added to this context with the
ballarin@33845
   330
  optional for clause.  In addition, syntax declarations from one
ballarin@33845
   331
  instance are effective when parsing subsequent instances of the same
ballarin@33845
   332
  expression.
ballarin@33845
   333
ballarin@33845
   334
  Instances have an optional qualifier which applies to names in
ballarin@33845
   335
  declarations.  Names include local definitions and theorem names.
ballarin@33845
   336
  If present, the qualifier itself is either optional
ballarin@33845
   337
  (``\texttt{?}''), which means that it may be omitted on input of the
ballarin@33845
   338
  qualified name, or mandatory (``\texttt{!}'').  If neither
ballarin@33845
   339
  ``\texttt{?}'' nor ``\texttt{!}'' are present, the command's default
ballarin@33845
   340
  is used.  For @{command "interpretation"} and @{command "interpret"}
ballarin@33845
   341
  the default is ``mandatory'', for @{command "locale"} and @{command
ballarin@33845
   342
  "sublocale"} the default is ``optional''.
ballarin@33845
   343
*}
ballarin@33845
   344
ballarin@33845
   345
ballarin@33845
   346
subsection {* Locale declarations *}
wenzelm@27040
   347
wenzelm@27040
   348
text {*
wenzelm@27040
   349
  \begin{matharray}{rcl}
wenzelm@28761
   350
    @{command_def "locale"} & : & @{text "theory \<rightarrow> local_theory"} \\
wenzelm@28761
   351
    @{command_def "print_locale"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
wenzelm@28761
   352
    @{command_def "print_locales"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
wenzelm@28761
   353
    @{method_def intro_locales} & : & @{text method} \\
wenzelm@28761
   354
    @{method_def unfold_locales} & : & @{text method} \\
wenzelm@27040
   355
  \end{matharray}
wenzelm@27040
   356
ballarin@33845
   357
  \indexouternonterm{contextelem}
wenzelm@27040
   358
  \indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
wenzelm@28787
   359
  \indexisarelem{defines}\indexisarelem{notes}
wenzelm@27040
   360
  \begin{rail}
ballarin@33845
   361
    'locale' name ('=' locale)? 'begin'?
wenzelm@27040
   362
    ;
ballarin@33845
   363
    'print\_locale' '!'? nameref
wenzelm@27040
   364
    ;
ballarin@33845
   365
    locale: contextelem+ | localeexpr ('+' (contextelem+))?
wenzelm@27040
   366
    ;
ballarin@33845
   367
    contextelem:
ballarin@33845
   368
    'fixes' (fixes + 'and')
ballarin@33845
   369
    | 'constrains' (name '::' type + 'and')
ballarin@33845
   370
    | 'assumes' (props + 'and')
ballarin@33845
   371
    | 'defines' (thmdecl? prop proppat? + 'and')
ballarin@33845
   372
    | 'notes' (thmdef? thmrefs + 'and')
wenzelm@27040
   373
    ;
wenzelm@27040
   374
  \end{rail}
wenzelm@27040
   375
wenzelm@28760
   376
  \begin{description}
wenzelm@27040
   377
  
wenzelm@28760
   378
  \item @{command "locale"}~@{text "loc = import + body"} defines a
wenzelm@27040
   379
  new locale @{text loc} as a context consisting of a certain view of
wenzelm@27040
   380
  existing locales (@{text import}) plus some additional elements
wenzelm@27040
   381
  (@{text body}).  Both @{text import} and @{text body} are optional;
wenzelm@27040
   382
  the degenerate form @{command "locale"}~@{text loc} defines an empty
wenzelm@27040
   383
  locale, which may still be useful to collect declarations of facts
wenzelm@27040
   384
  later on.  Type-inference on locale expressions automatically takes
wenzelm@27040
   385
  care of the most general typing that the combined context elements
wenzelm@27040
   386
  may acquire.
wenzelm@27040
   387
ballarin@33845
   388
  The @{text import} consists of a structured locale expression; see
ballarin@33845
   389
  \secref{sec:proof-context} above.  Its for clause defines the local
ballarin@33845
   390
  parameters of the @{text import}.  In addition, locale parameters
ballarin@33845
   391
  whose instantance is omitted automatically extend the (possibly
ballarin@33845
   392
  empty) for clause: they are inserted at its beginning.  This means
ballarin@33845
   393
  that these parameters may be referred to from within the expression
ballarin@33845
   394
  and also in the subsequent context elements and provides a
ballarin@33845
   395
  notational convenience for the inheritance of parameters in locale
ballarin@33845
   396
  declarations.
wenzelm@27040
   397
ballarin@33845
   398
  The @{text body} consists of context elements.
wenzelm@27040
   399
wenzelm@28760
   400
  \begin{description}
wenzelm@27040
   401
wenzelm@28760
   402
  \item @{element "fixes"}~@{text "x :: \<tau> (mx)"} declares a local
wenzelm@27040
   403
  parameter of type @{text \<tau>} and mixfix annotation @{text mx} (both
wenzelm@27040
   404
  are optional).  The special syntax declaration ``@{text
wenzelm@27040
   405
  "(\<STRUCTURE>)"}'' means that @{text x} may be referenced
wenzelm@27040
   406
  implicitly in this context.
wenzelm@27040
   407
wenzelm@28760
   408
  \item @{element "constrains"}~@{text "x :: \<tau>"} introduces a type
ballarin@33845
   409
  constraint @{text \<tau>} on the local parameter @{text x}.  This
ballarin@33845
   410
  element is deprecated.  The type constaint should be introduced in
ballarin@33845
   411
  the for clause or the relevant @{element "fixes"} element.
wenzelm@27040
   412
wenzelm@28760
   413
  \item @{element "assumes"}~@{text "a: \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}
wenzelm@27040
   414
  introduces local premises, similar to @{command "assume"} within a
wenzelm@27040
   415
  proof (cf.\ \secref{sec:proof-context}).
wenzelm@27040
   416
wenzelm@28760
   417
  \item @{element "defines"}~@{text "a: x \<equiv> t"} defines a previously
wenzelm@27040
   418
  declared parameter.  This is similar to @{command "def"} within a
wenzelm@27040
   419
  proof (cf.\ \secref{sec:proof-context}), but @{element "defines"}
wenzelm@27040
   420
  takes an equational proposition instead of variable-term pair.  The
wenzelm@27040
   421
  left-hand side of the equation may have additional arguments, e.g.\
wenzelm@27040
   422
  ``@{element "defines"}~@{text "f x\<^sub>1 \<dots> x\<^sub>n \<equiv> t"}''.
wenzelm@27040
   423
wenzelm@28760
   424
  \item @{element "notes"}~@{text "a = b\<^sub>1 \<dots> b\<^sub>n"}
wenzelm@27040
   425
  reconsiders facts within a local context.  Most notably, this may
wenzelm@27040
   426
  include arbitrary declarations in any attribute specifications
wenzelm@27040
   427
  included here, e.g.\ a local @{attribute simp} rule.
wenzelm@27040
   428
wenzelm@28787
   429
  The initial @{text import} specification of a locale expression
wenzelm@28787
   430
  maintains a dynamic relation to the locales being referenced
wenzelm@28787
   431
  (benefiting from any later fact declarations in the obvious manner).
wenzelm@27040
   432
wenzelm@28760
   433
  \end{description}
wenzelm@27040
   434
  
wenzelm@27040
   435
  Note that ``@{text "(\<IS> p\<^sub>1 \<dots> p\<^sub>n)"}'' patterns given
wenzelm@27040
   436
  in the syntax of @{element "assumes"} and @{element "defines"} above
wenzelm@27040
   437
  are illegal in locale definitions.  In the long goal format of
wenzelm@27040
   438
  \secref{sec:goals}, term bindings may be included as expected,
wenzelm@27040
   439
  though.
wenzelm@27040
   440
  
ballarin@33845
   441
  \medskip Locale specifications are ``closed up'' by
wenzelm@27040
   442
  turning the given text into a predicate definition @{text
wenzelm@27040
   443
  loc_axioms} and deriving the original assumptions as local lemmas
wenzelm@27040
   444
  (modulo local definitions).  The predicate statement covers only the
wenzelm@27040
   445
  newly specified assumptions, omitting the content of included locale
wenzelm@27040
   446
  expressions.  The full cumulative view is only provided on export,
wenzelm@27040
   447
  involving another predicate @{text loc} that refers to the complete
wenzelm@27040
   448
  specification text.
wenzelm@27040
   449
  
wenzelm@27040
   450
  In any case, the predicate arguments are those locale parameters
wenzelm@27040
   451
  that actually occur in the respective piece of text.  Also note that
wenzelm@27040
   452
  these predicates operate at the meta-level in theory, but the locale
wenzelm@27040
   453
  packages attempts to internalize statements according to the
wenzelm@27040
   454
  object-logic setup (e.g.\ replacing @{text \<And>} by @{text \<forall>}, and
wenzelm@27040
   455
  @{text "\<Longrightarrow>"} by @{text "\<longrightarrow>"} in HOL; see also
wenzelm@27040
   456
  \secref{sec:object-logic}).  Separate introduction rules @{text
wenzelm@27040
   457
  loc_axioms.intro} and @{text loc.intro} are provided as well.
wenzelm@27040
   458
  
ballarin@33867
   459
  \item @{command "print_locale"}~@{text "locale"} prints the
ballarin@33867
   460
  contents of the named locale.  The command omits @{element "notes"}
ballarin@33867
   461
  elements by default.  Use @{command "print_locale"}@{text "!"} to
ballarin@33867
   462
  have them included.
wenzelm@27040
   463
wenzelm@28760
   464
  \item @{command "print_locales"} prints the names of all locales
wenzelm@27040
   465
  of the current theory.
wenzelm@27040
   466
wenzelm@28760
   467
  \item @{method intro_locales} and @{method unfold_locales}
wenzelm@27040
   468
  repeatedly expand all introduction rules of locale predicates of the
wenzelm@27040
   469
  theory.  While @{method intro_locales} only applies the @{text
wenzelm@27040
   470
  loc.intro} introduction rules and therefore does not decend to
wenzelm@27040
   471
  assumptions, @{method unfold_locales} is more aggressive and applies
wenzelm@27040
   472
  @{text loc_axioms.intro} as well.  Both methods are aware of locale
wenzelm@28787
   473
  specifications entailed by the context, both from target statements,
wenzelm@28787
   474
  and from interpretations (see below).  New goals that are entailed
wenzelm@28787
   475
  by the current context are discharged automatically.
wenzelm@27040
   476
wenzelm@28760
   477
  \end{description}
wenzelm@27040
   478
*}
wenzelm@27040
   479
wenzelm@27040
   480
ballarin@33845
   481
subsection {* Locale interpretations *}
wenzelm@27040
   482
wenzelm@27040
   483
text {*
ballarin@33845
   484
  Locale expressions may be instantiated, and the instantiated facts
ballarin@33845
   485
  added to the current context.  This requires a proof of the
ballarin@33845
   486
  instantiated specification and is called \emph{locale
ballarin@33845
   487
  interpretation}.  Interpretation is possible in locales @{command
ballarin@33845
   488
  "sublocale"}, theories (command @{command "interpretation"}) and
ballarin@33845
   489
  also within a proof body (command @{command "interpret"}).
wenzelm@27040
   490
wenzelm@27040
   491
  \begin{matharray}{rcl}
ballarin@33845
   492
    @{command_def "sublocale"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
wenzelm@28761
   493
    @{command_def "interpretation"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
ballarin@33845
   494
    @{command_def "interpret"} & : & @{text "proof(state) | proof(chain) \<rightarrow> proof(prove)"} \\
ballarin@33845
   495
    @{command_def "print_interps"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
wenzelm@27040
   496
  \end{matharray}
wenzelm@27040
   497
wenzelm@27040
   498
  \indexouternonterm{interp}
wenzelm@27040
   499
  \begin{rail}
ballarin@33845
   500
    'sublocale' nameref ('<' | subseteq) localeexpr
wenzelm@27040
   501
    ;
ballarin@33845
   502
    'interpretation' localeepxr equations?
wenzelm@27040
   503
    ;
ballarin@33845
   504
    'interpret' localeexpr
wenzelm@27040
   505
    ;
ballarin@33845
   506
    'print\_interps' nameref
ballarin@33845
   507
    ;
ballarin@33845
   508
    equations: 'where' (thmdecl? prop + 'and')
wenzelm@27040
   509
    ;
wenzelm@27040
   510
  \end{rail}
wenzelm@27040
   511
wenzelm@28760
   512
  \begin{description}
wenzelm@27040
   513
ballarin@33845
   514
  \item @{command "sublocale"}~@{text "name \<subseteq> expr"}
ballarin@33845
   515
  interprets @{text expr} in the locale @{text name}.  A proof that
ballarin@33845
   516
  the specification of @{text name} implies the specification of
ballarin@33845
   517
  @{text expr} is required.  As in the localized version of the
ballarin@33845
   518
  theorem command, the proof is in the context of @{text name}.  After
ballarin@33845
   519
  the proof obligation has been dischared, the facts of @{text expr}
ballarin@33845
   520
  become part of locale @{text name} as \emph{derived} context
ballarin@33845
   521
  elements and are available when the context @{text name} is
ballarin@33845
   522
  subsequently entered.  Note that, like import, this is dynamic:
ballarin@33845
   523
  facts added to a locale part of @{text expr} after interpretation
ballarin@33845
   524
  become also available in @{text name}.
ballarin@33845
   525
ballarin@33845
   526
  Only specification fragments of @{text expr} that are not already
ballarin@33845
   527
  part of @{text name} (be it imported, derived or a derived fragment
ballarin@33845
   528
  of the import) are considered in this process.  This enables
ballarin@33845
   529
  circular interpretations to the extent that no infinite chains are
ballarin@33845
   530
  generated in the locale hierarchy.
ballarin@33845
   531
ballarin@33845
   532
  If interpretations of @{text name} exist in the current theory, the
ballarin@33845
   533
  command adds interpretations for @{text expr} as well, with the same
ballarin@33845
   534
  qualifier, although only for fragments of @{text expr} that are not
ballarin@33845
   535
  interpreted in the theory already.
ballarin@33845
   536
ballarin@33867
   537
  \item @{command "interpretation"}~@{text "expr \<WHERE> eqns"}
ballarin@33845
   538
  interprets @{text expr} in the theory.  The command generates proof
ballarin@33845
   539
  obligations for the instantiated specifications (assumes and defines
ballarin@33845
   540
  elements).  Once these are discharged by the user, instantiated
ballarin@33845
   541
  facts are added to the theory in a post-processing phase.
wenzelm@27040
   542
ballarin@33845
   543
  Additional equations, which are unfolded during
wenzelm@27040
   544
  post-processing, may be given after the keyword @{keyword "where"}.
wenzelm@27040
   545
  This is useful for interpreting concepts introduced through
wenzelm@27040
   546
  definition specification elements.  The equations must be proved.
wenzelm@27040
   547
wenzelm@27040
   548
  The command is aware of interpretations already active in the
ballarin@28085
   549
  theory, but does not simplify the goal automatically.  In order to
ballarin@28085
   550
  simplify the proof obligations use methods @{method intro_locales}
ballarin@28085
   551
  or @{method unfold_locales}.  Post-processing is not applied to
ballarin@28085
   552
  facts of interpretations that are already active.  This avoids
ballarin@28085
   553
  duplication of interpreted facts, in particular.  Note that, in the
ballarin@28085
   554
  case of a locale with import, parts of the interpretation may
ballarin@28085
   555
  already be active.  The command will only process facts for new
ballarin@28085
   556
  parts.
wenzelm@27040
   557
wenzelm@27040
   558
  Adding facts to locales has the effect of adding interpreted facts
wenzelm@27040
   559
  to the theory for all active interpretations also.  That is,
wenzelm@27040
   560
  interpretations dynamically participate in any facts added to
wenzelm@27040
   561
  locales.
wenzelm@27040
   562
ballarin@33867
   563
  \item @{command "interpret"}~@{text "expr"}
wenzelm@27040
   564
  interprets @{text expr} in the proof context and is otherwise
wenzelm@27040
   565
  similar to interpretation in theories.
wenzelm@27040
   566
ballarin@33867
   567
  \item @{command "print_interps"}~@{text "locale"} lists all
ballarin@33867
   568
  interpretations of @{text "locale"} in the current theory, including
ballarin@33867
   569
  those due to a combination of an @{command "interpretation"} and
ballarin@33867
   570
  one or several @{command "sublocale"} declarations.
ballarin@33867
   571
wenzelm@28760
   572
  \end{description}
wenzelm@27040
   573
wenzelm@27040
   574
  \begin{warn}
wenzelm@27040
   575
    Since attributes are applied to interpreted theorems,
wenzelm@27040
   576
    interpretation may modify the context of common proof tools, e.g.\
ballarin@33867
   577
    the Simplifier or Classical Reasoner.  As the behavior of such
ballarin@33867
   578
    tools is \emph{not} stable under interpretation morphisms, manual
ballarin@33867
   579
    declarations might have to be added to the target context of the
ballarin@33867
   580
    interpretation to revert such declarations.
wenzelm@27040
   581
  \end{warn}
wenzelm@27040
   582
wenzelm@27040
   583
  \begin{warn}
wenzelm@27040
   584
    An interpretation in a theory may subsume previous
wenzelm@27040
   585
    interpretations.  This happens if the same specification fragment
wenzelm@27040
   586
    is interpreted twice and the instantiation of the second
wenzelm@27040
   587
    interpretation is more general than the interpretation of the
ballarin@33845
   588
    first.  The locale package does not attempt to remove subsumed
ballarin@33845
   589
    interpretations.
wenzelm@27040
   590
  \end{warn}
wenzelm@27040
   591
*}
wenzelm@27040
   592
wenzelm@27040
   593
wenzelm@27040
   594
section {* Classes \label{sec:class} *}
wenzelm@27040
   595
wenzelm@27040
   596
text {*
wenzelm@27040
   597
  A class is a particular locale with \emph{exactly one} type variable
wenzelm@27040
   598
  @{text \<alpha>}.  Beyond the underlying locale, a corresponding type class
wenzelm@27040
   599
  is established which is interpreted logically as axiomatic type
wenzelm@27040
   600
  class \cite{Wenzel:1997:TPHOL} whose logical content are the
wenzelm@27040
   601
  assumptions of the locale.  Thus, classes provide the full
wenzelm@27040
   602
  generality of locales combined with the commodity of type classes
wenzelm@27040
   603
  (notably type-inference).  See \cite{isabelle-classes} for a short
wenzelm@27040
   604
  tutorial.
wenzelm@27040
   605
wenzelm@27040
   606
  \begin{matharray}{rcl}
wenzelm@28761
   607
    @{command_def "class"} & : & @{text "theory \<rightarrow> local_theory"} \\
wenzelm@28761
   608
    @{command_def "instantiation"} & : & @{text "theory \<rightarrow> local_theory"} \\
wenzelm@28761
   609
    @{command_def "instance"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
haftmann@31681
   610
    @{command_def "instance"} & : & @{text "theory \<rightarrow> proof(prove)"} \\
wenzelm@28761
   611
    @{command_def "subclass"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   612
    @{command_def "print_classes"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
haftmann@29706
   613
    @{command_def "class_deps"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
wenzelm@28761
   614
    @{method_def intro_classes} & : & @{text method} \\
wenzelm@27040
   615
  \end{matharray}
wenzelm@27040
   616
wenzelm@27040
   617
  \begin{rail}
wenzelm@27040
   618
    'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
wenzelm@27040
   619
      'begin'?
wenzelm@27040
   620
    ;
wenzelm@27040
   621
    'instantiation' (nameref + 'and') '::' arity 'begin'
wenzelm@27040
   622
    ;
wenzelm@27040
   623
    'instance'
wenzelm@27040
   624
    ;
haftmann@31908
   625
    'instance' (nameref + 'and') '::' arity
haftmann@31681
   626
    ;
wenzelm@27040
   627
    'subclass' target? nameref
wenzelm@27040
   628
    ;
haftmann@31681
   629
    'instance' nameref ('<' | subseteq) nameref
haftmann@31681
   630
    ;
wenzelm@27040
   631
    'print\_classes'
wenzelm@27040
   632
    ;
haftmann@29706
   633
    'class\_deps'
haftmann@29706
   634
    ;
wenzelm@27040
   635
wenzelm@27040
   636
    superclassexpr: nameref | (nameref '+' superclassexpr)
wenzelm@27040
   637
    ;
wenzelm@27040
   638
  \end{rail}
wenzelm@27040
   639
wenzelm@28760
   640
  \begin{description}
wenzelm@27040
   641
wenzelm@28760
   642
  \item @{command "class"}~@{text "c = superclasses + body"} defines
wenzelm@27040
   643
  a new class @{text c}, inheriting from @{text superclasses}.  This
wenzelm@27040
   644
  introduces a locale @{text c} with import of all locales @{text
wenzelm@27040
   645
  superclasses}.
wenzelm@27040
   646
wenzelm@27040
   647
  Any @{element "fixes"} in @{text body} are lifted to the global
wenzelm@27040
   648
  theory level (\emph{class operations} @{text "f\<^sub>1, \<dots>,
wenzelm@27040
   649
  f\<^sub>n"} of class @{text c}), mapping the local type parameter
wenzelm@27040
   650
  @{text \<alpha>} to a schematic type variable @{text "?\<alpha> :: c"}.
wenzelm@27040
   651
wenzelm@27040
   652
  Likewise, @{element "assumes"} in @{text body} are also lifted,
wenzelm@27040
   653
  mapping each local parameter @{text "f :: \<tau>[\<alpha>]"} to its
wenzelm@27040
   654
  corresponding global constant @{text "f :: \<tau>[?\<alpha> :: c]"}.  The
wenzelm@27040
   655
  corresponding introduction rule is provided as @{text
wenzelm@27040
   656
  c_class_axioms.intro}.  This rule should be rarely needed directly
wenzelm@27040
   657
  --- the @{method intro_classes} method takes care of the details of
wenzelm@27040
   658
  class membership proofs.
wenzelm@27040
   659
wenzelm@28768
   660
  \item @{command "instantiation"}~@{text "t :: (s\<^sub>1, \<dots>, s\<^sub>n)s
wenzelm@28760
   661
  \<BEGIN>"} opens a theory target (cf.\ \secref{sec:target}) which
wenzelm@28760
   662
  allows to specify class operations @{text "f\<^sub>1, \<dots>, f\<^sub>n"} corresponding
wenzelm@28760
   663
  to sort @{text s} at the particular type instance @{text "(\<alpha>\<^sub>1 :: s\<^sub>1,
wenzelm@28760
   664
  \<dots>, \<alpha>\<^sub>n :: s\<^sub>n) t"}.  A plain @{command "instance"} command in the
wenzelm@28760
   665
  target body poses a goal stating these type arities.  The target is
wenzelm@28760
   666
  concluded by an @{command_ref (local) "end"} command.
wenzelm@27040
   667
wenzelm@27040
   668
  Note that a list of simultaneous type constructors may be given;
haftmann@31908
   669
  this corresponds nicely to mutually recursive type definitions, e.g.\
wenzelm@27040
   670
  in Isabelle/HOL.
wenzelm@27040
   671
wenzelm@28760
   672
  \item @{command "instance"} in an instantiation target body sets
wenzelm@27040
   673
  up a goal stating the type arities claimed at the opening @{command
wenzelm@27040
   674
  "instantiation"}.  The proof would usually proceed by @{method
wenzelm@27040
   675
  intro_classes}, and then establish the characteristic theorems of
wenzelm@27040
   676
  the type classes involved.  After finishing the proof, the
wenzelm@27040
   677
  background theory will be augmented by the proven type arities.
wenzelm@27040
   678
haftmann@31681
   679
  On the theory level, @{command "instance"}~@{text "t :: (s\<^sub>1, \<dots>,
haftmann@31681
   680
  s\<^sub>n)s"} provides a convenient way to instantiate a type class with no
webertj@37096
   681
  need to specify operations: one can continue with the
haftmann@31681
   682
  instantiation proof immediately.
haftmann@31681
   683
wenzelm@28760
   684
  \item @{command "subclass"}~@{text c} in a class context for class
wenzelm@27040
   685
  @{text d} sets up a goal stating that class @{text c} is logically
wenzelm@27040
   686
  contained in class @{text d}.  After finishing the proof, class
wenzelm@27040
   687
  @{text d} is proven to be subclass @{text c} and the locale @{text
wenzelm@27040
   688
  c} is interpreted into @{text d} simultaneously.
wenzelm@27040
   689
haftmann@31681
   690
  A weakend form of this is available through a further variant of
haftmann@31681
   691
  @{command instance}:  @{command instance}~@{text "c\<^sub>1 \<subseteq> c\<^sub>2"} opens
haftmann@31681
   692
  a proof that class @{text "c\<^isub>2"} implies @{text "c\<^isub>1"} without reference
haftmann@31681
   693
  to the underlying locales;  this is useful if the properties to prove
haftmann@31681
   694
  the logical connection are not sufficent on the locale level but on
haftmann@31681
   695
  the theory level.
haftmann@31681
   696
wenzelm@28760
   697
  \item @{command "print_classes"} prints all classes in the current
wenzelm@27040
   698
  theory.
wenzelm@27040
   699
haftmann@29706
   700
  \item @{command "class_deps"} visualizes all classes and their
haftmann@29706
   701
  subclass relations as a Hasse diagram.
haftmann@29706
   702
wenzelm@28760
   703
  \item @{method intro_classes} repeatedly expands all class
wenzelm@27040
   704
  introduction rules of this theory.  Note that this method usually
wenzelm@27040
   705
  needs not be named explicitly, as it is already included in the
wenzelm@27040
   706
  default proof step (e.g.\ of @{command "proof"}).  In particular,
wenzelm@27040
   707
  instantiation of trivial (syntactic) classes may be performed by a
wenzelm@27040
   708
  single ``@{command ".."}'' proof step.
wenzelm@27040
   709
wenzelm@28760
   710
  \end{description}
wenzelm@27040
   711
*}
wenzelm@27040
   712
wenzelm@27040
   713
wenzelm@27040
   714
subsection {* The class target *}
wenzelm@27040
   715
wenzelm@27040
   716
text {*
wenzelm@27040
   717
  %FIXME check
wenzelm@27040
   718
wenzelm@27040
   719
  A named context may refer to a locale (cf.\ \secref{sec:target}).
wenzelm@27040
   720
  If this locale is also a class @{text c}, apart from the common
wenzelm@27040
   721
  locale target behaviour the following happens.
wenzelm@27040
   722
wenzelm@27040
   723
  \begin{itemize}
wenzelm@27040
   724
wenzelm@27040
   725
  \item Local constant declarations @{text "g[\<alpha>]"} referring to the
wenzelm@27040
   726
  local type parameter @{text \<alpha>} and local parameters @{text "f[\<alpha>]"}
wenzelm@27040
   727
  are accompanied by theory-level constants @{text "g[?\<alpha> :: c]"}
wenzelm@27040
   728
  referring to theory-level class operations @{text "f[?\<alpha> :: c]"}.
wenzelm@27040
   729
wenzelm@27040
   730
  \item Local theorem bindings are lifted as are assumptions.
wenzelm@27040
   731
wenzelm@27040
   732
  \item Local syntax refers to local operations @{text "g[\<alpha>]"} and
wenzelm@27040
   733
  global operations @{text "g[?\<alpha> :: c]"} uniformly.  Type inference
wenzelm@27040
   734
  resolves ambiguities.  In rare cases, manual type annotations are
wenzelm@27040
   735
  needed.
wenzelm@27040
   736
  
wenzelm@27040
   737
  \end{itemize}
wenzelm@27040
   738
*}
wenzelm@27040
   739
wenzelm@27040
   740
wenzelm@27040
   741
section {* Unrestricted overloading *}
wenzelm@27040
   742
wenzelm@27040
   743
text {*
wenzelm@27040
   744
  Isabelle/Pure's definitional schemes support certain forms of
haftmann@31047
   745
  overloading (see \secref{sec:consts}).  Overloading means that a
haftmann@31047
   746
  constant being declared as @{text "c :: \<alpha> decl"} may be
haftmann@31047
   747
  defined separately on type instances
haftmann@31047
   748
  @{text "c :: (\<beta>\<^sub>1, \<dots>, \<beta>\<^sub>n) t decl"}
haftmann@31047
   749
  for each type constructor @{text t}.  At most occassions
wenzelm@27040
   750
  overloading will be used in a Haskell-like fashion together with
wenzelm@27040
   751
  type classes by means of @{command "instantiation"} (see
wenzelm@27040
   752
  \secref{sec:class}).  Sometimes low-level overloading is desirable.
wenzelm@27040
   753
  The @{command "overloading"} target provides a convenient view for
wenzelm@27040
   754
  end-users.
wenzelm@27040
   755
wenzelm@27040
   756
  \begin{matharray}{rcl}
wenzelm@28761
   757
    @{command_def "overloading"} & : & @{text "theory \<rightarrow> local_theory"} \\
wenzelm@27040
   758
  \end{matharray}
wenzelm@27040
   759
wenzelm@27040
   760
  \begin{rail}
wenzelm@27040
   761
    'overloading' \\
wenzelm@27040
   762
    ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
wenzelm@27040
   763
  \end{rail}
wenzelm@27040
   764
wenzelm@28760
   765
  \begin{description}
wenzelm@27040
   766
wenzelm@28760
   767
  \item @{command "overloading"}~@{text "x\<^sub>1 \<equiv> c\<^sub>1 :: \<tau>\<^sub>1 \<AND> \<dots> x\<^sub>n \<equiv> c\<^sub>n :: \<tau>\<^sub>n \<BEGIN>"}
wenzelm@27040
   768
  opens a theory target (cf.\ \secref{sec:target}) which allows to
wenzelm@27040
   769
  specify constants with overloaded definitions.  These are identified
wenzelm@28760
   770
  by an explicitly given mapping from variable names @{text "x\<^sub>i"} to
wenzelm@28760
   771
  constants @{text "c\<^sub>i"} at particular type instances.  The
wenzelm@28760
   772
  definitions themselves are established using common specification
wenzelm@28760
   773
  tools, using the names @{text "x\<^sub>i"} as reference to the
wenzelm@28760
   774
  corresponding constants.  The target is concluded by @{command
wenzelm@28760
   775
  (local) "end"}.
wenzelm@27040
   776
wenzelm@27040
   777
  A @{text "(unchecked)"} option disables global dependency checks for
wenzelm@27040
   778
  the corresponding definition, which is occasionally useful for
haftmann@31047
   779
  exotic overloading (see \secref{sec:consts} for a precise description).
haftmann@31047
   780
  It is at the discretion of the user to avoid
wenzelm@27040
   781
  malformed theory specifications!
wenzelm@27040
   782
wenzelm@28760
   783
  \end{description}
wenzelm@27040
   784
*}
wenzelm@27040
   785
wenzelm@27040
   786
wenzelm@27040
   787
section {* Incorporating ML code \label{sec:ML} *}
wenzelm@27040
   788
wenzelm@27040
   789
text {*
wenzelm@27040
   790
  \begin{matharray}{rcl}
wenzelm@28761
   791
    @{command_def "use"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   792
    @{command_def "ML"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   793
    @{command_def "ML_prf"} & : & @{text "proof \<rightarrow> proof"} \\
wenzelm@28761
   794
    @{command_def "ML_val"} & : & @{text "any \<rightarrow>"} \\
wenzelm@28761
   795
    @{command_def "ML_command"} & : & @{text "any \<rightarrow>"} \\
wenzelm@28761
   796
    @{command_def "setup"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@30461
   797
    @{command_def "local_setup"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@30528
   798
    @{command_def "attribute_setup"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@28760
   799
  \end{matharray}
wenzelm@28760
   800
wenzelm@28760
   801
  \begin{mldecls}
wenzelm@28758
   802
    @{index_ML bind_thms: "string * thm list -> unit"} \\
wenzelm@28758
   803
    @{index_ML bind_thm: "string * thm -> unit"} \\
wenzelm@28760
   804
  \end{mldecls}
wenzelm@27040
   805
wenzelm@27040
   806
  \begin{rail}
wenzelm@27040
   807
    'use' name
wenzelm@27040
   808
    ;
wenzelm@30461
   809
    ('ML' | 'ML\_prf' | 'ML\_val' | 'ML\_command' | 'setup' | 'local\_setup') text
wenzelm@27040
   810
    ;
wenzelm@30528
   811
    'attribute\_setup' name '=' text text
wenzelm@30528
   812
    ;
wenzelm@27040
   813
  \end{rail}
wenzelm@27040
   814
wenzelm@28760
   815
  \begin{description}
wenzelm@27040
   816
wenzelm@28760
   817
  \item @{command "use"}~@{text "file"} reads and executes ML
wenzelm@27040
   818
  commands from @{text "file"}.  The current theory context is passed
wenzelm@30461
   819
  down to the ML toplevel and may be modified, using @{ML
wenzelm@27040
   820
  "Context.>>"} or derived ML commands.  The file name is checked with
wenzelm@27040
   821
  the @{keyword_ref "uses"} dependency declaration given in the theory
wenzelm@27040
   822
  header (see also \secref{sec:begin-thy}).
wenzelm@28281
   823
wenzelm@28281
   824
  Top-level ML bindings are stored within the (global or local) theory
wenzelm@28281
   825
  context.
wenzelm@27040
   826
  
wenzelm@28760
   827
  \item @{command "ML"}~@{text "text"} is similar to @{command "use"},
wenzelm@28760
   828
  but executes ML commands directly from the given @{text "text"}.
wenzelm@28760
   829
  Top-level ML bindings are stored within the (global or local) theory
wenzelm@28760
   830
  context.
wenzelm@28281
   831
wenzelm@28760
   832
  \item @{command "ML_prf"} is analogous to @{command "ML"} but works
wenzelm@28760
   833
  within a proof context.
wenzelm@28281
   834
wenzelm@28281
   835
  Top-level ML bindings are stored within the proof context in a
wenzelm@28281
   836
  purely sequential fashion, disregarding the nested proof structure.
wenzelm@28281
   837
  ML bindings introduced by @{command "ML_prf"} are discarded at the
wenzelm@28281
   838
  end of the proof.
wenzelm@27040
   839
wenzelm@28760
   840
  \item @{command "ML_val"} and @{command "ML_command"} are diagnostic
wenzelm@28760
   841
  versions of @{command "ML"}, which means that the context may not be
wenzelm@28760
   842
  updated.  @{command "ML_val"} echos the bindings produced at the ML
wenzelm@28760
   843
  toplevel, but @{command "ML_command"} is silent.
wenzelm@27040
   844
  
wenzelm@28760
   845
  \item @{command "setup"}~@{text "text"} changes the current theory
wenzelm@27040
   846
  context by applying @{text "text"}, which refers to an ML expression
wenzelm@30461
   847
  of type @{ML_type "theory -> theory"}.  This enables to initialize
wenzelm@30461
   848
  any object-logic specific tools and packages written in ML, for
wenzelm@30461
   849
  example.
wenzelm@30461
   850
wenzelm@30461
   851
  \item @{command "local_setup"} is similar to @{command "setup"} for
wenzelm@30461
   852
  a local theory context, and an ML expression of type @{ML_type
wenzelm@30461
   853
  "local_theory -> local_theory"}.  This allows to
wenzelm@30461
   854
  invoke local theory specification packages without going through
wenzelm@30461
   855
  concrete outer syntax, for example.
wenzelm@28758
   856
wenzelm@30528
   857
  \item @{command "attribute_setup"}~@{text "name = text description"}
wenzelm@30528
   858
  defines an attribute in the current theory.  The given @{text
wenzelm@30528
   859
  "text"} has to be an ML expression of type
wenzelm@30528
   860
  @{ML_type "attribute context_parser"}, cf.\ basic parsers defined in
wenzelm@30528
   861
  structure @{ML_struct Args} and @{ML_struct Attrib}.
wenzelm@30528
   862
wenzelm@30528
   863
  In principle, attributes can operate both on a given theorem and the
wenzelm@30528
   864
  implicit context, although in practice only one is modified and the
wenzelm@30528
   865
  other serves as parameter.  Here are examples for these two cases:
wenzelm@30528
   866
wenzelm@30528
   867
  \end{description}
wenzelm@30528
   868
*}
wenzelm@30528
   869
wenzelm@30528
   870
    attribute_setup my_rule = {*
wenzelm@30528
   871
      Attrib.thms >> (fn ths =>
wenzelm@30528
   872
        Thm.rule_attribute (fn context: Context.generic => fn th: thm =>
wenzelm@30528
   873
          let val th' = th OF ths
wenzelm@30528
   874
          in th' end)) *}  "my rule"
wenzelm@30528
   875
wenzelm@30546
   876
    attribute_setup my_declaration = {*
wenzelm@30528
   877
      Attrib.thms >> (fn ths =>
wenzelm@30528
   878
        Thm.declaration_attribute (fn th: thm => fn context: Context.generic =>
wenzelm@30528
   879
          let val context' = context
wenzelm@30528
   880
          in context' end)) *}  "my declaration"
wenzelm@30528
   881
wenzelm@30528
   882
text {*
wenzelm@30528
   883
  \begin{description}
wenzelm@30528
   884
wenzelm@28758
   885
  \item @{ML bind_thms}~@{text "(name, thms)"} stores a list of
wenzelm@28758
   886
  theorems produced in ML both in the theory context and the ML
wenzelm@28758
   887
  toplevel, associating it with the provided name.  Theorems are put
wenzelm@28758
   888
  into a global ``standard'' format before being stored.
wenzelm@28758
   889
wenzelm@28758
   890
  \item @{ML bind_thm} is similar to @{ML bind_thms} but refers to a
wenzelm@28758
   891
  singleton theorem.
wenzelm@27040
   892
  
wenzelm@28760
   893
  \end{description}
wenzelm@27040
   894
*}
wenzelm@27040
   895
wenzelm@27040
   896
wenzelm@27040
   897
section {* Primitive specification elements *}
wenzelm@27040
   898
wenzelm@27040
   899
subsection {* Type classes and sorts \label{sec:classes} *}
wenzelm@27040
   900
wenzelm@27040
   901
text {*
wenzelm@27040
   902
  \begin{matharray}{rcll}
wenzelm@28761
   903
    @{command_def "classes"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@28761
   904
    @{command_def "classrel"} & : & @{text "theory \<rightarrow> theory"} & (axiomatic!) \\
wenzelm@36454
   905
    @{command_def "default_sort"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   906
    @{command_def "class_deps"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
wenzelm@27040
   907
  \end{matharray}
wenzelm@27040
   908
wenzelm@27040
   909
  \begin{rail}
wenzelm@27040
   910
    'classes' (classdecl +)
wenzelm@27040
   911
    ;
wenzelm@27040
   912
    'classrel' (nameref ('<' | subseteq) nameref + 'and')
wenzelm@27040
   913
    ;
wenzelm@36454
   914
    'default\_sort' sort
wenzelm@27040
   915
    ;
wenzelm@27040
   916
  \end{rail}
wenzelm@27040
   917
wenzelm@28760
   918
  \begin{description}
wenzelm@27040
   919
wenzelm@28760
   920
  \item @{command "classes"}~@{text "c \<subseteq> c\<^sub>1, \<dots>, c\<^sub>n"} declares class
wenzelm@28760
   921
  @{text c} to be a subclass of existing classes @{text "c\<^sub>1, \<dots>, c\<^sub>n"}.
wenzelm@28767
   922
  Isabelle implicitly maintains the transitive closure of the class
wenzelm@28767
   923
  hierarchy.  Cyclic class structures are not permitted.
wenzelm@27040
   924
wenzelm@28760
   925
  \item @{command "classrel"}~@{text "c\<^sub>1 \<subseteq> c\<^sub>2"} states subclass
wenzelm@28760
   926
  relations between existing classes @{text "c\<^sub>1"} and @{text "c\<^sub>2"}.
haftmann@35282
   927
  This is done axiomatically!  The @{command_ref "instance"}
haftmann@35282
   928
  and @{command_ref "subclass"} command
haftmann@35282
   929
  (see \secref{sec:class}) provide a way to introduce proven class
wenzelm@28760
   930
  relations.
wenzelm@27040
   931
wenzelm@36454
   932
  \item @{command "default_sort"}~@{text s} makes sort @{text s} the
wenzelm@28767
   933
  new default sort for any type variable that is given explicitly in
wenzelm@28767
   934
  the text, but lacks a sort constraint (wrt.\ the current context).
wenzelm@28767
   935
  Type variables generated by type inference are not affected.
wenzelm@28767
   936
wenzelm@28767
   937
  Usually the default sort is only changed when defining a new
wenzelm@28767
   938
  object-logic.  For example, the default sort in Isabelle/HOL is
wenzelm@28767
   939
  @{text type}, the class of all HOL types.  %FIXME sort antiq?
wenzelm@28767
   940
wenzelm@28767
   941
  When merging theories, the default sorts of the parents are
wenzelm@28767
   942
  logically intersected, i.e.\ the representations as lists of classes
wenzelm@28767
   943
  are joined.
wenzelm@27040
   944
wenzelm@28760
   945
  \item @{command "class_deps"} visualizes the subclass relation,
wenzelm@27040
   946
  using Isabelle's graph browser tool (see also \cite{isabelle-sys}).
wenzelm@27040
   947
wenzelm@28760
   948
  \end{description}
wenzelm@27040
   949
*}
wenzelm@27040
   950
wenzelm@27040
   951
wenzelm@27040
   952
subsection {* Types and type abbreviations \label{sec:types-pure} *}
wenzelm@27040
   953
wenzelm@27040
   954
text {*
wenzelm@27040
   955
  \begin{matharray}{rcll}
wenzelm@36178
   956
    @{command_def "types"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@35681
   957
    @{command_def "typedecl"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
   958
    @{command_def "arities"} & : & @{text "theory \<rightarrow> theory"} & (axiomatic!) \\
wenzelm@27040
   959
  \end{matharray}
wenzelm@27040
   960
wenzelm@27040
   961
  \begin{rail}
wenzelm@35352
   962
    'types' (typespec '=' type mixfix? +)
wenzelm@27040
   963
    ;
wenzelm@35352
   964
    'typedecl' typespec mixfix?
wenzelm@27040
   965
    ;
wenzelm@27040
   966
    'arities' (nameref '::' arity +)
wenzelm@27040
   967
    ;
wenzelm@27040
   968
  \end{rail}
wenzelm@27040
   969
wenzelm@28760
   970
  \begin{description}
wenzelm@27040
   971
wenzelm@28767
   972
  \item @{command "types"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t = \<tau>"} introduces a
wenzelm@28767
   973
  \emph{type synonym} @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t"} for the existing type
wenzelm@28767
   974
  @{text "\<tau>"}.  Unlike actual type definitions, as are available in
wenzelm@28767
   975
  Isabelle/HOL for example, type synonyms are merely syntactic
wenzelm@28760
   976
  abbreviations without any logical significance.  Internally, type
wenzelm@28760
   977
  synonyms are fully expanded.
wenzelm@27040
   978
  
wenzelm@28760
   979
  \item @{command "typedecl"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t"} declares a new
wenzelm@28767
   980
  type constructor @{text t}.  If the object-logic defines a base sort
wenzelm@28767
   981
  @{text s}, then the constructor is declared to operate on that, via
wenzelm@28767
   982
  the axiomatic specification @{command arities}~@{text "t :: (s, \<dots>,
wenzelm@28768
   983
  s)s"}.
wenzelm@27040
   984
wenzelm@28768
   985
  \item @{command "arities"}~@{text "t :: (s\<^sub>1, \<dots>, s\<^sub>n)s"} augments
wenzelm@28760
   986
  Isabelle's order-sorted signature of types by new type constructor
haftmann@35282
   987
  arities.  This is done axiomatically!  The @{command_ref "instantiation"}
haftmann@35282
   988
  target (see \secref{sec:class}) provides a way to introduce
wenzelm@28768
   989
  proven type arities.
wenzelm@27040
   990
wenzelm@28760
   991
  \end{description}
wenzelm@27040
   992
*}
wenzelm@27040
   993
wenzelm@27040
   994
wenzelm@28768
   995
subsection {* Co-regularity of type classes and arities *}
wenzelm@28768
   996
wenzelm@28768
   997
text {* The class relation together with the collection of
wenzelm@28768
   998
  type-constructor arities must obey the principle of
wenzelm@28768
   999
  \emph{co-regularity} as defined below.
wenzelm@28768
  1000
wenzelm@28768
  1001
  \medskip For the subsequent formulation of co-regularity we assume
wenzelm@28768
  1002
  that the class relation is closed by transitivity and reflexivity.
wenzelm@28768
  1003
  Moreover the collection of arities @{text "t :: (\<^vec>s)c"} is
wenzelm@28768
  1004
  completed such that @{text "t :: (\<^vec>s)c"} and @{text "c \<subseteq> c'"}
wenzelm@28768
  1005
  implies @{text "t :: (\<^vec>s)c'"} for all such declarations.
wenzelm@28768
  1006
wenzelm@28768
  1007
  Treating sorts as finite sets of classes (meaning the intersection),
wenzelm@28768
  1008
  the class relation @{text "c\<^sub>1 \<subseteq> c\<^sub>2"} is extended to sorts as
wenzelm@28768
  1009
  follows:
wenzelm@28768
  1010
  \[
wenzelm@28768
  1011
    @{text "s\<^sub>1 \<subseteq> s\<^sub>2 \<equiv> \<forall>c\<^sub>2 \<in> s\<^sub>2. \<exists>c\<^sub>1 \<in> s\<^sub>1. c\<^sub>1 \<subseteq> c\<^sub>2"}
wenzelm@28768
  1012
  \]
wenzelm@28768
  1013
wenzelm@28768
  1014
  This relation on sorts is further extended to tuples of sorts (of
wenzelm@28768
  1015
  the same length) in the component-wise way.
wenzelm@28768
  1016
wenzelm@28768
  1017
  \smallskip Co-regularity of the class relation together with the
wenzelm@28768
  1018
  arities relation means:
wenzelm@28768
  1019
  \[
wenzelm@28768
  1020
    @{text "t :: (\<^vec>s\<^sub>1)c\<^sub>1 \<Longrightarrow> t :: (\<^vec>s\<^sub>2)c\<^sub>2 \<Longrightarrow> c\<^sub>1 \<subseteq> c\<^sub>2 \<Longrightarrow> \<^vec>s\<^sub>1 \<subseteq> \<^vec>s\<^sub>2"}
wenzelm@28768
  1021
  \]
wenzelm@28768
  1022
  \noindent for all such arities.  In other words, whenever the result
wenzelm@28768
  1023
  classes of some type-constructor arities are related, then the
wenzelm@28768
  1024
  argument sorts need to be related in the same way.
wenzelm@28768
  1025
wenzelm@28768
  1026
  \medskip Co-regularity is a very fundamental property of the
wenzelm@28768
  1027
  order-sorted algebra of types.  For example, it entails principle
wenzelm@28768
  1028
  types and most general unifiers, e.g.\ see \cite{nipkow-prehofer}.
wenzelm@28768
  1029
*}
wenzelm@28768
  1030
wenzelm@28768
  1031
wenzelm@27040
  1032
subsection {* Constants and definitions \label{sec:consts} *}
wenzelm@27040
  1033
wenzelm@27040
  1034
text {*
wenzelm@27040
  1035
  Definitions essentially express abbreviations within the logic.  The
wenzelm@27040
  1036
  simplest form of a definition is @{text "c :: \<sigma> \<equiv> t"}, where @{text
wenzelm@27040
  1037
  c} is a newly declared constant.  Isabelle also allows derived forms
wenzelm@27040
  1038
  where the arguments of @{text c} appear on the left, abbreviating a
wenzelm@27040
  1039
  prefix of @{text \<lambda>}-abstractions, e.g.\ @{text "c \<equiv> \<lambda>x y. t"} may be
wenzelm@27040
  1040
  written more conveniently as @{text "c x y \<equiv> t"}.  Moreover,
wenzelm@27040
  1041
  definitions may be weakened by adding arbitrary pre-conditions:
wenzelm@27040
  1042
  @{text "A \<Longrightarrow> c x y \<equiv> t"}.
wenzelm@27040
  1043
wenzelm@27040
  1044
  \medskip The built-in well-formedness conditions for definitional
wenzelm@27040
  1045
  specifications are:
wenzelm@27040
  1046
wenzelm@27040
  1047
  \begin{itemize}
wenzelm@27040
  1048
wenzelm@27040
  1049
  \item Arguments (on the left-hand side) must be distinct variables.
wenzelm@27040
  1050
wenzelm@27040
  1051
  \item All variables on the right-hand side must also appear on the
wenzelm@27040
  1052
  left-hand side.
wenzelm@27040
  1053
wenzelm@27040
  1054
  \item All type variables on the right-hand side must also appear on
wenzelm@27040
  1055
  the left-hand side; this prohibits @{text "0 :: nat \<equiv> length ([] ::
wenzelm@27040
  1056
  \<alpha> list)"} for example.
wenzelm@27040
  1057
wenzelm@27040
  1058
  \item The definition must not be recursive.  Most object-logics
wenzelm@27040
  1059
  provide definitional principles that can be used to express
wenzelm@27040
  1060
  recursion safely.
wenzelm@27040
  1061
wenzelm@27040
  1062
  \end{itemize}
wenzelm@27040
  1063
haftmann@31047
  1064
  The right-hand side of overloaded definitions may mention overloaded constants
wenzelm@27040
  1065
  recursively at type instances corresponding to the immediate
wenzelm@27040
  1066
  argument types @{text "\<beta>\<^sub>1, \<dots>, \<beta>\<^sub>n"}.  Incomplete
wenzelm@27040
  1067
  specification patterns impose global constraints on all occurrences,
wenzelm@27040
  1068
  e.g.\ @{text "d :: \<alpha> \<times> \<alpha>"} on the left-hand side means that all
wenzelm@27040
  1069
  corresponding occurrences on some right-hand side need to be an
wenzelm@27040
  1070
  instance of this, general @{text "d :: \<alpha> \<times> \<beta>"} will be disallowed.
wenzelm@27040
  1071
wenzelm@27040
  1072
  \begin{matharray}{rcl}
wenzelm@28761
  1073
    @{command_def "consts"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@28761
  1074
    @{command_def "defs"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@28761
  1075
    @{command_def "constdefs"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@27040
  1076
  \end{matharray}
wenzelm@27040
  1077
wenzelm@27040
  1078
  \begin{rail}
wenzelm@27040
  1079
    'consts' ((name '::' type mixfix?) +)
wenzelm@27040
  1080
    ;
wenzelm@27040
  1081
    'defs' ('(' 'unchecked'? 'overloaded'? ')')? \\ (axmdecl prop +)
wenzelm@27040
  1082
    ;
wenzelm@27040
  1083
  \end{rail}
wenzelm@27040
  1084
wenzelm@27040
  1085
  \begin{rail}
wenzelm@27040
  1086
    'constdefs' structs? (constdecl? constdef +)
wenzelm@27040
  1087
    ;
wenzelm@27040
  1088
wenzelm@27040
  1089
    structs: '(' 'structure' (vars + 'and') ')'
wenzelm@27040
  1090
    ;
wenzelm@27040
  1091
    constdecl:  ((name '::' type mixfix | name '::' type | name mixfix) 'where'?) | name 'where'
wenzelm@27040
  1092
    ;
wenzelm@27040
  1093
    constdef: thmdecl? prop
wenzelm@27040
  1094
    ;
wenzelm@27040
  1095
  \end{rail}
wenzelm@27040
  1096
wenzelm@28760
  1097
  \begin{description}
wenzelm@27040
  1098
wenzelm@28760
  1099
  \item @{command "consts"}~@{text "c :: \<sigma>"} declares constant @{text
wenzelm@28760
  1100
  c} to have any instance of type scheme @{text \<sigma>}.  The optional
wenzelm@28760
  1101
  mixfix annotations may attach concrete syntax to the constants
wenzelm@28760
  1102
  declared.
wenzelm@27040
  1103
  
wenzelm@28760
  1104
  \item @{command "defs"}~@{text "name: eqn"} introduces @{text eqn}
wenzelm@27040
  1105
  as a definitional axiom for some existing constant.
wenzelm@27040
  1106
  
wenzelm@27040
  1107
  The @{text "(unchecked)"} option disables global dependency checks
wenzelm@27040
  1108
  for this definition, which is occasionally useful for exotic
wenzelm@27040
  1109
  overloading.  It is at the discretion of the user to avoid malformed
wenzelm@27040
  1110
  theory specifications!
wenzelm@27040
  1111
  
wenzelm@27040
  1112
  The @{text "(overloaded)"} option declares definitions to be
wenzelm@27040
  1113
  potentially overloaded.  Unless this option is given, a warning
wenzelm@27040
  1114
  message would be issued for any definitional equation with a more
wenzelm@27040
  1115
  special type than that of the corresponding constant declaration.
wenzelm@27040
  1116
  
wenzelm@28767
  1117
  \item @{command "constdefs"} combines constant declarations and
wenzelm@28767
  1118
  definitions, with type-inference taking care of the most general
wenzelm@28767
  1119
  typing of the given specification (the optional type constraint may
wenzelm@28767
  1120
  refer to type-inference dummies ``@{text _}'' as usual).  The
wenzelm@28767
  1121
  resulting type declaration needs to agree with that of the
wenzelm@28767
  1122
  specification; overloading is \emph{not} supported here!
wenzelm@27040
  1123
  
wenzelm@27040
  1124
  The constant name may be omitted altogether, if neither type nor
wenzelm@27040
  1125
  syntax declarations are given.  The canonical name of the
wenzelm@27040
  1126
  definitional axiom for constant @{text c} will be @{text c_def},
wenzelm@27040
  1127
  unless specified otherwise.  Also note that the given list of
wenzelm@27040
  1128
  specifications is processed in a strictly sequential manner, with
wenzelm@27040
  1129
  type-checking being performed independently.
wenzelm@27040
  1130
  
wenzelm@27040
  1131
  An optional initial context of @{text "(structure)"} declarations
wenzelm@27040
  1132
  admits use of indexed syntax, using the special symbol @{verbatim
wenzelm@27040
  1133
  "\<index>"} (printed as ``@{text "\<index>"}'').  The latter concept is
wenzelm@28767
  1134
  particularly useful with locales (see also \secref{sec:locale}).
wenzelm@27040
  1135
wenzelm@28760
  1136
  \end{description}
wenzelm@27040
  1137
*}
wenzelm@27040
  1138
wenzelm@27040
  1139
wenzelm@27040
  1140
section {* Axioms and theorems \label{sec:axms-thms} *}
wenzelm@27040
  1141
wenzelm@27040
  1142
text {*
wenzelm@27040
  1143
  \begin{matharray}{rcll}
wenzelm@28761
  1144
    @{command_def "axioms"} & : & @{text "theory \<rightarrow> theory"} & (axiomatic!) \\
wenzelm@28761
  1145
    @{command_def "lemmas"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@28761
  1146
    @{command_def "theorems"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
wenzelm@27040
  1147
  \end{matharray}
wenzelm@27040
  1148
wenzelm@27040
  1149
  \begin{rail}
wenzelm@27040
  1150
    'axioms' (axmdecl prop +)
wenzelm@27040
  1151
    ;
wenzelm@27040
  1152
    ('lemmas' | 'theorems') target? (thmdef? thmrefs + 'and')
wenzelm@27040
  1153
    ;
wenzelm@27040
  1154
  \end{rail}
wenzelm@27040
  1155
wenzelm@28760
  1156
  \begin{description}
wenzelm@27040
  1157
  
wenzelm@28760
  1158
  \item @{command "axioms"}~@{text "a: \<phi>"} introduces arbitrary
wenzelm@27040
  1159
  statements as axioms of the meta-logic.  In fact, axioms are
wenzelm@27040
  1160
  ``axiomatic theorems'', and may be referred later just as any other
wenzelm@27040
  1161
  theorem.
wenzelm@27040
  1162
  
wenzelm@27040
  1163
  Axioms are usually only introduced when declaring new logical
wenzelm@27040
  1164
  systems.  Everyday work is typically done the hard way, with proper
wenzelm@27040
  1165
  definitions and proven theorems.
wenzelm@27040
  1166
  
wenzelm@28760
  1167
  \item @{command "lemmas"}~@{text "a = b\<^sub>1 \<dots> b\<^sub>n"} retrieves and stores
wenzelm@28760
  1168
  existing facts in the theory context, or the specified target
wenzelm@28760
  1169
  context (see also \secref{sec:target}).  Typical applications would
wenzelm@28760
  1170
  also involve attributes, to declare Simplifier rules, for example.
wenzelm@27040
  1171
  
wenzelm@28760
  1172
  \item @{command "theorems"} is essentially the same as @{command
wenzelm@27040
  1173
  "lemmas"}, but marks the result as a different kind of facts.
wenzelm@27040
  1174
wenzelm@28760
  1175
  \end{description}
wenzelm@27040
  1176
*}
wenzelm@27040
  1177
wenzelm@27040
  1178
wenzelm@27040
  1179
section {* Oracles *}
wenzelm@27040
  1180
wenzelm@28756
  1181
text {* Oracles allow Isabelle to take advantage of external reasoners
wenzelm@28756
  1182
  such as arithmetic decision procedures, model checkers, fast
wenzelm@28756
  1183
  tautology checkers or computer algebra systems.  Invoked as an
wenzelm@28756
  1184
  oracle, an external reasoner can create arbitrary Isabelle theorems.
wenzelm@28756
  1185
wenzelm@28756
  1186
  It is the responsibility of the user to ensure that the external
wenzelm@28756
  1187
  reasoner is as trustworthy as the application requires.  Another
wenzelm@28756
  1188
  typical source of errors is the linkup between Isabelle and the
wenzelm@28756
  1189
  external tool, not just its concrete implementation, but also the
wenzelm@28756
  1190
  required translation between two different logical environments.
wenzelm@28756
  1191
wenzelm@28756
  1192
  Isabelle merely guarantees well-formedness of the propositions being
wenzelm@28756
  1193
  asserted, and records within the internal derivation object how
wenzelm@28756
  1194
  presumed theorems depend on unproven suppositions.
wenzelm@28756
  1195
wenzelm@27040
  1196
  \begin{matharray}{rcl}
wenzelm@28761
  1197
    @{command_def "oracle"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@27040
  1198
  \end{matharray}
wenzelm@27040
  1199
wenzelm@27040
  1200
  \begin{rail}
wenzelm@28290
  1201
    'oracle' name '=' text
wenzelm@27040
  1202
    ;
wenzelm@27040
  1203
  \end{rail}
wenzelm@27040
  1204
wenzelm@28760
  1205
  \begin{description}
wenzelm@27040
  1206
wenzelm@28760
  1207
  \item @{command "oracle"}~@{text "name = text"} turns the given ML
wenzelm@28290
  1208
  expression @{text "text"} of type @{ML_text "'a -> cterm"} into an
wenzelm@28290
  1209
  ML function of type @{ML_text "'a -> thm"}, which is bound to the
wenzelm@28756
  1210
  global identifier @{ML_text name}.  This acts like an infinitary
wenzelm@28756
  1211
  specification of axioms!  Invoking the oracle only works within the
wenzelm@28756
  1212
  scope of the resulting theory.
wenzelm@27040
  1213
wenzelm@28760
  1214
  \end{description}
wenzelm@28756
  1215
wenzelm@30078
  1216
  See @{"file" "~~/src/FOL/ex/Iff_Oracle.thy"} for a worked example of
wenzelm@28756
  1217
  defining a new primitive rule as oracle, and turning it into a proof
wenzelm@28756
  1218
  method.
wenzelm@27040
  1219
*}
wenzelm@27040
  1220
wenzelm@27040
  1221
wenzelm@27040
  1222
section {* Name spaces *}
wenzelm@27040
  1223
wenzelm@27040
  1224
text {*
wenzelm@27040
  1225
  \begin{matharray}{rcl}
wenzelm@28761
  1226
    @{command_def "global"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@28761
  1227
    @{command_def "local"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@36177
  1228
    @{command_def "hide_class"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@36177
  1229
    @{command_def "hide_type"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@36177
  1230
    @{command_def "hide_const"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@36177
  1231
    @{command_def "hide_fact"} & : & @{text "theory \<rightarrow> theory"} \\
wenzelm@27040
  1232
  \end{matharray}
wenzelm@27040
  1233
wenzelm@27040
  1234
  \begin{rail}
wenzelm@36177
  1235
    ( 'hide\_class' | 'hide\_type' | 'hide\_const' | 'hide\_fact' ) ('(open)')? (nameref + )
wenzelm@27040
  1236
    ;
wenzelm@27040
  1237
  \end{rail}
wenzelm@27040
  1238
wenzelm@27040
  1239
  Isabelle organizes any kind of name declarations (of types,
wenzelm@27040
  1240
  constants, theorems etc.) by separate hierarchically structured name
wenzelm@27040
  1241
  spaces.  Normally the user does not have to control the behavior of
wenzelm@27040
  1242
  name spaces by hand, yet the following commands provide some way to
wenzelm@27040
  1243
  do so.
wenzelm@27040
  1244
wenzelm@28760
  1245
  \begin{description}
wenzelm@27040
  1246
wenzelm@28760
  1247
  \item @{command "global"} and @{command "local"} change the current
wenzelm@28760
  1248
  name declaration mode.  Initially, theories start in @{command
wenzelm@28760
  1249
  "local"} mode, causing all names to be automatically qualified by
wenzelm@28760
  1250
  the theory name.  Changing this to @{command "global"} causes all
wenzelm@28760
  1251
  names to be declared without the theory prefix, until @{command
wenzelm@28760
  1252
  "local"} is declared again.
wenzelm@27040
  1253
  
wenzelm@27040
  1254
  Note that global names are prone to get hidden accidently later,
wenzelm@27040
  1255
  when qualified names of the same base name are introduced.
wenzelm@27040
  1256
  
wenzelm@36177
  1257
  \item @{command "hide_class"}~@{text names} fully removes class
wenzelm@36177
  1258
  declarations from a given name space; with the @{text "(open)"}
wenzelm@36177
  1259
  option, only the base name is hidden.  Global (unqualified) names
wenzelm@36177
  1260
  may never be hidden.
wenzelm@36177
  1261
wenzelm@27040
  1262
  Note that hiding name space accesses has no impact on logical
wenzelm@28756
  1263
  declarations --- they remain valid internally.  Entities that are no
wenzelm@27040
  1264
  longer accessible to the user are printed with the special qualifier
wenzelm@27040
  1265
  ``@{text "??"}'' prefixed to the full internal name.
wenzelm@27040
  1266
wenzelm@36177
  1267
  \item @{command "hide_type"}, @{command "hide_const"}, and @{command
wenzelm@36177
  1268
  "hide_fact"} are similar to @{command "hide_class"}, but hide types,
wenzelm@36177
  1269
  constants, and facts, respectively.
wenzelm@36177
  1270
  
wenzelm@28760
  1271
  \end{description}
wenzelm@27040
  1272
*}
wenzelm@27040
  1273
wenzelm@26869
  1274
end