doc-src/HOL/HOL.tex
author Walther Neuper <neuper@ist.tugraz.at>
Thu, 12 Aug 2010 15:03:34 +0200
branchisac-from-Isabelle2009-2
changeset 37913 20e3616b2d9c
parent 31101 26c7bb764a38
child 43498 8749742785b8
permissions -rw-r--r--
prepare reactivation of isac-update-Isa09-2
wenzelm@6580
     1
%% $Id$
wenzelm@6580
     2
\chapter{Higher-Order Logic}
wenzelm@6580
     3
\index{higher-order logic|(}
wenzelm@6580
     4
\index{HOL system@{\sc hol} system}
wenzelm@6580
     5
wenzelm@6580
     6
The theory~\thydx{HOL} implements higher-order logic.  It is based on
wenzelm@6580
     7
Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on
wenzelm@9695
     8
Church's original paper~\cite{church40}.  Andrews's book~\cite{andrews86} is a
wenzelm@9695
     9
full description of the original Church-style higher-order logic.  Experience
wenzelm@9695
    10
with the {\sc hol} system has demonstrated that higher-order logic is widely
wenzelm@9695
    11
applicable in many areas of mathematics and computer science, not just
wenzelm@9695
    12
hardware verification, {\sc hol}'s original \textit{raison d'{\^e}tre\/}.  It
wenzelm@9695
    13
is weaker than ZF set theory but for most applications this does not matter.
wenzelm@9695
    14
If you prefer {\ML} to Lisp, you will probably prefer HOL to~ZF.
wenzelm@9695
    15
wenzelm@9695
    16
The syntax of HOL\footnote{Earlier versions of Isabelle's HOL used a different
wenzelm@9695
    17
  syntax.  Ancient releases of Isabelle included still another version of~HOL,
wenzelm@9695
    18
  with explicit type inference rules~\cite{paulson-COLOG}.  This version no
wenzelm@9695
    19
  longer exists, but \thydx{ZF} supports a similar style of reasoning.}
wenzelm@9695
    20
follows $\lambda$-calculus and functional programming.  Function application
wenzelm@9695
    21
is curried.  To apply the function~$f$ of type $\tau@1\To\tau@2\To\tau@3$ to
wenzelm@9695
    22
the arguments~$a$ and~$b$ in HOL, you simply write $f\,a\,b$.  There is no
wenzelm@9695
    23
`apply' operator as in \thydx{ZF}.  Note that $f(a,b)$ means ``$f$ applied to
wenzelm@9695
    24
the pair $(a,b)$'' in HOL.  We write ordered pairs as $(a,b)$, not $\langle
wenzelm@9695
    25
a,b\rangle$ as in ZF.
wenzelm@9695
    26
wenzelm@9695
    27
HOL has a distinct feel, compared with ZF and CTT.  It identifies object-level
wenzelm@9695
    28
types with meta-level types, taking advantage of Isabelle's built-in
wenzelm@9695
    29
type-checker.  It identifies object-level functions with meta-level functions,
wenzelm@9695
    30
so it uses Isabelle's operations for abstraction and application.
wenzelm@9695
    31
wenzelm@9695
    32
These identifications allow Isabelle to support HOL particularly nicely, but
wenzelm@9695
    33
they also mean that HOL requires more sophistication from the user --- in
wenzelm@9695
    34
particular, an understanding of Isabelle's type system.  Beginners should work
wenzelm@9695
    35
with \texttt{show_types} (or even \texttt{show_sorts}) set to \texttt{true}.
wenzelm@6580
    36
wenzelm@6580
    37
wenzelm@6580
    38
\begin{figure}
wenzelm@6580
    39
\begin{constants}
wenzelm@6580
    40
  \it name      &\it meta-type  & \it description \\
wenzelm@6580
    41
  \cdx{Trueprop}& $bool\To prop$                & coercion to $prop$\\
oheimb@7490
    42
  \cdx{Not}     & $bool\To bool$                & negation ($\lnot$) \\
wenzelm@6580
    43
  \cdx{True}    & $bool$                        & tautology ($\top$) \\
wenzelm@6580
    44
  \cdx{False}   & $bool$                        & absurdity ($\bot$) \\
wenzelm@6580
    45
  \cdx{If}      & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\
wenzelm@6580
    46
  \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
wenzelm@6580
    47
\end{constants}
wenzelm@6580
    48
\subcaption{Constants}
wenzelm@6580
    49
wenzelm@6580
    50
\begin{constants}
wenzelm@6580
    51
\index{"@@{\tt\at} symbol}
wenzelm@6580
    52
\index{*"! symbol}\index{*"? symbol}
wenzelm@6580
    53
\index{*"?"! symbol}\index{*"E"X"! symbol}
wenzelm@6580
    54
  \it symbol &\it name     &\it meta-type & \it description \\
wenzelm@7245
    55
  \sdx{SOME} or \tt\at & \cdx{Eps}  & $(\alpha\To bool)\To\alpha$ & 
wenzelm@6580
    56
        Hilbert description ($\varepsilon$) \\
wenzelm@7245
    57
  \sdx{ALL} or {\tt!~} & \cdx{All}  & $(\alpha\To bool)\To bool$ & 
wenzelm@6580
    58
        universal quantifier ($\forall$) \\
wenzelm@7245
    59
  \sdx{EX} or {\tt?~}  & \cdx{Ex}   & $(\alpha\To bool)\To bool$ & 
wenzelm@6580
    60
        existential quantifier ($\exists$) \\
wenzelm@7245
    61
  \texttt{EX!} or {\tt?!} & \cdx{Ex1}  & $(\alpha\To bool)\To bool$ & 
wenzelm@6580
    62
        unique existence ($\exists!$)\\
wenzelm@6580
    63
  \texttt{LEAST}  & \cdx{Least}  & $(\alpha::ord \To bool)\To\alpha$ & 
wenzelm@6580
    64
        least element
wenzelm@6580
    65
\end{constants}
wenzelm@6580
    66
\subcaption{Binders} 
wenzelm@6580
    67
wenzelm@6580
    68
\begin{constants}
wenzelm@6580
    69
\index{*"= symbol}
wenzelm@6580
    70
\index{&@{\tt\&} symbol}
wenzelm@6580
    71
\index{*"| symbol}
wenzelm@6580
    72
\index{*"-"-"> symbol}
wenzelm@6580
    73
  \it symbol    & \it meta-type & \it priority & \it description \\ 
wenzelm@6580
    74
  \sdx{o}       & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & 
wenzelm@6580
    75
        Left 55 & composition ($\circ$) \\
wenzelm@6580
    76
  \tt =         & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\
wenzelm@6580
    77
  \tt <         & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
wenzelm@6580
    78
  \tt <=        & $[\alpha::ord,\alpha]\To bool$ & Left 50 & 
wenzelm@6580
    79
                less than or equals ($\leq$)\\
wenzelm@6580
    80
  \tt \&        & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
wenzelm@6580
    81
  \tt |         & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
wenzelm@6580
    82
  \tt -->       & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
wenzelm@6580
    83
\end{constants}
wenzelm@6580
    84
\subcaption{Infixes}
wenzelm@6580
    85
\caption{Syntax of \texttt{HOL}} \label{hol-constants}
wenzelm@6580
    86
\end{figure}
wenzelm@6580
    87
wenzelm@6580
    88
wenzelm@6580
    89
\begin{figure}
wenzelm@6580
    90
\index{*let symbol}
wenzelm@6580
    91
\index{*in symbol}
wenzelm@6580
    92
\dquotes
wenzelm@6580
    93
\[\begin{array}{rclcl}
wenzelm@6580
    94
    term & = & \hbox{expression of class~$term$} \\
wenzelm@7245
    95
         & | & "SOME~" id " . " formula
wenzelm@6580
    96
         & | & "\at~" id " . " formula \\
wenzelm@6580
    97
         & | & 
wenzelm@6580
    98
    \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\
wenzelm@6580
    99
         & | & 
wenzelm@6580
   100
    \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\
wenzelm@6580
   101
         & | & "LEAST"~ id " . " formula \\[2ex]
wenzelm@6580
   102
 formula & = & \hbox{expression of type~$bool$} \\
wenzelm@6580
   103
         & | & term " = " term \\
wenzelm@6580
   104
         & | & term " \ttilde= " term \\
wenzelm@6580
   105
         & | & term " < " term \\
wenzelm@6580
   106
         & | & term " <= " term \\
wenzelm@6580
   107
         & | & "\ttilde\ " formula \\
wenzelm@6580
   108
         & | & formula " \& " formula \\
wenzelm@6580
   109
         & | & formula " | " formula \\
wenzelm@6580
   110
         & | & formula " --> " formula \\
wenzelm@7245
   111
         & | & "ALL~" id~id^* " . " formula
wenzelm@7245
   112
         & | & "!~~~" id~id^* " . " formula \\
wenzelm@7245
   113
         & | & "EX~~" id~id^* " . " formula 
wenzelm@7245
   114
         & | & "?~~~" id~id^* " . " formula \\
wenzelm@6580
   115
         & | & "EX!~" id~id^* " . " formula
wenzelm@7245
   116
         & | & "?!~~" id~id^* " . " formula \\
wenzelm@6580
   117
  \end{array}
wenzelm@6580
   118
\]
wenzelm@9695
   119
\caption{Full grammar for HOL} \label{hol-grammar}
wenzelm@6580
   120
\end{figure} 
wenzelm@6580
   121
wenzelm@6580
   122
wenzelm@6580
   123
\section{Syntax}
wenzelm@6580
   124
wenzelm@6580
   125
Figure~\ref{hol-constants} lists the constants (including infixes and
wenzelm@6580
   126
binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
wenzelm@6580
   127
higher-order logic.  Note that $a$\verb|~=|$b$ is translated to
oheimb@7490
   128
$\lnot(a=b)$.
wenzelm@6580
   129
wenzelm@6580
   130
\begin{warn}
wenzelm@9695
   131
  HOL has no if-and-only-if connective; logical equivalence is expressed using
wenzelm@9695
   132
  equality.  But equality has a high priority, as befitting a relation, while
wenzelm@9695
   133
  if-and-only-if typically has the lowest priority.  Thus, $\lnot\lnot P=P$
wenzelm@9695
   134
  abbreviates $\lnot\lnot (P=P)$ and not $(\lnot\lnot P)=P$.  When using $=$
wenzelm@9695
   135
  to mean logical equivalence, enclose both operands in parentheses.
wenzelm@6580
   136
\end{warn}
wenzelm@6580
   137
paulson@9212
   138
\subsection{Types and overloading}
wenzelm@6580
   139
The universal type class of higher-order terms is called~\cldx{term}.
wenzelm@6580
   140
By default, explicit type variables have class \cldx{term}.  In
wenzelm@6580
   141
particular the equality symbol and quantifiers are polymorphic over
wenzelm@6580
   142
class \texttt{term}.
wenzelm@6580
   143
wenzelm@6580
   144
The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
wenzelm@6580
   145
formulae are terms.  The built-in type~\tydx{fun}, which constructs
wenzelm@6580
   146
function types, is overloaded with arity {\tt(term,\thinspace
wenzelm@6580
   147
  term)\thinspace term}.  Thus, $\sigma\To\tau$ belongs to class~{\tt
wenzelm@6580
   148
  term} if $\sigma$ and~$\tau$ do, allowing quantification over
wenzelm@6580
   149
functions.
wenzelm@6580
   150
wenzelm@9695
   151
HOL allows new types to be declared as subsets of existing types;
paulson@9212
   152
see~{\S}\ref{sec:HOL:Types}.  ML-like datatypes can also be declared; see
paulson@9212
   153
~{\S}\ref{sec:HOL:datatype}.
paulson@9212
   154
paulson@9212
   155
Several syntactic type classes --- \cldx{plus}, \cldx{minus},
paulson@9212
   156
\cldx{times} and
paulson@9212
   157
\cldx{power} --- permit overloading of the operators {\tt+},\index{*"+
paulson@9212
   158
  symbol} {\tt-}\index{*"- symbol}, {\tt*}.\index{*"* symbol} 
paulson@9212
   159
and \verb|^|.\index{^@\verb.^. symbol} 
paulson@9212
   160
%
paulson@9212
   161
They are overloaded to denote the obvious arithmetic operations on types
paulson@9212
   162
\tdx{nat}, \tdx{int} and~\tdx{real}. (With the \verb|^| operator, the
paulson@9212
   163
exponent always has type~\tdx{nat}.)  Non-arithmetic overloadings are also
paulson@9212
   164
done: the operator {\tt-} can denote set difference, while \verb|^| can
paulson@9212
   165
denote exponentiation of relations (iterated composition).  Unary minus is
paulson@9212
   166
also written as~{\tt-} and is overloaded like its 2-place counterpart; it even
paulson@9212
   167
can stand for set complement.
paulson@9212
   168
paulson@9212
   169
The constant \cdx{0} is also overloaded.  It serves as the zero element of
paulson@9212
   170
several types, of which the most important is \tdx{nat} (the natural
paulson@9212
   171
numbers).  The type class \cldx{plus_ac0} comprises all types for which 0
paulson@9212
   172
and~+ satisfy the laws $x+y=y+x$, $(x+y)+z = x+(y+z)$ and $0+x = x$.  These
paulson@9212
   173
types include the numeric ones \tdx{nat}, \tdx{int} and~\tdx{real} and also
paulson@9212
   174
multisets.  The summation operator \cdx{setsum} is available for all types in
paulson@9212
   175
this class. 
wenzelm@6580
   176
wenzelm@6580
   177
Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order
paulson@9212
   178
signatures.  The relations $<$ and $\leq$ are polymorphic over this
wenzelm@6580
   179
class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and
wenzelm@6580
   180
the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass
paulson@9212
   181
\cldx{order} of \cldx{ord} which axiomatizes the types that are partially
paulson@9212
   182
ordered with respect to~$\leq$.  A further subclass \cldx{linorder} of
paulson@9212
   183
\cldx{order} axiomatizes linear orderings.
paulson@9212
   184
For details, see the file \texttt{Ord.thy}.
paulson@9212
   185
                                          
wenzelm@6580
   186
If you state a goal containing overloaded functions, you may need to include
wenzelm@6580
   187
type constraints.  Type inference may otherwise make the goal more
wenzelm@6580
   188
polymorphic than you intended, with confusing results.  For example, the
oheimb@7490
   189
variables $i$, $j$ and $k$ in the goal $i \leq j \Imp i \leq j+k$ have type
wenzelm@6580
   190
$\alpha::\{ord,plus\}$, although you may have expected them to have some
wenzelm@6580
   191
numeric type, e.g. $nat$.  Instead you should have stated the goal as
oheimb@7490
   192
$(i::nat) \leq j \Imp i \leq j+k$, which causes all three variables to have
wenzelm@6580
   193
type $nat$.
wenzelm@6580
   194
wenzelm@6580
   195
\begin{warn}
wenzelm@6580
   196
  If resolution fails for no obvious reason, try setting
wenzelm@6580
   197
  \ttindex{show_types} to \texttt{true}, causing Isabelle to display
wenzelm@6580
   198
  types of terms.  Possibly set \ttindex{show_sorts} to \texttt{true} as
wenzelm@6580
   199
  well, causing Isabelle to display type classes and sorts.
wenzelm@6580
   200
wenzelm@6580
   201
  \index{unification!incompleteness of}
wenzelm@6580
   202
  Where function types are involved, Isabelle's unification code does not
wenzelm@6580
   203
  guarantee to find instantiations for type variables automatically.  Be
wenzelm@6580
   204
  prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac},
wenzelm@6580
   205
  possibly instantiating type variables.  Setting
wenzelm@6580
   206
  \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report
wenzelm@6580
   207
  omitted search paths during unification.\index{tracing!of unification}
wenzelm@6580
   208
\end{warn}
wenzelm@6580
   209
wenzelm@6580
   210
wenzelm@6580
   211
\subsection{Binders}
wenzelm@6580
   212
wenzelm@9695
   213
Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for some~$x$
wenzelm@9695
   214
satisfying~$P$, if such exists.  Since all terms in HOL denote something, a
wenzelm@9695
   215
description is always meaningful, but we do not know its value unless $P$
wenzelm@9695
   216
defines it uniquely.  We may write descriptions as \cdx{Eps}($\lambda x.
wenzelm@9695
   217
P[x]$) or use the syntax \hbox{\tt SOME~$x$.~$P[x]$}.
wenzelm@6580
   218
wenzelm@6580
   219
Existential quantification is defined by
wenzelm@6580
   220
\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \]
wenzelm@6580
   221
The unique existence quantifier, $\exists!x. P$, is defined in terms
wenzelm@6580
   222
of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
wenzelm@6580
   223
quantifications.  For instance, $\exists!x\,y. P\,x\,y$ abbreviates
wenzelm@6580
   224
$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there
wenzelm@6580
   225
exists a unique pair $(x,y)$ satisfying~$P\,x\,y$.
wenzelm@6580
   226
wenzelm@7245
   227
\medskip
wenzelm@7245
   228
wenzelm@7245
   229
\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} The
wenzelm@7245
   230
basic Isabelle/HOL binders have two notations.  Apart from the usual
wenzelm@7245
   231
\texttt{ALL} and \texttt{EX} for $\forall$ and $\exists$, Isabelle/HOL also
wenzelm@7245
   232
supports the original notation of Gordon's {\sc hol} system: \texttt{!}\ 
wenzelm@7245
   233
and~\texttt{?}.  In the latter case, the existential quantifier \emph{must} be
wenzelm@7245
   234
followed by a space; thus {\tt?x} is an unknown, while \verb'? x. f x=y' is a
wenzelm@7245
   235
quantification.  Both notations are accepted for input.  The print mode
wenzelm@7245
   236
``\ttindexbold{HOL}'' governs the output notation.  If enabled (e.g.\ by
wenzelm@7245
   237
passing option \texttt{-m HOL} to the \texttt{isabelle} executable),
wenzelm@7245
   238
then~{\tt!}\ and~{\tt?}\ are displayed.
wenzelm@7245
   239
wenzelm@7245
   240
\medskip
wenzelm@6580
   241
wenzelm@6580
   242
If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a
wenzelm@6580
   243
variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined
oheimb@7490
   244
to be the least (w.r.t.\ $\leq$) $x$ such that $P~x$ holds (see
wenzelm@6580
   245
Fig.~\ref{hol-defs}).  The definition uses Hilbert's $\varepsilon$
wenzelm@6580
   246
choice operator, so \texttt{Least} is always meaningful, but may yield
wenzelm@6580
   247
nothing useful in case there is not a unique least element satisfying
wenzelm@6580
   248
$P$.\footnote{Class $ord$ does not require much of its instances, so
oheimb@7490
   249
  $\leq$ need not be a well-ordering, not even an order at all!}
wenzelm@6580
   250
wenzelm@6580
   251
\medskip All these binders have priority 10.
wenzelm@6580
   252
wenzelm@6580
   253
\begin{warn}
wenzelm@6580
   254
The low priority of binders means that they need to be enclosed in
wenzelm@6580
   255
parenthesis when they occur in the context of other operations.  For example,
wenzelm@6580
   256
instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$.
wenzelm@6580
   257
\end{warn}
wenzelm@6580
   258
wenzelm@6580
   259
wenzelm@6620
   260
\subsection{The let and case constructions}
wenzelm@6580
   261
Local abbreviations can be introduced by a \texttt{let} construct whose
wenzelm@6580
   262
syntax appears in Fig.\ts\ref{hol-grammar}.  Internally it is translated into
wenzelm@6580
   263
the constant~\cdx{Let}.  It can be expanded by rewriting with its
wenzelm@6580
   264
definition, \tdx{Let_def}.
wenzelm@6580
   265
wenzelm@9695
   266
HOL also defines the basic syntax
wenzelm@6580
   267
\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] 
wenzelm@6580
   268
as a uniform means of expressing \texttt{case} constructs.  Therefore \texttt{case}
wenzelm@6580
   269
and \sdx{of} are reserved words.  Initially, this is mere syntax and has no
wenzelm@6580
   270
logical meaning.  By declaring translations, you can cause instances of the
wenzelm@6580
   271
\texttt{case} construct to denote applications of particular case operators.
wenzelm@6580
   272
This is what happens automatically for each \texttt{datatype} definition
oheimb@7490
   273
(see~{\S}\ref{sec:HOL:datatype}).
wenzelm@6580
   274
wenzelm@6580
   275
\begin{warn}
wenzelm@6580
   276
Both \texttt{if} and \texttt{case} constructs have as low a priority as
wenzelm@6580
   277
quantifiers, which requires additional enclosing parentheses in the context
wenzelm@6580
   278
of most other operations.  For example, instead of $f~x = {\tt if\dots
wenzelm@6580
   279
then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots
wenzelm@6580
   280
else\dots})$.
wenzelm@6580
   281
\end{warn}
wenzelm@6580
   282
wenzelm@6580
   283
\section{Rules of inference}
wenzelm@6580
   284
wenzelm@6580
   285
\begin{figure}
wenzelm@6580
   286
\begin{ttbox}\makeatother
paulson@9212
   287
\tdx{refl}          t = (t::'a)
paulson@9212
   288
\tdx{subst}         [| s = t; P s |] ==> P (t::'a)
paulson@9212
   289
\tdx{ext}           (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x)
paulson@9212
   290
\tdx{impI}          (P ==> Q) ==> P-->Q
paulson@9212
   291
\tdx{mp}            [| P-->Q;  P |] ==> Q
paulson@9212
   292
\tdx{iff}           (P-->Q) --> (Q-->P) --> (P=Q)
paulson@9969
   293
\tdx{someI}         P(x::'a) ==> P(@x. P x)
paulson@9212
   294
\tdx{True_or_False} (P=True) | (P=False)
wenzelm@6580
   295
\end{ttbox}
wenzelm@6580
   296
\caption{The \texttt{HOL} rules} \label{hol-rules}
wenzelm@6580
   297
\end{figure}
wenzelm@6580
   298
wenzelm@9695
   299
Figure~\ref{hol-rules} shows the primitive inference rules of~HOL, with
wenzelm@9695
   300
their~{\ML} names.  Some of the rules deserve additional comments:
wenzelm@6580
   301
\begin{ttdescription}
wenzelm@6580
   302
\item[\tdx{ext}] expresses extensionality of functions.
wenzelm@6580
   303
\item[\tdx{iff}] asserts that logically equivalent formulae are
wenzelm@6580
   304
  equal.
paulson@9969
   305
\item[\tdx{someI}] gives the defining property of the Hilbert
wenzelm@6580
   306
  $\varepsilon$-operator.  It is a form of the Axiom of Choice.  The derived rule
paulson@9969
   307
  \tdx{some_equality} (see below) is often easier to use.
wenzelm@6580
   308
\item[\tdx{True_or_False}] makes the logic classical.\footnote{In
wenzelm@6580
   309
    fact, the $\varepsilon$-operator already makes the logic classical, as
wenzelm@6580
   310
    shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
wenzelm@6580
   311
\end{ttdescription}
wenzelm@6580
   312
wenzelm@6580
   313
wenzelm@6580
   314
\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
wenzelm@6580
   315
\begin{ttbox}\makeatother
wenzelm@6580
   316
\tdx{True_def}   True     == ((\%x::bool. x)=(\%x. x))
wenzelm@6580
   317
\tdx{All_def}    All      == (\%P. P = (\%x. True))
wenzelm@6580
   318
\tdx{Ex_def}     Ex       == (\%P. P(@x. P x))
wenzelm@6580
   319
\tdx{False_def}  False    == (!P. P)
wenzelm@6580
   320
\tdx{not_def}    not      == (\%P. P-->False)
wenzelm@6580
   321
\tdx{and_def}    op &     == (\%P Q. !R. (P-->Q-->R) --> R)
wenzelm@6580
   322
\tdx{or_def}     op |     == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
wenzelm@6580
   323
\tdx{Ex1_def}    Ex1      == (\%P. ? x. P x & (! y. P y --> y=x))
wenzelm@6580
   324
wenzelm@6580
   325
\tdx{o_def}      op o     == (\%(f::'b=>'c) g x::'a. f(g x))
wenzelm@6580
   326
\tdx{if_def}     If P x y ==
wenzelm@6580
   327
              (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
wenzelm@6580
   328
\tdx{Let_def}    Let s f  == f s
wenzelm@6580
   329
\tdx{Least_def}  Least P  == @x. P(x) & (ALL y. P(y) --> x <= y)"
wenzelm@6580
   330
\end{ttbox}
wenzelm@6580
   331
\caption{The \texttt{HOL} definitions} \label{hol-defs}
wenzelm@6580
   332
\end{figure}
wenzelm@6580
   333
wenzelm@6580
   334
wenzelm@9695
   335
HOL follows standard practice in higher-order logic: only a few connectives
wenzelm@9695
   336
are taken as primitive, with the remainder defined obscurely
wenzelm@6580
   337
(Fig.\ts\ref{hol-defs}).  Gordon's {\sc hol} system expresses the
wenzelm@6580
   338
corresponding definitions \cite[page~270]{mgordon-hol} using
wenzelm@9695
   339
object-equality~({\tt=}), which is possible because equality in higher-order
wenzelm@9695
   340
logic may equate formulae and even functions over formulae.  But theory~HOL,
wenzelm@9695
   341
like all other Isabelle theories, uses meta-equality~({\tt==}) for
wenzelm@9695
   342
definitions.
wenzelm@6580
   343
\begin{warn}
wenzelm@6580
   344
The definitions above should never be expanded and are shown for completeness
wenzelm@6580
   345
only.  Instead users should reason in terms of the derived rules shown below
wenzelm@6580
   346
or, better still, using high-level tactics
oheimb@7490
   347
(see~{\S}\ref{sec:HOL:generic-packages}).
wenzelm@6580
   348
\end{warn}
wenzelm@6580
   349
wenzelm@6580
   350
Some of the rules mention type variables; for example, \texttt{refl}
wenzelm@6580
   351
mentions the type variable~{\tt'a}.  This allows you to instantiate
wenzelm@6580
   352
type variables explicitly by calling \texttt{res_inst_tac}.
wenzelm@6580
   353
wenzelm@6580
   354
wenzelm@6580
   355
\begin{figure}
wenzelm@6580
   356
\begin{ttbox}
wenzelm@6580
   357
\tdx{sym}         s=t ==> t=s
wenzelm@6580
   358
\tdx{trans}       [| r=s; s=t |] ==> r=t
wenzelm@6580
   359
\tdx{ssubst}      [| t=s; P s |] ==> P t
wenzelm@6580
   360
\tdx{box_equals}  [| a=b;  a=c;  b=d |] ==> c=d  
wenzelm@6580
   361
\tdx{arg_cong}    x = y ==> f x = f y
wenzelm@6580
   362
\tdx{fun_cong}    f = g ==> f x = g x
wenzelm@6580
   363
\tdx{cong}        [| f = g; x = y |] ==> f x = g y
wenzelm@6580
   364
\tdx{not_sym}     t ~= s ==> s ~= t
wenzelm@6580
   365
\subcaption{Equality}
wenzelm@6580
   366
wenzelm@6580
   367
\tdx{TrueI}       True 
wenzelm@6580
   368
\tdx{FalseE}      False ==> P
wenzelm@6580
   369
wenzelm@6580
   370
\tdx{conjI}       [| P; Q |] ==> P&Q
wenzelm@6580
   371
\tdx{conjunct1}   [| P&Q |] ==> P
wenzelm@6580
   372
\tdx{conjunct2}   [| P&Q |] ==> Q 
wenzelm@6580
   373
\tdx{conjE}       [| P&Q;  [| P; Q |] ==> R |] ==> R
wenzelm@6580
   374
wenzelm@6580
   375
\tdx{disjI1}      P ==> P|Q
wenzelm@6580
   376
\tdx{disjI2}      Q ==> P|Q
wenzelm@6580
   377
\tdx{disjE}       [| P | Q; P ==> R; Q ==> R |] ==> R
wenzelm@6580
   378
wenzelm@6580
   379
\tdx{notI}        (P ==> False) ==> ~ P
wenzelm@6580
   380
\tdx{notE}        [| ~ P;  P |] ==> R
wenzelm@6580
   381
\tdx{impE}        [| P-->Q;  P;  Q ==> R |] ==> R
wenzelm@6580
   382
\subcaption{Propositional logic}
wenzelm@6580
   383
wenzelm@6580
   384
\tdx{iffI}        [| P ==> Q;  Q ==> P |] ==> P=Q
wenzelm@6580
   385
\tdx{iffD1}       [| P=Q; P |] ==> Q
wenzelm@6580
   386
\tdx{iffD2}       [| P=Q; Q |] ==> P
wenzelm@6580
   387
\tdx{iffE}        [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
kleing@14013
   388
\subcaption{Logical equivalence}
kleing@14013
   389
kleing@14013
   390
\end{ttbox}
kleing@14013
   391
\caption{Derived rules for HOL} \label{hol-lemmas1}
kleing@14013
   392
\end{figure}
wenzelm@6580
   393
%
wenzelm@6580
   394
%\tdx{eqTrueI}     P ==> P=True 
wenzelm@6580
   395
%\tdx{eqTrueE}     P=True ==> P 
wenzelm@6580
   396
wenzelm@6580
   397
wenzelm@6580
   398
\begin{figure}
wenzelm@6580
   399
\begin{ttbox}\makeatother
wenzelm@6580
   400
\tdx{allI}      (!!x. P x) ==> !x. P x
wenzelm@6580
   401
\tdx{spec}      !x. P x ==> P x
wenzelm@6580
   402
\tdx{allE}      [| !x. P x;  P x ==> R |] ==> R
wenzelm@6580
   403
\tdx{all_dupE}  [| !x. P x;  [| P x; !x. P x |] ==> R |] ==> R
wenzelm@6580
   404
wenzelm@6580
   405
\tdx{exI}       P x ==> ? x. P x
wenzelm@6580
   406
\tdx{exE}       [| ? x. P x; !!x. P x ==> Q |] ==> Q
wenzelm@6580
   407
wenzelm@6580
   408
\tdx{ex1I}      [| P a;  !!x. P x ==> x=a |] ==> ?! x. P x
wenzelm@6580
   409
\tdx{ex1E}      [| ?! x. P x;  !!x. [| P x;  ! y. P y --> y=x |] ==> R 
wenzelm@6580
   410
          |] ==> R
wenzelm@6580
   411
paulson@9969
   412
\tdx{some_equality}   [| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a
wenzelm@6580
   413
\subcaption{Quantifiers and descriptions}
wenzelm@6580
   414
wenzelm@6580
   415
\tdx{ccontr}          (~P ==> False) ==> P
wenzelm@6580
   416
\tdx{classical}       (~P ==> P) ==> P
wenzelm@6580
   417
\tdx{excluded_middle} ~P | P
wenzelm@6580
   418
paulson@9212
   419
\tdx{disjCI}       (~Q ==> P) ==> P|Q
paulson@9212
   420
\tdx{exCI}         (! x. ~ P x ==> P a) ==> ? x. P x
paulson@9212
   421
\tdx{impCE}        [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
paulson@9212
   422
\tdx{iffCE}        [| P=Q;  [| P;Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
paulson@9212
   423
\tdx{notnotD}      ~~P ==> P
paulson@9212
   424
\tdx{swap}         ~P ==> (~Q ==> P) ==> Q
wenzelm@6580
   425
\subcaption{Classical logic}
wenzelm@6580
   426
paulson@9212
   427
\tdx{if_P}         P ==> (if P then x else y) = x
paulson@9212
   428
\tdx{if_not_P}     ~ P ==> (if P then x else y) = y
paulson@9212
   429
\tdx{split_if}     P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))
wenzelm@6580
   430
\subcaption{Conditionals}
wenzelm@6580
   431
\end{ttbox}
wenzelm@6580
   432
\caption{More derived rules} \label{hol-lemmas2}
wenzelm@6580
   433
\end{figure}
wenzelm@6580
   434
wenzelm@6580
   435
Some derived rules are shown in Figures~\ref{hol-lemmas1}
wenzelm@6580
   436
and~\ref{hol-lemmas2}, with their {\ML} names.  These include natural rules
wenzelm@6580
   437
for the logical connectives, as well as sequent-style elimination rules for
wenzelm@6580
   438
conjunctions, implications, and universal quantifiers.  
wenzelm@6580
   439
wenzelm@6580
   440
Note the equality rules: \tdx{ssubst} performs substitution in
wenzelm@6580
   441
backward proofs, while \tdx{box_equals} supports reasoning by
wenzelm@6580
   442
simplifying both sides of an equation.
wenzelm@6580
   443
wenzelm@6580
   444
The following simple tactics are occasionally useful:
wenzelm@6580
   445
\begin{ttdescription}
wenzelm@6580
   446
\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI}
wenzelm@6580
   447
  repeatedly to remove all outermost universal quantifiers and implications
wenzelm@6580
   448
  from subgoal $i$.
wenzelm@8443
   449
\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction on
wenzelm@8443
   450
  $P$ for subgoal $i$: the latter is replaced by two identical subgoals with
wenzelm@8443
   451
  the added assumptions $P$ and $\lnot P$, respectively.
oheimb@7490
   452
\item[\ttindexbold{smp_tac} $j$ $i$] applies $j$ times \texttt{spec} and then
oheimb@7490
   453
  \texttt{mp} in subgoal $i$, which is typically useful when forward-chaining 
oheimb@7490
   454
  from an induction hypothesis. As a generalization of \texttt{mp_tac}, 
oheimb@7490
   455
  if there are assumptions $\forall \vec{x}. P \vec{x} \imp Q \vec{x}$ and 
oheimb@7490
   456
  $P \vec{a}$, ($\vec{x}$ being a vector of $j$ variables)
oheimb@7490
   457
  then it replaces the universally quantified implication by $Q \vec{a}$. 
oheimb@7490
   458
  It may instantiate unknowns. It fails if it can do nothing.
wenzelm@6580
   459
\end{ttdescription}
wenzelm@6580
   460
wenzelm@6580
   461
wenzelm@6580
   462
\begin{figure} 
wenzelm@6580
   463
\begin{center}
wenzelm@6580
   464
\begin{tabular}{rrr}
wenzelm@6580
   465
  \it name      &\it meta-type  & \it description \\ 
wenzelm@6580
   466
\index{{}@\verb'{}' symbol}
wenzelm@6580
   467
  \verb|{}|     & $\alpha\,set$         & the empty set \\
wenzelm@6580
   468
  \cdx{insert}  & $[\alpha,\alpha\,set]\To \alpha\,set$
wenzelm@6580
   469
        & insertion of element \\
wenzelm@6580
   470
  \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
wenzelm@6580
   471
        & comprehension \\
wenzelm@6580
   472
  \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
wenzelm@6580
   473
        & intersection over a set\\
wenzelm@6580
   474
  \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
wenzelm@6580
   475
        & union over a set\\
wenzelm@6580
   476
  \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$
wenzelm@6580
   477
        &set of sets intersection \\
wenzelm@6580
   478
  \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$
wenzelm@6580
   479
        &set of sets union \\
wenzelm@6580
   480
  \cdx{Pow}   & $\alpha\,set \To (\alpha\,set)set$
wenzelm@6580
   481
        & powerset \\[1ex]
wenzelm@6580
   482
  \cdx{range}   & $(\alpha\To\beta )\To\beta\,set$
wenzelm@6580
   483
        & range of a function \\[1ex]
wenzelm@6580
   484
  \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
wenzelm@6580
   485
        & bounded quantifiers
wenzelm@6580
   486
\end{tabular}
wenzelm@6580
   487
\end{center}
wenzelm@6580
   488
\subcaption{Constants}
wenzelm@6580
   489
wenzelm@6580
   490
\begin{center}
wenzelm@6580
   491
\begin{tabular}{llrrr} 
wenzelm@6580
   492
  \it symbol &\it name     &\it meta-type & \it priority & \it description \\
wenzelm@6580
   493
  \sdx{INT}  & \cdx{INTER1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
paulson@9212
   494
        intersection\\
wenzelm@6580
   495
  \sdx{UN}  & \cdx{UNION1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
paulson@9212
   496
        union 
wenzelm@6580
   497
\end{tabular}
wenzelm@6580
   498
\end{center}
wenzelm@6580
   499
\subcaption{Binders} 
wenzelm@6580
   500
wenzelm@6580
   501
\begin{center}
wenzelm@6580
   502
\index{*"`"` symbol}
wenzelm@6580
   503
\index{*": symbol}
wenzelm@6580
   504
\index{*"<"= symbol}
wenzelm@6580
   505
\begin{tabular}{rrrr} 
wenzelm@6580
   506
  \it symbol    & \it meta-type & \it priority & \it description \\ 
wenzelm@6580
   507
  \tt ``        & $[\alpha\To\beta ,\alpha\,set]\To  \beta\,set$
wenzelm@6580
   508
        & Left 90 & image \\
wenzelm@6580
   509
  \sdx{Int}     & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
wenzelm@6580
   510
        & Left 70 & intersection ($\int$) \\
wenzelm@6580
   511
  \sdx{Un}      & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
wenzelm@6580
   512
        & Left 65 & union ($\un$) \\
wenzelm@6580
   513
  \tt:          & $[\alpha ,\alpha\,set]\To bool$       
wenzelm@6580
   514
        & Left 50 & membership ($\in$) \\
wenzelm@6580
   515
  \tt <=        & $[\alpha\,set,\alpha\,set]\To bool$
wenzelm@6580
   516
        & Left 50 & subset ($\subseteq$) 
wenzelm@6580
   517
\end{tabular}
wenzelm@6580
   518
\end{center}
wenzelm@6580
   519
\subcaption{Infixes}
wenzelm@6580
   520
\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax}
wenzelm@6580
   521
\end{figure} 
wenzelm@6580
   522
wenzelm@6580
   523
wenzelm@6580
   524
\begin{figure} 
wenzelm@6580
   525
\begin{center} \tt\frenchspacing
wenzelm@6580
   526
\index{*"! symbol}
wenzelm@6580
   527
\begin{tabular}{rrr} 
wenzelm@6580
   528
  \it external          & \it internal  & \it description \\ 
paulson@9212
   529
  $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm not in\\
wenzelm@6580
   530
  {\ttlbrace}$a@1$, $\ldots${\ttrbrace}  &  insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\
wenzelm@6580
   531
  {\ttlbrace}$x$. $P[x]${\ttrbrace}        &  Collect($\lambda x. P[x]$) &
wenzelm@6580
   532
        \rm comprehension \\
wenzelm@6580
   533
  \sdx{INT} $x$:$A$. $B[x]$      & INTER $A$ $\lambda x. B[x]$ &
wenzelm@6580
   534
        \rm intersection \\
wenzelm@6580
   535
  \sdx{UN}{\tt\ }  $x$:$A$. $B[x]$      & UNION $A$ $\lambda x. B[x]$ &
wenzelm@6580
   536
        \rm union \\
paulson@9212
   537
  \sdx{ALL} $x$:$A$.\ $P[x]$ or \texttt{!} $x$:$A$.\ $P[x]$ &
paulson@9212
   538
        Ball $A$ $\lambda x.\ P[x]$ & 
wenzelm@6580
   539
        \rm bounded $\forall$ \\
paulson@9212
   540
  \sdx{EX}{\tt\ } $x$:$A$.\ $P[x]$ or \texttt{?} $x$:$A$.\ $P[x]$ & 
paulson@9212
   541
        Bex $A$ $\lambda x.\ P[x]$ & \rm bounded $\exists$
wenzelm@6580
   542
\end{tabular}
wenzelm@6580
   543
\end{center}
wenzelm@6580
   544
\subcaption{Translations}
wenzelm@6580
   545
wenzelm@6580
   546
\dquotes
wenzelm@6580
   547
\[\begin{array}{rclcl}
wenzelm@6580
   548
    term & = & \hbox{other terms\ldots} \\
wenzelm@6580
   549
         & | & "{\ttlbrace}{\ttrbrace}" \\
wenzelm@6580
   550
         & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
wenzelm@6580
   551
         & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\
wenzelm@6580
   552
         & | & term " `` " term \\
wenzelm@6580
   553
         & | & term " Int " term \\
wenzelm@6580
   554
         & | & term " Un " term \\
wenzelm@6580
   555
         & | & "INT~~"  id ":" term " . " term \\
wenzelm@6580
   556
         & | & "UN~~~"  id ":" term " . " term \\
wenzelm@6580
   557
         & | & "INT~~"  id~id^* " . " term \\
wenzelm@6580
   558
         & | & "UN~~~"  id~id^* " . " term \\[2ex]
wenzelm@6580
   559
 formula & = & \hbox{other formulae\ldots} \\
wenzelm@6580
   560
         & | & term " : " term \\
wenzelm@6580
   561
         & | & term " \ttilde: " term \\
wenzelm@6580
   562
         & | & term " <= " term \\
wenzelm@7245
   563
         & | & "ALL " id ":" term " . " formula
wenzelm@7245
   564
         & | & "!~" id ":" term " . " formula \\
wenzelm@6580
   565
         & | & "EX~~" id ":" term " . " formula
wenzelm@7245
   566
         & | & "?~" id ":" term " . " formula \\
wenzelm@6580
   567
  \end{array}
wenzelm@6580
   568
\]
wenzelm@6580
   569
\subcaption{Full Grammar}
wenzelm@6580
   570
\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2}
wenzelm@6580
   571
\end{figure} 
wenzelm@6580
   572
wenzelm@6580
   573
wenzelm@6580
   574
\section{A formulation of set theory}
wenzelm@6580
   575
Historically, higher-order logic gives a foundation for Russell and
wenzelm@6580
   576
Whitehead's theory of classes.  Let us use modern terminology and call them
wenzelm@9695
   577
{\bf sets}, but note that these sets are distinct from those of ZF set theory,
wenzelm@9695
   578
and behave more like ZF classes.
wenzelm@6580
   579
\begin{itemize}
wenzelm@6580
   580
\item
wenzelm@6580
   581
Sets are given by predicates over some type~$\sigma$.  Types serve to
wenzelm@6580
   582
define universes for sets, but type-checking is still significant.
wenzelm@6580
   583
\item
wenzelm@6580
   584
There is a universal set (for each type).  Thus, sets have complements, and
wenzelm@6580
   585
may be defined by absolute comprehension.
wenzelm@6580
   586
\item
wenzelm@6580
   587
Although sets may contain other sets as elements, the containing set must
wenzelm@6580
   588
have a more complex type.
wenzelm@6580
   589
\end{itemize}
wenzelm@9695
   590
Finite unions and intersections have the same behaviour in HOL as they do
wenzelm@9695
   591
in~ZF.  In HOL the intersection of the empty set is well-defined, denoting the
wenzelm@9695
   592
universal set for the given type.
wenzelm@6580
   593
wenzelm@6580
   594
\subsection{Syntax of set theory}\index{*set type}
wenzelm@9695
   595
HOL's set theory is called \thydx{Set}.  The type $\alpha\,set$ is essentially
wenzelm@9695
   596
the same as $\alpha\To bool$.  The new type is defined for clarity and to
wenzelm@9695
   597
avoid complications involving function types in unification.  The isomorphisms
wenzelm@9695
   598
between the two types are declared explicitly.  They are very natural:
wenzelm@9695
   599
\texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while \hbox{\tt op :}
wenzelm@9695
   600
maps in the other direction (ignoring argument order).
wenzelm@6580
   601
wenzelm@6580
   602
Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
wenzelm@6580
   603
translations.  Figure~\ref{hol-set-syntax2} presents the grammar of the new
wenzelm@6580
   604
constructs.  Infix operators include union and intersection ($A\un B$
wenzelm@6580
   605
and $A\int B$), the subset and membership relations, and the image
wenzelm@6580
   606
operator~{\tt``}\@.  Note that $a$\verb|~:|$b$ is translated to
oheimb@7490
   607
$\lnot(a\in b)$.  
wenzelm@6580
   608
wenzelm@6580
   609
The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in
wenzelm@6580
   610
the obvious manner using~\texttt{insert} and~$\{\}$:
wenzelm@6580
   611
\begin{eqnarray*}
wenzelm@6580
   612
  \{a, b, c\} & \equiv &
wenzelm@6580
   613
  \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\}))
wenzelm@6580
   614
\end{eqnarray*}
wenzelm@6580
   615
wenzelm@9695
   616
The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of
wenzelm@9695
   617
suitable type) that satisfy~$P[x]$, where $P[x]$ is a formula that may contain
wenzelm@9695
   618
free occurrences of~$x$.  This syntax expands to \cdx{Collect}$(\lambda x.
wenzelm@9695
   619
P[x])$.  It defines sets by absolute comprehension, which is impossible in~ZF;
wenzelm@9695
   620
the type of~$x$ implicitly restricts the comprehension.
wenzelm@6580
   621
wenzelm@6580
   622
The set theory defines two {\bf bounded quantifiers}:
wenzelm@6580
   623
\begin{eqnarray*}
wenzelm@6580
   624
   \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
wenzelm@6580
   625
   \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
wenzelm@6580
   626
\end{eqnarray*}
wenzelm@6580
   627
The constants~\cdx{Ball} and~\cdx{Bex} are defined
wenzelm@6580
   628
accordingly.  Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may
wenzelm@6580
   629
write\index{*"! symbol}\index{*"? symbol}
wenzelm@6580
   630
\index{*ALL symbol}\index{*EX symbol} 
wenzelm@6580
   631
%
wenzelm@7245
   632
\hbox{\tt ALL~$x$:$A$.\ $P[x]$} and \hbox{\tt EX~$x$:$A$.\ $P[x]$}.  The
paulson@9212
   633
original notation of Gordon's {\sc hol} system is supported as well:
paulson@9212
   634
\texttt{!}\ and \texttt{?}.
wenzelm@6580
   635
wenzelm@6580
   636
Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
wenzelm@6580
   637
$\bigcap@{x\in A}B[x]$, are written 
wenzelm@6580
   638
\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and
wenzelm@6580
   639
\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}.  
wenzelm@6580
   640
wenzelm@6580
   641
Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
wenzelm@6580
   642
B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and
wenzelm@6580
   643
\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}.  They are equivalent to the previous
wenzelm@6580
   644
union and intersection operators when $A$ is the universal set.
wenzelm@6580
   645
wenzelm@6580
   646
The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets.  They are
wenzelm@6580
   647
not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
wenzelm@6580
   648
respectively.
wenzelm@6580
   649
wenzelm@6580
   650
wenzelm@6580
   651
wenzelm@6580
   652
\begin{figure} \underscoreon
wenzelm@6580
   653
\begin{ttbox}
wenzelm@6580
   654
\tdx{mem_Collect_eq}    (a : {\ttlbrace}x. P x{\ttrbrace}) = P a
wenzelm@6580
   655
\tdx{Collect_mem_eq}    {\ttlbrace}x. x:A{\ttrbrace} = A
wenzelm@6580
   656
wenzelm@6580
   657
\tdx{empty_def}         {\ttlbrace}{\ttrbrace}          == {\ttlbrace}x. False{\ttrbrace}
wenzelm@6580
   658
\tdx{insert_def}        insert a B  == {\ttlbrace}x. x=a{\ttrbrace} Un B
wenzelm@6580
   659
\tdx{Ball_def}          Ball A P    == ! x. x:A --> P x
wenzelm@6580
   660
\tdx{Bex_def}           Bex A P     == ? x. x:A & P x
wenzelm@6580
   661
\tdx{subset_def}        A <= B      == ! x:A. x:B
wenzelm@6580
   662
\tdx{Un_def}            A Un B      == {\ttlbrace}x. x:A | x:B{\ttrbrace}
wenzelm@6580
   663
\tdx{Int_def}           A Int B     == {\ttlbrace}x. x:A & x:B{\ttrbrace}
wenzelm@6580
   664
\tdx{set_diff_def}      A - B       == {\ttlbrace}x. x:A & x~:B{\ttrbrace}
paulson@9212
   665
\tdx{Compl_def}         -A          == {\ttlbrace}x. ~ x:A{\ttrbrace}
wenzelm@6580
   666
\tdx{INTER_def}         INTER A B   == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace}
wenzelm@6580
   667
\tdx{UNION_def}         UNION A B   == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace}
wenzelm@6580
   668
\tdx{INTER1_def}        INTER1 B    == INTER {\ttlbrace}x. True{\ttrbrace} B 
wenzelm@6580
   669
\tdx{UNION1_def}        UNION1 B    == UNION {\ttlbrace}x. True{\ttrbrace} B 
wenzelm@6580
   670
\tdx{Inter_def}         Inter S     == (INT x:S. x)
wenzelm@6580
   671
\tdx{Union_def}         Union S     == (UN  x:S. x)
wenzelm@6580
   672
\tdx{Pow_def}           Pow A       == {\ttlbrace}B. B <= A{\ttrbrace}
wenzelm@6580
   673
\tdx{image_def}         f``A        == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace}
wenzelm@6580
   674
\tdx{range_def}         range f     == {\ttlbrace}y. ? x. y=f x{\ttrbrace}
wenzelm@6580
   675
\end{ttbox}
wenzelm@6580
   676
\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules}
wenzelm@6580
   677
\end{figure}
wenzelm@6580
   678
wenzelm@6580
   679
wenzelm@6580
   680
\begin{figure} \underscoreon
wenzelm@6580
   681
\begin{ttbox}
wenzelm@6580
   682
\tdx{CollectI}        [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace}
wenzelm@6580
   683
\tdx{CollectD}        [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a
wenzelm@6580
   684
\tdx{CollectE}        [| a : {\ttlbrace}x. P x{\ttrbrace};  P a ==> W |] ==> W
wenzelm@6580
   685
wenzelm@6580
   686
\tdx{ballI}           [| !!x. x:A ==> P x |] ==> ! x:A. P x
wenzelm@6580
   687
\tdx{bspec}           [| ! x:A. P x;  x:A |] ==> P x
wenzelm@6580
   688
\tdx{ballE}           [| ! x:A. P x;  P x ==> Q;  ~ x:A ==> Q |] ==> Q
wenzelm@6580
   689
wenzelm@6580
   690
\tdx{bexI}            [| P x;  x:A |] ==> ? x:A. P x
wenzelm@6580
   691
\tdx{bexCI}           [| ! x:A. ~ P x ==> P a;  a:A |] ==> ? x:A. P x
wenzelm@6580
   692
\tdx{bexE}            [| ? x:A. P x;  !!x. [| x:A; P x |] ==> Q  |] ==> Q
wenzelm@6580
   693
\subcaption{Comprehension and Bounded quantifiers}
wenzelm@6580
   694
wenzelm@6580
   695
\tdx{subsetI}         (!!x. x:A ==> x:B) ==> A <= B
wenzelm@6580
   696
\tdx{subsetD}         [| A <= B;  c:A |] ==> c:B
wenzelm@6580
   697
\tdx{subsetCE}        [| A <= B;  ~ (c:A) ==> P;  c:B ==> P |] ==> P
wenzelm@6580
   698
wenzelm@6580
   699
\tdx{subset_refl}     A <= A
wenzelm@6580
   700
\tdx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
wenzelm@6580
   701
wenzelm@6580
   702
\tdx{equalityI}       [| A <= B;  B <= A |] ==> A = B
wenzelm@6580
   703
\tdx{equalityD1}      A = B ==> A<=B
wenzelm@6580
   704
\tdx{equalityD2}      A = B ==> B<=A
wenzelm@6580
   705
\tdx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
wenzelm@6580
   706
wenzelm@6580
   707
\tdx{equalityCE}      [| A = B;  [| c:A; c:B |] ==> P;  
wenzelm@6580
   708
                           [| ~ c:A; ~ c:B |] ==> P 
wenzelm@6580
   709
                |]  ==>  P
wenzelm@6580
   710
\subcaption{The subset and equality relations}
wenzelm@6580
   711
\end{ttbox}
wenzelm@6580
   712
\caption{Derived rules for set theory} \label{hol-set1}
wenzelm@6580
   713
\end{figure}
wenzelm@6580
   714
wenzelm@6580
   715
wenzelm@6580
   716
\begin{figure} \underscoreon
wenzelm@6580
   717
\begin{ttbox}
wenzelm@6580
   718
\tdx{emptyE}   a : {\ttlbrace}{\ttrbrace} ==> P
wenzelm@6580
   719
wenzelm@6580
   720
\tdx{insertI1} a : insert a B
wenzelm@6580
   721
\tdx{insertI2} a : B ==> a : insert b B
wenzelm@6580
   722
\tdx{insertE}  [| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P
wenzelm@6580
   723
paulson@9212
   724
\tdx{ComplI}   [| c:A ==> False |] ==> c : -A
paulson@9212
   725
\tdx{ComplD}   [| c : -A |] ==> ~ c:A
wenzelm@6580
   726
wenzelm@6580
   727
\tdx{UnI1}     c:A ==> c : A Un B
wenzelm@6580
   728
\tdx{UnI2}     c:B ==> c : A Un B
wenzelm@6580
   729
\tdx{UnCI}     (~c:B ==> c:A) ==> c : A Un B
wenzelm@6580
   730
\tdx{UnE}      [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
wenzelm@6580
   731
wenzelm@6580
   732
\tdx{IntI}     [| c:A;  c:B |] ==> c : A Int B
wenzelm@6580
   733
\tdx{IntD1}    c : A Int B ==> c:A
wenzelm@6580
   734
\tdx{IntD2}    c : A Int B ==> c:B
wenzelm@6580
   735
\tdx{IntE}     [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
wenzelm@6580
   736
wenzelm@6580
   737
\tdx{UN_I}     [| a:A;  b: B a |] ==> b: (UN x:A. B x)
wenzelm@6580
   738
\tdx{UN_E}     [| b: (UN x:A. B x);  !!x.[| x:A;  b:B x |] ==> R |] ==> R
wenzelm@6580
   739
wenzelm@6580
   740
\tdx{INT_I}    (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
wenzelm@6580
   741
\tdx{INT_D}    [| b: (INT x:A. B x);  a:A |] ==> b: B a
wenzelm@6580
   742
\tdx{INT_E}    [| b: (INT x:A. B x);  b: B a ==> R;  ~ a:A ==> R |] ==> R
wenzelm@6580
   743
wenzelm@6580
   744
\tdx{UnionI}   [| X:C;  A:X |] ==> A : Union C
wenzelm@6580
   745
\tdx{UnionE}   [| A : Union C;  !!X.[| A:X;  X:C |] ==> R |] ==> R
wenzelm@6580
   746
wenzelm@6580
   747
\tdx{InterI}   [| !!X. X:C ==> A:X |] ==> A : Inter C
wenzelm@6580
   748
\tdx{InterD}   [| A : Inter C;  X:C |] ==> A:X
wenzelm@6580
   749
\tdx{InterE}   [| A : Inter C;  A:X ==> R;  ~ X:C ==> R |] ==> R
wenzelm@6580
   750
wenzelm@6580
   751
\tdx{PowI}     A<=B ==> A: Pow B
wenzelm@6580
   752
\tdx{PowD}     A: Pow B ==> A<=B
wenzelm@6580
   753
wenzelm@6580
   754
\tdx{imageI}   [| x:A |] ==> f x : f``A
wenzelm@6580
   755
\tdx{imageE}   [| b : f``A;  !!x.[| b=f x;  x:A |] ==> P |] ==> P
wenzelm@6580
   756
wenzelm@6580
   757
\tdx{rangeI}   f x : range f
wenzelm@6580
   758
\tdx{rangeE}   [| b : range f;  !!x.[| b=f x |] ==> P |] ==> P
wenzelm@6580
   759
\end{ttbox}
wenzelm@6580
   760
\caption{Further derived rules for set theory} \label{hol-set2}
wenzelm@6580
   761
\end{figure}
wenzelm@6580
   762
wenzelm@6580
   763
wenzelm@6580
   764
\subsection{Axioms and rules of set theory}
wenzelm@6580
   765
Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}.  The
wenzelm@6580
   766
axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
wenzelm@6580
   767
that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms.  Of
wenzelm@6580
   768
course, \hbox{\tt op :} also serves as the membership relation.
wenzelm@6580
   769
wenzelm@6580
   770
All the other axioms are definitions.  They include the empty set, bounded
wenzelm@6580
   771
quantifiers, unions, intersections, complements and the subset relation.
wenzelm@6580
   772
They also include straightforward constructions on functions: image~({\tt``})
wenzelm@6580
   773
and \texttt{range}.
wenzelm@6580
   774
wenzelm@6580
   775
%The predicate \cdx{inj_on} is used for simulating type definitions.
wenzelm@6580
   776
%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the
wenzelm@6580
   777
%set~$A$, which specifies a subset of its domain type.  In a type
wenzelm@6580
   778
%definition, $f$ is the abstraction function and $A$ is the set of valid
wenzelm@6580
   779
%representations; we should not expect $f$ to be injective outside of~$A$.
wenzelm@6580
   780
wenzelm@6580
   781
%\begin{figure} \underscoreon
wenzelm@6580
   782
%\begin{ttbox}
wenzelm@6580
   783
%\tdx{Inv_f_f}    inj f ==> Inv f (f x) = x
wenzelm@6580
   784
%\tdx{f_Inv_f}    y : range f ==> f(Inv f y) = y
wenzelm@6580
   785
%
wenzelm@6580
   786
%\tdx{Inv_injective}
wenzelm@6580
   787
%    [| Inv f x=Inv f y; x: range f;  y: range f |] ==> x=y
wenzelm@6580
   788
%
wenzelm@6580
   789
%
wenzelm@6580
   790
%\tdx{monoI}      [| !!A B. A <= B ==> f A <= f B |] ==> mono f
wenzelm@6580
   791
%\tdx{monoD}      [| mono f;  A <= B |] ==> f A <= f B
wenzelm@6580
   792
%
wenzelm@6580
   793
%\tdx{injI}       [| !! x y. f x = f y ==> x=y |] ==> inj f
wenzelm@6580
   794
%\tdx{inj_inverseI}              (!!x. g(f x) = x) ==> inj f
wenzelm@6580
   795
%\tdx{injD}       [| inj f; f x = f y |] ==> x=y
wenzelm@6580
   796
%
wenzelm@6580
   797
%\tdx{inj_onI}  (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A
wenzelm@6580
   798
%\tdx{inj_onD}  [| inj_on f A;  f x=f y;  x:A;  y:A |] ==> x=y
wenzelm@6580
   799
%
wenzelm@6580
   800
%\tdx{inj_on_inverseI}
wenzelm@6580
   801
%    (!!x. x:A ==> g(f x) = x) ==> inj_on f A
wenzelm@6580
   802
%\tdx{inj_on_contraD}
wenzelm@6580
   803
%    [| inj_on f A;  x~=y;  x:A;  y:A |] ==> ~ f x=f y
wenzelm@6580
   804
%\end{ttbox}
wenzelm@6580
   805
%\caption{Derived rules involving functions} \label{hol-fun}
wenzelm@6580
   806
%\end{figure}
wenzelm@6580
   807
wenzelm@6580
   808
wenzelm@6580
   809
\begin{figure} \underscoreon
wenzelm@6580
   810
\begin{ttbox}
wenzelm@6580
   811
\tdx{Union_upper}     B:A ==> B <= Union A
wenzelm@6580
   812
\tdx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union A <= C
wenzelm@6580
   813
wenzelm@6580
   814
\tdx{Inter_lower}     B:A ==> Inter A <= B
wenzelm@6580
   815
\tdx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter A
wenzelm@6580
   816
wenzelm@6580
   817
\tdx{Un_upper1}       A <= A Un B
wenzelm@6580
   818
\tdx{Un_upper2}       B <= A Un B
wenzelm@6580
   819
\tdx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
wenzelm@6580
   820
wenzelm@6580
   821
\tdx{Int_lower1}      A Int B <= A
wenzelm@6580
   822
\tdx{Int_lower2}      A Int B <= B
wenzelm@6580
   823
\tdx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
wenzelm@6580
   824
\end{ttbox}
wenzelm@6580
   825
\caption{Derived rules involving subsets} \label{hol-subset}
wenzelm@6580
   826
\end{figure}
wenzelm@6580
   827
wenzelm@6580
   828
wenzelm@6580
   829
\begin{figure} \underscoreon   \hfuzz=4pt%suppress "Overfull \hbox" message
wenzelm@6580
   830
\begin{ttbox}
wenzelm@6580
   831
\tdx{Int_absorb}        A Int A = A
wenzelm@6580
   832
\tdx{Int_commute}       A Int B = B Int A
wenzelm@6580
   833
\tdx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
wenzelm@6580
   834
\tdx{Int_Un_distrib}    (A Un B)  Int C  =  (A Int C) Un (B Int C)
wenzelm@6580
   835
wenzelm@6580
   836
\tdx{Un_absorb}         A Un A = A
wenzelm@6580
   837
\tdx{Un_commute}        A Un B = B Un A
wenzelm@6580
   838
\tdx{Un_assoc}          (A Un B)  Un C  =  A Un (B Un C)
wenzelm@6580
   839
\tdx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
wenzelm@6580
   840
paulson@9212
   841
\tdx{Compl_disjoint}    A Int (-A) = {\ttlbrace}x. False{\ttrbrace}
paulson@9212
   842
\tdx{Compl_partition}   A Un  (-A) = {\ttlbrace}x. True{\ttrbrace}
paulson@9212
   843
\tdx{double_complement} -(-A) = A
paulson@9212
   844
\tdx{Compl_Un}          -(A Un B)  = (-A) Int (-B)
paulson@9212
   845
\tdx{Compl_Int}         -(A Int B) = (-A) Un (-B)
wenzelm@6580
   846
wenzelm@6580
   847
\tdx{Union_Un_distrib}  Union(A Un B) = (Union A) Un (Union B)
wenzelm@6580
   848
\tdx{Int_Union}         A Int (Union B) = (UN C:B. A Int C)
wenzelm@6580
   849
wenzelm@6580
   850
\tdx{Inter_Un_distrib}  Inter(A Un B) = (Inter A) Int (Inter B)
wenzelm@6580
   851
\tdx{Un_Inter}          A Un (Inter B) = (INT C:B. A Un C)
kleing@14013
   852
wenzelm@6580
   853
\end{ttbox}
wenzelm@6580
   854
\caption{Set equalities} \label{hol-equalities}
wenzelm@6580
   855
\end{figure}
kleing@14013
   856
%\tdx{Un_Union_image}    (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C)
kleing@14013
   857
%\tdx{Int_Inter_image}   (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C)
wenzelm@6580
   858
wenzelm@6580
   859
Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules.  Most are
wenzelm@9695
   860
obvious and resemble rules of Isabelle's ZF set theory.  Certain rules, such
wenzelm@9695
   861
as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI}, are designed for classical
wenzelm@9695
   862
reasoning; the rules \tdx{subsetD}, \tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are
wenzelm@9695
   863
not strictly necessary but yield more natural proofs.  Similarly,
wenzelm@9695
   864
\tdx{equalityCE} supports classical reasoning about extensionality, after the
wenzelm@9695
   865
fashion of \tdx{iffCE}.  See the file \texttt{HOL/Set.ML} for proofs
wenzelm@9695
   866
pertaining to set theory.
wenzelm@6580
   867
wenzelm@6580
   868
Figure~\ref{hol-subset} presents lattice properties of the subset relation.
wenzelm@6580
   869
Unions form least upper bounds; non-empty intersections form greatest lower
wenzelm@6580
   870
bounds.  Reasoning directly about subsets often yields clearer proofs than
wenzelm@6580
   871
reasoning about the membership relation.  See the file \texttt{HOL/subset.ML}.
wenzelm@6580
   872
wenzelm@6580
   873
Figure~\ref{hol-equalities} presents many common set equalities.  They
wenzelm@6580
   874
include commutative, associative and distributive laws involving unions,
wenzelm@6580
   875
intersections and complements.  For a complete listing see the file {\tt
wenzelm@6580
   876
HOL/equalities.ML}.
wenzelm@6580
   877
wenzelm@6580
   878
\begin{warn}
wenzelm@6580
   879
\texttt{Blast_tac} proves many set-theoretic theorems automatically.
wenzelm@6580
   880
Hence you seldom need to refer to the theorems above.
wenzelm@6580
   881
\end{warn}
wenzelm@6580
   882
wenzelm@6580
   883
\begin{figure}
wenzelm@6580
   884
\begin{center}
wenzelm@6580
   885
\begin{tabular}{rrr}
wenzelm@6580
   886
  \it name      &\it meta-type  & \it description \\ 
wenzelm@6580
   887
  \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
wenzelm@6580
   888
        & injective/surjective \\
wenzelm@6580
   889
  \cdx{inj_on}        & $[\alpha\To\beta ,\alpha\,set]\To bool$
wenzelm@6580
   890
        & injective over subset\\
wenzelm@6580
   891
  \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function
wenzelm@6580
   892
\end{tabular}
wenzelm@6580
   893
\end{center}
wenzelm@6580
   894
wenzelm@6580
   895
\underscoreon
wenzelm@6580
   896
\begin{ttbox}
wenzelm@6580
   897
\tdx{inj_def}         inj f      == ! x y. f x=f y --> x=y
wenzelm@6580
   898
\tdx{surj_def}        surj f     == ! y. ? x. y=f x
wenzelm@6580
   899
\tdx{inj_on_def}      inj_on f A == !x:A. !y:A. f x=f y --> x=y
wenzelm@6580
   900
\tdx{inv_def}         inv f      == (\%y. @x. f(x)=y)
wenzelm@6580
   901
\end{ttbox}
wenzelm@6580
   902
\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun}
wenzelm@6580
   903
\end{figure}
wenzelm@6580
   904
wenzelm@6580
   905
\subsection{Properties of functions}\nopagebreak
wenzelm@6580
   906
Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions.
wenzelm@6580
   907
Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse
wenzelm@6580
   908
of~$f$.  See the file \texttt{HOL/Fun.ML} for a complete listing of the derived
wenzelm@6580
   909
rules.  Reasoning about function composition (the operator~\sdx{o}) and the
wenzelm@6580
   910
predicate~\cdx{surj} is done simply by expanding the definitions.
wenzelm@6580
   911
wenzelm@6580
   912
There is also a large collection of monotonicity theorems for constructions
wenzelm@6580
   913
on sets in the file \texttt{HOL/mono.ML}.
wenzelm@6580
   914
paulson@7283
   915
wenzelm@6580
   916
\section{Generic packages}
wenzelm@6580
   917
\label{sec:HOL:generic-packages}
wenzelm@6580
   918
wenzelm@9695
   919
HOL instantiates most of Isabelle's generic packages, making available the
wenzelm@6580
   920
simplifier and the classical reasoner.
wenzelm@6580
   921
wenzelm@6580
   922
\subsection{Simplification and substitution}
wenzelm@6580
   923
wenzelm@6580
   924
Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset
wenzelm@6580
   925
(\texttt{simpset()}), which works for most purposes.  A quite minimal
wenzelm@6580
   926
simplification set for higher-order logic is~\ttindexbold{HOL_ss};
wenzelm@6580
   927
even more frugal is \ttindexbold{HOL_basic_ss}.  Equality~($=$), which
wenzelm@6580
   928
also expresses logical equivalence, may be used for rewriting.  See
wenzelm@6580
   929
the file \texttt{HOL/simpdata.ML} for a complete listing of the basic
wenzelm@6580
   930
simplification rules.
wenzelm@6580
   931
wenzelm@6580
   932
See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
wenzelm@6580
   933
{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution
wenzelm@6580
   934
and simplification.
wenzelm@6580
   935
wenzelm@6580
   936
\begin{warn}\index{simplification!of conjunctions}%
wenzelm@6580
   937
  Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous.  The
wenzelm@6580
   938
  left part of a conjunction helps in simplifying the right part.  This effect
wenzelm@6580
   939
  is not available by default: it can be slow.  It can be obtained by
wenzelm@6580
   940
  including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
wenzelm@6580
   941
\end{warn}
wenzelm@6580
   942
nipkow@8604
   943
\begin{warn}\index{simplification!of \texttt{if}}\label{if-simp}%
nipkow@8604
   944
  By default only the condition of an \ttindex{if} is simplified but not the
nipkow@8604
   945
  \texttt{then} and \texttt{else} parts. Of course the latter are simplified
nipkow@8604
   946
  once the condition simplifies to \texttt{True} or \texttt{False}. To ensure
nipkow@8604
   947
  full simplification of all parts of a conditional you must remove
nipkow@8604
   948
  \ttindex{if_weak_cong} from the simpset, \verb$delcongs [if_weak_cong]$.
nipkow@8604
   949
\end{warn}
nipkow@8604
   950
wenzelm@6580
   951
If the simplifier cannot use a certain rewrite rule --- either because
wenzelm@6580
   952
of nontermination or because its left-hand side is too flexible ---
wenzelm@6580
   953
then you might try \texttt{stac}:
wenzelm@6580
   954
\begin{ttdescription}
wenzelm@6580
   955
\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$,
wenzelm@6580
   956
  replaces in subgoal $i$ instances of $lhs$ by corresponding instances of
wenzelm@6580
   957
  $rhs$.  In case of multiple instances of $lhs$ in subgoal $i$, backtracking
wenzelm@6580
   958
  may be necessary to select the desired ones.
wenzelm@6580
   959
wenzelm@6580
   960
If $thm$ is a conditional equality, the instantiated condition becomes an
wenzelm@6580
   961
additional (first) subgoal.
wenzelm@6580
   962
\end{ttdescription}
wenzelm@6580
   963
wenzelm@9695
   964
HOL provides the tactic \ttindex{hyp_subst_tac}, which substitutes for an
wenzelm@9695
   965
equality throughout a subgoal and its hypotheses.  This tactic uses HOL's
wenzelm@9695
   966
general substitution rule.
wenzelm@6580
   967
wenzelm@6580
   968
\subsubsection{Case splitting}
wenzelm@6580
   969
\label{subsec:HOL:case:splitting}
wenzelm@6580
   970
wenzelm@9695
   971
HOL also provides convenient means for case splitting during rewriting. Goals
wenzelm@9695
   972
containing a subterm of the form \texttt{if}~$b$~{\tt then\dots else\dots}
wenzelm@9695
   973
often require a case distinction on $b$. This is expressed by the theorem
wenzelm@9695
   974
\tdx{split_if}:
wenzelm@6580
   975
$$
wenzelm@6580
   976
\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~
oheimb@7490
   977
((\Var{b} \to \Var{P}(\Var{x})) \land (\lnot \Var{b} \to \Var{P}(\Var{y})))
wenzelm@6580
   978
\eqno{(*)}
wenzelm@6580
   979
$$
wenzelm@6580
   980
For example, a simple instance of $(*)$ is
wenzelm@6580
   981
\[
wenzelm@6580
   982
x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~
wenzelm@6580
   983
((x \in A \to x \in A) \land (x \notin A \to x \in \{x\}))
wenzelm@6580
   984
\]
wenzelm@6580
   985
Because $(*)$ is too general as a rewrite rule for the simplifier (the
wenzelm@6580
   986
left-hand side is not a higher-order pattern in the sense of
wenzelm@6580
   987
\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}%
wenzelm@6580
   988
{Chap.\ts\ref{chap:simplification}}), there is a special infix function 
wenzelm@6580
   989
\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset}
wenzelm@6580
   990
(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a
wenzelm@6580
   991
simpset, as in
wenzelm@6580
   992
\begin{ttbox}
wenzelm@6580
   993
by(simp_tac (simpset() addsplits [split_if]) 1);
wenzelm@6580
   994
\end{ttbox}
wenzelm@6580
   995
The effect is that after each round of simplification, one occurrence of
wenzelm@6580
   996
\texttt{if} is split acording to \texttt{split_if}, until all occurences of
wenzelm@6580
   997
\texttt{if} have been eliminated.
wenzelm@6580
   998
wenzelm@6580
   999
It turns out that using \texttt{split_if} is almost always the right thing to
wenzelm@6580
  1000
do. Hence \texttt{split_if} is already included in the default simpset. If
wenzelm@6580
  1001
you want to delete it from a simpset, use \ttindexbold{delsplits}, which is
wenzelm@6580
  1002
the inverse of \texttt{addsplits}:
wenzelm@6580
  1003
\begin{ttbox}
wenzelm@6580
  1004
by(simp_tac (simpset() delsplits [split_if]) 1);
wenzelm@6580
  1005
\end{ttbox}
wenzelm@6580
  1006
wenzelm@6580
  1007
In general, \texttt{addsplits} accepts rules of the form
wenzelm@6580
  1008
\[
wenzelm@6580
  1009
\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs
wenzelm@6580
  1010
\]
wenzelm@6580
  1011
where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the
wenzelm@6580
  1012
right form because internally the left-hand side is
wenzelm@6580
  1013
$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples
oheimb@7490
  1014
are splitting rules for \texttt{case} expressions (see~{\S}\ref{subsec:list}
oheimb@7490
  1015
and~{\S}\ref{subsec:datatype:basics}).
wenzelm@6580
  1016
wenzelm@6580
  1017
Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also
wenzelm@6580
  1018
imperative versions of \texttt{addsplits} and \texttt{delsplits}
wenzelm@6580
  1019
\begin{ttbox}
wenzelm@6580
  1020
\ttindexbold{Addsplits}: thm list -> unit
wenzelm@6580
  1021
\ttindexbold{Delsplits}: thm list -> unit
wenzelm@6580
  1022
\end{ttbox}
wenzelm@6580
  1023
for adding splitting rules to, and deleting them from the current simpset.
wenzelm@6580
  1024
wenzelm@6580
  1025
\subsection{Classical reasoning}
wenzelm@6580
  1026
wenzelm@9695
  1027
HOL derives classical introduction rules for $\disj$ and~$\exists$, as well as
wenzelm@9695
  1028
classical elimination rules for~$\imp$ and~$\bimp$, and the swap rule; recall
wenzelm@9695
  1029
Fig.\ts\ref{hol-lemmas2} above.
wenzelm@6580
  1030
paulson@7283
  1031
The classical reasoner is installed.  Tactics such as \texttt{Blast_tac} and
paulson@7283
  1032
{\tt Best_tac} refer to the default claset (\texttt{claset()}), which works
paulson@7283
  1033
for most purposes.  Named clasets include \ttindexbold{prop_cs}, which
paulson@7283
  1034
includes the propositional rules, and \ttindexbold{HOL_cs}, which also
paulson@7283
  1035
includes quantifier rules.  See the file \texttt{HOL/cladata.ML} for lists of
paulson@7283
  1036
the classical rules,
wenzelm@6580
  1037
and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
wenzelm@6580
  1038
{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
wenzelm@6580
  1039
wenzelm@6580
  1040
wenzelm@13012
  1041
%FIXME outdated, both from the Isabelle and SVC perspective
wenzelm@13012
  1042
% \section{Calling the decision procedure SVC}\label{sec:HOL:SVC}
wenzelm@13012
  1043
wenzelm@13012
  1044
% \index{SVC decision procedure|(}
wenzelm@13012
  1045
wenzelm@13012
  1046
% The Stanford Validity Checker (SVC) is a tool that can check the validity of
wenzelm@13012
  1047
% certain types of formulae.  If it is installed on your machine, then
wenzelm@13012
  1048
% Isabelle/HOL can be configured to call it through the tactic
wenzelm@13012
  1049
% \ttindex{svc_tac}.  It is ideal for large tautologies and complex problems in
wenzelm@13012
  1050
% linear arithmetic.  Subexpressions that SVC cannot handle are automatically
wenzelm@13012
  1051
% replaced by variables, so you can call the tactic on any subgoal.  See the
wenzelm@13012
  1052
% file \texttt{HOL/ex/svc_test.ML} for examples.
wenzelm@13012
  1053
% \begin{ttbox} 
wenzelm@13012
  1054
% svc_tac   : int -> tactic
wenzelm@13012
  1055
% Svc.trace : bool ref      \hfill{\bf initially false}
wenzelm@13012
  1056
% \end{ttbox}
wenzelm@13012
  1057
wenzelm@13012
  1058
% \begin{ttdescription}
wenzelm@13012
  1059
% \item[\ttindexbold{svc_tac} $i$] attempts to prove subgoal~$i$ by translating
wenzelm@13012
  1060
%   it into a formula recognized by~SVC\@.  If it succeeds then the subgoal is
wenzelm@13012
  1061
%   removed.  It fails if SVC is unable to prove the subgoal.  It crashes with
wenzelm@13012
  1062
%   an error message if SVC appears not to be installed.  Numeric variables may
wenzelm@13012
  1063
%   have types \texttt{nat}, \texttt{int} or \texttt{real}.
wenzelm@13012
  1064
wenzelm@13012
  1065
% \item[\ttindexbold{Svc.trace}] is a flag that, if set, causes \texttt{svc_tac}
wenzelm@13012
  1066
%   to trace its operations: abstraction of the subgoal, translation to SVC
wenzelm@13012
  1067
%   syntax, SVC's response.
wenzelm@13012
  1068
% \end{ttdescription}
wenzelm@13012
  1069
wenzelm@13012
  1070
% Here is an example, with tracing turned on:
wenzelm@13012
  1071
% \begin{ttbox}
wenzelm@13012
  1072
% set Svc.trace;
wenzelm@13012
  1073
% {\out val it : bool = true}
wenzelm@13012
  1074
% Goal "(#3::nat)*a <= #2 + #4*b + #6*c  & #11 <= #2*a + b + #2*c & \ttback
wenzelm@13012
  1075
% \ttback     a + #3*b <= #5 + #2*c  --> #2 + #3*b <= #2*a + #6*c";
wenzelm@13012
  1076
wenzelm@13012
  1077
% by (svc_tac 1);
wenzelm@13012
  1078
% {\out Subgoal abstracted to}
wenzelm@13012
  1079
% {\out #3 * a <= #2 + #4 * b + #6 * c &}
wenzelm@13012
  1080
% {\out #11 <= #2 * a + b + #2 * c & a + #3 * b <= #5 + #2 * c -->}
wenzelm@13012
  1081
% {\out #2 + #3 * b <= #2 * a + #6 * c}
wenzelm@13012
  1082
% {\out Calling SVC:}
wenzelm@13012
  1083
% {\out (=> (<= 0  (F_c) )  (=> (<= 0  (F_b) )  (=> (<= 0  (F_a) )}
wenzelm@13012
  1084
% {\out   (=> (AND (<= {* 3  (F_a) }  {+ {+ 2  {* 4  (F_b) } }  }
wenzelm@13012
  1085
% {\out {* 6  (F_c) } } )  (AND (<= 11  {+ {+ {* 2  (F_a) }  (F_b) }}
wenzelm@13012
  1086
% {\out   {* 2  (F_c) } } )  (<= {+ (F_a)  {* 3  (F_b) } }  {+ 5  }
wenzelm@13012
  1087
% {\out {* 2  (F_c) } } ) ) )  (< {+ 2  {* 3  (F_b) } }  {+ 1  {+ }
wenzelm@13012
  1088
% {\out {* 2  (F_a) }  {* 6  (F_c) } } } ) ) ) ) ) }
wenzelm@13012
  1089
% {\out SVC Returns:}
wenzelm@13012
  1090
% {\out VALID}
wenzelm@13012
  1091
% {\out Level 1}
wenzelm@13012
  1092
% {\out #3 * a <= #2 + #4 * b + #6 * c &}
wenzelm@13012
  1093
% {\out #11 <= #2 * a + b + #2 * c & a + #3 * b <= #5 + #2 * c -->}
wenzelm@13012
  1094
% {\out #2 + #3 * b <= #2 * a + #6 * c}
wenzelm@13012
  1095
% {\out No subgoals!}
wenzelm@13012
  1096
% \end{ttbox}
wenzelm@13012
  1097
wenzelm@13012
  1098
wenzelm@13012
  1099
% \begin{warn}
wenzelm@13012
  1100
% Calling \ttindex{svc_tac} entails an above-average risk of
wenzelm@13012
  1101
% unsoundness.  Isabelle does not check SVC's result independently.  Moreover,
wenzelm@13012
  1102
% the tactic translates the submitted formula using code that lies outside
wenzelm@13012
  1103
% Isabelle's inference core.  Theorems that depend upon results proved using SVC
wenzelm@13012
  1104
% (and other oracles) are displayed with the annotation \texttt{[!]} attached.
wenzelm@13012
  1105
% You can also use \texttt{\#der (rep_thm $th$)} to examine the proof object of
wenzelm@13012
  1106
% theorem~$th$, as described in the \emph{Reference Manual}.  
wenzelm@13012
  1107
% \end{warn}
wenzelm@13012
  1108
wenzelm@13012
  1109
% To start, first download SVC from the Internet at URL
wenzelm@13012
  1110
% \begin{ttbox}
wenzelm@13012
  1111
% http://agamemnon.stanford.edu/~levitt/vc/index.html
wenzelm@13012
  1112
% \end{ttbox}
wenzelm@13012
  1113
% and install it using the instructions supplied.  SVC requires two environment
wenzelm@13012
  1114
% variables:
wenzelm@13012
  1115
% \begin{ttdescription}
wenzelm@13012
  1116
% \item[\ttindexbold{SVC_HOME}] is an absolute pathname to the SVC
wenzelm@13012
  1117
%     distribution directory. 
paulson@7283
  1118
    
wenzelm@13012
  1119
%   \item[\ttindexbold{SVC_MACHINE}] identifies the type of computer and
wenzelm@13012
  1120
%     operating system.  
wenzelm@13012
  1121
% \end{ttdescription}
wenzelm@13012
  1122
% You can set these environment variables either using the Unix shell or through
wenzelm@13012
  1123
% an Isabelle \texttt{settings} file.  Isabelle assumes SVC to be installed if
wenzelm@13012
  1124
% \texttt{SVC_HOME} is defined.
wenzelm@13012
  1125
wenzelm@13012
  1126
% \paragraph*{Acknowledgement.}  This interface uses code supplied by S{\o}ren
wenzelm@13012
  1127
% Heilmann.
wenzelm@13012
  1128
wenzelm@13012
  1129
wenzelm@13012
  1130
% \index{SVC decision procedure|)}
paulson@7283
  1131
paulson@7283
  1132
paulson@7283
  1133
paulson@7283
  1134
wenzelm@6580
  1135
\section{Types}\label{sec:HOL:Types}
wenzelm@9695
  1136
This section describes HOL's basic predefined types ($\alpha \times \beta$,
wenzelm@9695
  1137
$\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for introducing new
wenzelm@9695
  1138
types in general.  The most important type construction, the
wenzelm@9695
  1139
\texttt{datatype}, is treated separately in {\S}\ref{sec:HOL:datatype}.
wenzelm@6580
  1140
wenzelm@6580
  1141
wenzelm@6580
  1142
\subsection{Product and sum types}\index{*"* type}\index{*"+ type}
wenzelm@6580
  1143
\label{subsec:prod-sum}
wenzelm@6580
  1144
wenzelm@6580
  1145
\begin{figure}[htbp]
wenzelm@6580
  1146
\begin{constants}
wenzelm@6580
  1147
  \it symbol    & \it meta-type &           & \it description \\ 
wenzelm@6580
  1148
  \cdx{Pair}    & $[\alpha,\beta]\To \alpha\times\beta$
wenzelm@6580
  1149
        & & ordered pairs $(a,b)$ \\
wenzelm@6580
  1150
  \cdx{fst}     & $\alpha\times\beta \To \alpha$        & & first projection\\
wenzelm@6580
  1151
  \cdx{snd}     & $\alpha\times\beta \To \beta$         & & second projection\\
wenzelm@6580
  1152
  \cdx{split}   & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ 
wenzelm@6580
  1153
        & & generalized projection\\
wenzelm@6580
  1154
  \cdx{Sigma}  & 
wenzelm@6580
  1155
        $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
wenzelm@6580
  1156
        & general sum of sets
wenzelm@6580
  1157
\end{constants}
wenzelm@6580
  1158
%\tdx{fst_def}      fst p     == @a. ? b. p = (a,b)
wenzelm@6580
  1159
%\tdx{snd_def}      snd p     == @b. ? a. p = (a,b)
wenzelm@6580
  1160
%\tdx{split_def}    split c p == c (fst p) (snd p)
kleing@14013
  1161
\begin{ttbox}\makeatletter
wenzelm@6580
  1162
\tdx{Sigma_def}    Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
wenzelm@6580
  1163
wenzelm@6580
  1164
\tdx{Pair_eq}      ((a,b) = (a',b')) = (a=a' & b=b')
wenzelm@6580
  1165
\tdx{Pair_inject}  [| (a, b) = (a',b');  [| a=a';  b=b' |] ==> R |] ==> R
wenzelm@6580
  1166
\tdx{PairE}        [| !!x y. p = (x,y) ==> Q |] ==> Q
wenzelm@6580
  1167
wenzelm@6580
  1168
\tdx{fst_conv}     fst (a,b) = a
wenzelm@6580
  1169
\tdx{snd_conv}     snd (a,b) = b
wenzelm@6580
  1170
\tdx{surjective_pairing}  p = (fst p,snd p)
wenzelm@6580
  1171
wenzelm@6580
  1172
\tdx{split}        split c (a,b) = c a b
wenzelm@6580
  1173
\tdx{split_split}  R(split c p) = (! x y. p = (x,y) --> R(c x y))
wenzelm@6580
  1174
wenzelm@6580
  1175
\tdx{SigmaI}    [| a:A;  b:B a |] ==> (a,b) : Sigma A B
paulson@9212
  1176
paulson@9212
  1177
\tdx{SigmaE}    [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P 
paulson@9212
  1178
          |] ==> P
wenzelm@6580
  1179
\end{ttbox}
wenzelm@6580
  1180
\caption{Type $\alpha\times\beta$}\label{hol-prod}
wenzelm@6580
  1181
\end{figure} 
wenzelm@6580
  1182
wenzelm@6580
  1183
Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type
wenzelm@6580
  1184
$\alpha\times\beta$, with the ordered pair syntax $(a, b)$.  General
wenzelm@6580
  1185
tuples are simulated by pairs nested to the right:
wenzelm@6580
  1186
\begin{center}
wenzelm@6580
  1187
\begin{tabular}{c|c}
wenzelm@6580
  1188
external & internal \\
wenzelm@6580
  1189
\hline
wenzelm@6580
  1190
$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\
wenzelm@6580
  1191
\hline
wenzelm@6580
  1192
$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\
wenzelm@6580
  1193
\end{tabular}
wenzelm@6580
  1194
\end{center}
wenzelm@6580
  1195
In addition, it is possible to use tuples
wenzelm@6580
  1196
as patterns in abstractions:
wenzelm@6580
  1197
\begin{center}
wenzelm@6580
  1198
{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} 
wenzelm@6580
  1199
\end{center}
wenzelm@6580
  1200
Nested patterns are also supported.  They are translated stepwise:
paulson@9212
  1201
\begin{eqnarray*}
paulson@9212
  1202
\hbox{\tt\%($x$,$y$,$z$).\ $t$} 
paulson@9212
  1203
   & \leadsto & \hbox{\tt\%($x$,($y$,$z$)).\ $t$} \\
paulson@9212
  1204
   & \leadsto & \hbox{\tt split(\%$x$.\%($y$,$z$).\ $t$)}\\
paulson@9212
  1205
   & \leadsto & \hbox{\tt split(\%$x$.\ split(\%$y$ $z$.\ $t$))}
paulson@9212
  1206
\end{eqnarray*}
paulson@9212
  1207
The reverse translation is performed upon printing.
wenzelm@6580
  1208
\begin{warn}
wenzelm@6580
  1209
  The translation between patterns and \texttt{split} is performed automatically
wenzelm@6580
  1210
  by the parser and printer.  Thus the internal and external form of a term
wenzelm@6580
  1211
  may differ, which can affects proofs.  For example the term {\tt
wenzelm@6580
  1212
  (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the
wenzelm@6580
  1213
  default simpset) to rewrite to {\tt(b,a)}.
wenzelm@6580
  1214
\end{warn}
wenzelm@6580
  1215
In addition to explicit $\lambda$-abstractions, patterns can be used in any
wenzelm@6580
  1216
variable binding construct which is internally described by a
wenzelm@6580
  1217
$\lambda$-abstraction.  Some important examples are
wenzelm@6580
  1218
\begin{description}
wenzelm@6580
  1219
\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
wenzelm@10109
  1220
\item[Quantifiers:] \texttt{ALL~{\it pattern}:$A$.~$P$}
wenzelm@10109
  1221
\item[Choice:] {\underscoreon \tt SOME~{\it pattern}.~$P$}
wenzelm@6580
  1222
\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
wenzelm@10109
  1223
\item[Sets:] \texttt{{\ttlbrace}{\it pattern}.~$P${\ttrbrace}}
wenzelm@6580
  1224
\end{description}
wenzelm@6580
  1225
wenzelm@6580
  1226
There is a simple tactic which supports reasoning about patterns:
wenzelm@6580
  1227
\begin{ttdescription}
wenzelm@6580
  1228
\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all
wenzelm@6580
  1229
  {\tt!!}-quantified variables of product type by individual variables for
wenzelm@6580
  1230
  each component.  A simple example:
wenzelm@6580
  1231
\begin{ttbox}
wenzelm@6580
  1232
{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p}
wenzelm@6580
  1233
by(split_all_tac 1);
wenzelm@6580
  1234
{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)}
wenzelm@6580
  1235
\end{ttbox}
wenzelm@6580
  1236
\end{ttdescription}
wenzelm@6580
  1237
wenzelm@6580
  1238
Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit}
wenzelm@6580
  1239
which contains only a single element named {\tt()} with the property
wenzelm@6580
  1240
\begin{ttbox}
wenzelm@6580
  1241
\tdx{unit_eq}       u = ()
wenzelm@6580
  1242
\end{ttbox}
wenzelm@6580
  1243
\bigskip
wenzelm@6580
  1244
wenzelm@6580
  1245
Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$
wenzelm@6580
  1246
which associates to the right and has a lower priority than $*$: $\tau@1 +
wenzelm@6580
  1247
\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$.
wenzelm@6580
  1248
wenzelm@6580
  1249
The definition of products and sums in terms of existing types is not
wenzelm@6580
  1250
shown.  The constructions are fairly standard and can be found in the
berghofe@7325
  1251
respective theory files. Although the sum and product types are
berghofe@7325
  1252
constructed manually for foundational reasons, they are represented as
oheimb@7490
  1253
actual datatypes later (see {\S}\ref{subsec:datatype:rep_datatype}).
berghofe@7325
  1254
Therefore, the theory \texttt{Datatype} should be used instead of
berghofe@7325
  1255
\texttt{Sum} or \texttt{Prod}.
wenzelm@6580
  1256
wenzelm@6580
  1257
\begin{figure}
wenzelm@6580
  1258
\begin{constants}
wenzelm@6580
  1259
  \it symbol    & \it meta-type &           & \it description \\ 
wenzelm@6580
  1260
  \cdx{Inl}     & $\alpha \To \alpha+\beta$    & & first injection\\
wenzelm@6580
  1261
  \cdx{Inr}     & $\beta \To \alpha+\beta$     & & second injection\\
wenzelm@6580
  1262
  \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$
wenzelm@6580
  1263
        & & conditional
wenzelm@6580
  1264
\end{constants}
wenzelm@6580
  1265
\begin{ttbox}\makeatletter
wenzelm@6580
  1266
\tdx{Inl_not_Inr}    Inl a ~= Inr b
wenzelm@6580
  1267
wenzelm@6580
  1268
\tdx{inj_Inl}        inj Inl
wenzelm@6580
  1269
\tdx{inj_Inr}        inj Inr
wenzelm@6580
  1270
wenzelm@6580
  1271
\tdx{sumE}           [| !!x. P(Inl x);  !!y. P(Inr y) |] ==> P s
wenzelm@6580
  1272
wenzelm@6580
  1273
\tdx{sum_case_Inl}   sum_case f g (Inl x) = f x
wenzelm@6580
  1274
\tdx{sum_case_Inr}   sum_case f g (Inr x) = g x
wenzelm@6580
  1275
wenzelm@6580
  1276
\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s
berghofe@7325
  1277
\tdx{sum.split_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &
wenzelm@6580
  1278
                                     (! y. s = Inr(y) --> R(g(y))))
wenzelm@6580
  1279
\end{ttbox}
wenzelm@6580
  1280
\caption{Type $\alpha+\beta$}\label{hol-sum}
wenzelm@6580
  1281
\end{figure}
wenzelm@6580
  1282
wenzelm@6580
  1283
\begin{figure}
wenzelm@6580
  1284
\index{*"< symbol}
wenzelm@6580
  1285
\index{*"* symbol}
wenzelm@6580
  1286
\index{*div symbol}
wenzelm@6580
  1287
\index{*mod symbol}
paulson@9212
  1288
\index{*dvd symbol}
wenzelm@6580
  1289
\index{*"+ symbol}
wenzelm@6580
  1290
\index{*"- symbol}
wenzelm@6580
  1291
\begin{constants}
wenzelm@6580
  1292
  \it symbol    & \it meta-type & \it priority & \it description \\ 
paulson@9212
  1293
  \cdx{0}       & $\alpha$  & & zero \\
wenzelm@6580
  1294
  \cdx{Suc}     & $nat \To nat$ & & successor function\\
paulson@9212
  1295
  \tt *    & $[\alpha,\alpha]\To \alpha$    &  Left 70 & multiplication \\
paulson@9212
  1296
  \tt div  & $[\alpha,\alpha]\To \alpha$    &  Left 70 & division\\
paulson@9212
  1297
  \tt mod  & $[\alpha,\alpha]\To \alpha$    &  Left 70 & modulus\\
paulson@9212
  1298
  \tt dvd  & $[\alpha,\alpha]\To bool$     &  Left 70 & ``divides'' relation\\
paulson@9212
  1299
  \tt +    & $[\alpha,\alpha]\To \alpha$    &  Left 65 & addition\\
paulson@9212
  1300
  \tt -    & $[\alpha,\alpha]\To \alpha$    &  Left 65 & subtraction
wenzelm@6580
  1301
\end{constants}
wenzelm@6580
  1302
\subcaption{Constants and infixes}
wenzelm@6580
  1303
wenzelm@6580
  1304
\begin{ttbox}\makeatother
wenzelm@6580
  1305
\tdx{nat_induct}     [| P 0; !!n. P n ==> P(Suc n) |]  ==> P n
wenzelm@6580
  1306
wenzelm@6580
  1307
\tdx{Suc_not_Zero}   Suc m ~= 0
wenzelm@6580
  1308
\tdx{inj_Suc}        inj Suc
wenzelm@6580
  1309
\tdx{n_not_Suc_n}    n~=Suc n
wenzelm@6580
  1310
\subcaption{Basic properties}
wenzelm@6580
  1311
\end{ttbox}
wenzelm@6580
  1312
\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1}
wenzelm@6580
  1313
\end{figure}
wenzelm@6580
  1314
wenzelm@6580
  1315
wenzelm@6580
  1316
\begin{figure}
wenzelm@6580
  1317
\begin{ttbox}\makeatother
wenzelm@6580
  1318
              0+n           = n
wenzelm@6580
  1319
              (Suc m)+n     = Suc(m+n)
wenzelm@6580
  1320
wenzelm@6580
  1321
              m-0           = m
wenzelm@6580
  1322
              0-n           = n
wenzelm@6580
  1323
              Suc(m)-Suc(n) = m-n
wenzelm@6580
  1324
wenzelm@6580
  1325
              0*n           = 0
wenzelm@6580
  1326
              Suc(m)*n      = n + m*n
wenzelm@6580
  1327
wenzelm@6580
  1328
\tdx{mod_less}      m<n ==> m mod n = m
wenzelm@6580
  1329
\tdx{mod_geq}       [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n
wenzelm@6580
  1330
wenzelm@6580
  1331
\tdx{div_less}      m<n ==> m div n = 0
wenzelm@6580
  1332
\tdx{div_geq}       [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)
wenzelm@6580
  1333
\end{ttbox}
wenzelm@6580
  1334
\caption{Recursion equations for the arithmetic operators} \label{hol-nat2}
wenzelm@6580
  1335
\end{figure}
wenzelm@6580
  1336
wenzelm@6580
  1337
\subsection{The type of natural numbers, \textit{nat}}
wenzelm@6580
  1338
\index{nat@{\textit{nat}} type|(}
wenzelm@6580
  1339
paulson@15455
  1340
The theory \thydx{Nat} defines the natural numbers in a roundabout but
wenzelm@6580
  1341
traditional way.  The axiom of infinity postulates a type~\tydx{ind} of
wenzelm@6580
  1342
individuals, which is non-empty and closed under an injective operation.  The
wenzelm@6580
  1343
natural numbers are inductively generated by choosing an arbitrary individual
wenzelm@6580
  1344
for~0 and using the injective operation to take successors.  This is a least
paulson@15455
  1345
fixedpoint construction.  
wenzelm@6580
  1346
paulson@9212
  1347
Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the overloaded
paulson@9212
  1348
functions of this class (especially \cdx{<} and \cdx{<=}, but also \cdx{min},
paulson@15455
  1349
\cdx{max} and \cdx{LEAST}) available on \tydx{nat}.  Theory \thydx{Nat} 
paulson@15455
  1350
also shows that {\tt<=} is a linear order, so \tydx{nat} is
paulson@9212
  1351
also an instance of class \cldx{linorder}.
wenzelm@6580
  1352
paulson@15455
  1353
Theory \thydx{NatArith} develops arithmetic on the natural numbers.  It defines
wenzelm@6580
  1354
addition, multiplication and subtraction.  Theory \thydx{Divides} defines
wenzelm@6580
  1355
division, remainder and the ``divides'' relation.  The numerous theorems
wenzelm@6580
  1356
proved include commutative, associative, distributive, identity and
wenzelm@6580
  1357
cancellation laws.  See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}.  The
wenzelm@6580
  1358
recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on
wenzelm@6580
  1359
\texttt{nat} are part of the default simpset.
wenzelm@6580
  1360
wenzelm@6580
  1361
Functions on \tydx{nat} can be defined by primitive or well-founded recursion;
oheimb@7490
  1362
see {\S}\ref{sec:HOL:recursive}.  A simple example is addition.
wenzelm@6580
  1363
Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following
wenzelm@6580
  1364
the standard convention.
wenzelm@6580
  1365
\begin{ttbox}
wenzelm@6580
  1366
\sdx{primrec}
wenzelm@6580
  1367
      "0 + n = n"
wenzelm@6580
  1368
  "Suc m + n = Suc (m + n)"
wenzelm@6580
  1369
\end{ttbox}
wenzelm@6580
  1370
There is also a \sdx{case}-construct
wenzelm@6580
  1371
of the form
wenzelm@6580
  1372
\begin{ttbox}
wenzelm@6580
  1373
case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\)
wenzelm@6580
  1374
\end{ttbox}
wenzelm@6580
  1375
Note that Isabelle insists on precisely this format; you may not even change
wenzelm@6580
  1376
the order of the two cases.
wenzelm@6580
  1377
Both \texttt{primrec} and \texttt{case} are realized by a recursion operator
berghofe@7325
  1378
\cdx{nat_rec}, which is available because \textit{nat} is represented as
oheimb@7490
  1379
a datatype (see {\S}\ref{subsec:datatype:rep_datatype}).
wenzelm@6580
  1380
wenzelm@6580
  1381
%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
wenzelm@6580
  1382
%Recursion along this relation resembles primitive recursion, but is
wenzelm@6580
  1383
%stronger because we are in higher-order logic; using primitive recursion to
wenzelm@6580
  1384
%define a higher-order function, we can easily Ackermann's function, which
wenzelm@6580
  1385
%is not primitive recursive \cite[page~104]{thompson91}.
wenzelm@6580
  1386
%The transitive closure of \cdx{pred_nat} is~$<$.  Many functions on the
wenzelm@6580
  1387
%natural numbers are most easily expressed using recursion along~$<$.
wenzelm@6580
  1388
wenzelm@6580
  1389
Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$
wenzelm@6580
  1390
in subgoal~$i$ using theorem \texttt{nat_induct}.  There is also the derived
wenzelm@6580
  1391
theorem \tdx{less_induct}:
wenzelm@6580
  1392
\begin{ttbox}
wenzelm@6580
  1393
[| !!n. [| ! m. m<n --> P m |] ==> P n |]  ==>  P n
wenzelm@6580
  1394
\end{ttbox}
wenzelm@6580
  1395
wenzelm@6580
  1396
paulson@9212
  1397
\subsection{Numerical types and numerical reasoning}
paulson@9212
  1398
wenzelm@9695
  1399
The integers (type \tdx{int}) are also available in HOL, and the reals (type
kleing@14024
  1400
\tdx{real}) are available in the logic image \texttt{HOL-Complex}.  They support
paulson@9212
  1401
the expected operations of addition (\texttt{+}), subtraction (\texttt{-}) and
paulson@9212
  1402
multiplication (\texttt{*}), and much else.  Type \tdx{int} provides the
paulson@9212
  1403
\texttt{div} and \texttt{mod} operators, while type \tdx{real} provides real
paulson@9212
  1404
division and other operations.  Both types belong to class \cldx{linorder}, so
paulson@9212
  1405
they inherit the relational operators and all the usual properties of linear
paulson@9212
  1406
orderings.  For full details, please survey the theories in subdirectories
kleing@14024
  1407
\texttt{Integ}, \texttt{Real}, and \texttt{Complex}.
paulson@9212
  1408
wenzelm@13012
  1409
All three numeric types admit numerals of the form \texttt{$sd\ldots d$},
paulson@9212
  1410
where $s$ is an optional minus sign and $d\ldots d$ is a string of digits.
paulson@9212
  1411
Numerals are represented internally by a datatype for binary notation, which
paulson@9212
  1412
allows numerical calculations to be performed by rewriting.  For example, the
wenzelm@13012
  1413
integer division of \texttt{54342339} by \texttt{3452} takes about five
paulson@9212
  1414
seconds.  By default, the simplifier cancels like terms on the opposite sites
paulson@9212
  1415
of relational operators (reducing \texttt{z+x<x+y} to \texttt{z<y}, for
wenzelm@13012
  1416
instance.  The simplifier also collects like terms, replacing \texttt{x+y+x*3}
wenzelm@13012
  1417
by \texttt{4*x+y}.
wenzelm@13012
  1418
wenzelm@13012
  1419
Sometimes numerals are not wanted, because for example \texttt{n+3} does not
paulson@9212
  1420
match a pattern of the form \texttt{Suc $k$}.  You can re-arrange the form of
wenzelm@13012
  1421
an arithmetic expression by proving (via \texttt{subgoal_tac}) a lemma such as
wenzelm@13012
  1422
\texttt{n+3 = Suc (Suc (Suc n))}.  As an alternative, you can disable the
paulson@9212
  1423
fancier simplifications by using a basic simpset such as \texttt{HOL_ss}
paulson@9212
  1424
rather than the default one, \texttt{simpset()}.
paulson@9212
  1425
paulson@15455
  1426
Reasoning about arithmetic inequalities can be tedious.  Fortunately, HOL
paulson@15455
  1427
provides a decision procedure for \emph{linear arithmetic}: formulae involving
paulson@15455
  1428
addition and subtraction. The simplifier invokes a weak version of this
paulson@9212
  1429
decision procedure automatically. If this is not sufficent, you can invoke the
haftmann@31101
  1430
full procedure \ttindex{Lin_Arith.tac} explicitly.  It copes with arbitrary
wenzelm@6580
  1431
formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt
paulson@15455
  1432
  min}, {\tt max} and numerical constants. Other subterms are treated as
paulson@15455
  1433
atomic, while subformulae not involving numerical types are ignored. Quantified
wenzelm@6580
  1434
subformulae are ignored unless they are positive universal or negative
paulson@15455
  1435
existential. The running time is exponential in the number of
wenzelm@6580
  1436
occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case
paulson@15455
  1437
distinctions.
paulson@15455
  1438
If {\tt k} is a numeral, then {\tt div k}, {\tt mod k} and
paulson@15455
  1439
{\tt k dvd} are also supported. The former two are eliminated
paulson@15455
  1440
by case distinctions, again blowing up the running time.
haftmann@31101
  1441
If the formula involves explicit quantifiers, \texttt{Lin_Arith.tac} may take
paulson@15455
  1442
super-exponential time and space.
paulson@15455
  1443
haftmann@31101
  1444
If \texttt{Lin_Arith.tac} fails, try to find relevant arithmetic results in
haftmann@22921
  1445
the library.  The theories \texttt{Nat} and \texttt{NatArith} contain
haftmann@22921
  1446
theorems about {\tt<}, {\tt<=}, \texttt{+}, \texttt{-} and \texttt{*}.
haftmann@22921
  1447
Theory \texttt{Divides} contains theorems about \texttt{div} and
haftmann@22921
  1448
\texttt{mod}.  Use Proof General's \emph{find} button (or other search
haftmann@22921
  1449
facilities) to locate them.
paulson@9212
  1450
paulson@9212
  1451
\index{nat@{\textit{nat}} type|)}
paulson@9212
  1452
wenzelm@6580
  1453
wenzelm@6580
  1454
\begin{figure}
wenzelm@6580
  1455
\index{#@{\tt[]} symbol}
wenzelm@6580
  1456
\index{#@{\tt\#} symbol}
wenzelm@6580
  1457
\index{"@@{\tt\at} symbol}
wenzelm@6580
  1458
\index{*"! symbol}
wenzelm@6580
  1459
\begin{constants}
wenzelm@6580
  1460
  \it symbol & \it meta-type & \it priority & \it description \\
wenzelm@6580
  1461
  \tt[]    & $\alpha\,list$ & & empty list\\
wenzelm@6580
  1462
  \tt \#   & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & 
wenzelm@6580
  1463
        list constructor \\
wenzelm@6580
  1464
  \cdx{null}    & $\alpha\,list \To bool$ & & emptiness test\\
wenzelm@6580
  1465
  \cdx{hd}      & $\alpha\,list \To \alpha$ & & head \\
wenzelm@6580
  1466
  \cdx{tl}      & $\alpha\,list \To \alpha\,list$ & & tail \\
wenzelm@6580
  1467
  \cdx{last}    & $\alpha\,list \To \alpha$ & & last element \\
wenzelm@6580
  1468
  \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\
wenzelm@6580
  1469
  \tt\at  & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\
wenzelm@6580
  1470
  \cdx{map}     & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$
wenzelm@6580
  1471
        & & apply to all\\
wenzelm@6580
  1472
  \cdx{filter}  & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$
wenzelm@6580
  1473
        & & filter functional\\
wenzelm@6580
  1474
  \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\
wenzelm@6580
  1475
  \sdx{mem}  & $\alpha \To \alpha\,list \To bool$  &  Left 55   & membership\\
wenzelm@6580
  1476
  \cdx{foldl}   & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ &
wenzelm@6580
  1477
  & iteration \\
wenzelm@6580
  1478
  \cdx{concat}   & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\
wenzelm@6580
  1479
  \cdx{rev}     & $\alpha\,list \To \alpha\,list$ & & reverse \\
wenzelm@6580
  1480
  \cdx{length}  & $\alpha\,list \To nat$ & & length \\
wenzelm@6580
  1481
  \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\
wenzelm@6580
  1482
  \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ &&
paulson@9212
  1483
    take/drop a prefix \\
wenzelm@6580
  1484
  \cdx{takeWhile},\\
wenzelm@6580
  1485
  \cdx{dropWhile} &
wenzelm@6580
  1486
    $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ &&
paulson@9212
  1487
    take/drop a prefix
wenzelm@6580
  1488
\end{constants}
wenzelm@6580
  1489
\subcaption{Constants and infixes}
wenzelm@6580
  1490
wenzelm@6580
  1491
\begin{center} \tt\frenchspacing
wenzelm@6580
  1492
\begin{tabular}{rrr} 
wenzelm@6580
  1493
  \it external        & \it internal  & \it description \\{}
wenzelm@6580
  1494
  [$x@1$, $\dots$, $x@n$]  &  $x@1$ \# $\cdots$ \# $x@n$ \# [] &
wenzelm@6580
  1495
        \rm finite list \\{}
wenzelm@6580
  1496
  [$x$:$l$. $P$]  & filter ($\lambda x{.}P$) $l$ & 
wenzelm@6580
  1497
        \rm list comprehension
wenzelm@6580
  1498
\end{tabular}
wenzelm@6580
  1499
\end{center}
wenzelm@6580
  1500
\subcaption{Translations}
wenzelm@6580
  1501
\caption{The theory \thydx{List}} \label{hol-list}
wenzelm@6580
  1502
\end{figure}
wenzelm@6580
  1503
wenzelm@6580
  1504
wenzelm@6580
  1505
\begin{figure}
wenzelm@6580
  1506
\begin{ttbox}\makeatother
wenzelm@6580
  1507
null [] = True
wenzelm@6580
  1508
null (x#xs) = False
wenzelm@6580
  1509
wenzelm@6580
  1510
hd (x#xs) = x
paulson@9212
  1511
wenzelm@6580
  1512
tl (x#xs) = xs
wenzelm@6580
  1513
tl [] = []
wenzelm@6580
  1514
wenzelm@6580
  1515
[] @ ys = ys
wenzelm@6580
  1516
(x#xs) @ ys = x # xs @ ys
wenzelm@6580
  1517
paulson@9212
  1518
set [] = \ttlbrace\ttrbrace
paulson@9212
  1519
set (x#xs) = insert x (set xs)
paulson@9212
  1520
paulson@9212
  1521
x mem [] = False
paulson@9212
  1522
x mem (y#ys) = (if y=x then True else x mem ys)
paulson@9212
  1523
paulson@9212
  1524
concat([]) = []
paulson@9212
  1525
concat(x#xs) = x @ concat(xs)
paulson@9212
  1526
paulson@9212
  1527
rev([]) = []
paulson@9212
  1528
rev(x#xs) = rev(xs) @ [x]
paulson@9212
  1529
paulson@9212
  1530
length([]) = 0
paulson@9212
  1531
length(x#xs) = Suc(length(xs))
paulson@9212
  1532
paulson@9212
  1533
xs!0 = hd xs
paulson@9212
  1534
xs!(Suc n) = (tl xs)!n
paulson@9212
  1535
\end{ttbox}
paulson@9212
  1536
\caption{Simple list processing functions}
paulson@9212
  1537
\label{fig:HOL:list-simps}
paulson@9212
  1538
\end{figure}
paulson@9212
  1539
paulson@9212
  1540
\begin{figure}
paulson@9212
  1541
\begin{ttbox}\makeatother
wenzelm@6580
  1542
map f [] = []
wenzelm@6580
  1543
map f (x#xs) = f x # map f xs
wenzelm@6580
  1544
wenzelm@6580
  1545
filter P [] = []
wenzelm@6580
  1546
filter P (x#xs) = (if P x then x#filter P xs else filter P xs)
wenzelm@6580
  1547
wenzelm@6580
  1548
foldl f a [] = a
wenzelm@6580
  1549
foldl f a (x#xs) = foldl f (f a x) xs
wenzelm@6580
  1550
wenzelm@6580
  1551
take n [] = []
wenzelm@6580
  1552
take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)
wenzelm@6580
  1553
wenzelm@6580
  1554
drop n [] = []
wenzelm@6580
  1555
drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)
wenzelm@6580
  1556
wenzelm@6580
  1557
takeWhile P [] = []
wenzelm@6580
  1558
takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])
wenzelm@6580
  1559
wenzelm@6580
  1560
dropWhile P [] = []
wenzelm@6580
  1561
dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)
wenzelm@6580
  1562
\end{ttbox}
paulson@9212
  1563
\caption{Further list processing functions}
paulson@9212
  1564
\label{fig:HOL:list-simps2}
wenzelm@6580
  1565
\end{figure}
wenzelm@6580
  1566
wenzelm@6580
  1567
wenzelm@6580
  1568
\subsection{The type constructor for lists, \textit{list}}
wenzelm@6580
  1569
\label{subsec:list}
wenzelm@6580
  1570
\index{list@{\textit{list}} type|(}
wenzelm@6580
  1571
wenzelm@6580
  1572
Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list
wenzelm@6580
  1573
operations with their types and syntax.  Type $\alpha \; list$ is
wenzelm@6580
  1574
defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}.
wenzelm@6580
  1575
As a result the generic structural induction and case analysis tactics
nipkow@8424
  1576
\texttt{induct\_tac} and \texttt{cases\_tac} also become available for
wenzelm@6580
  1577
lists.  A \sdx{case} construct of the form
wenzelm@6580
  1578
\begin{center}\tt
wenzelm@6580
  1579
case $e$ of [] => $a$  |  \(x\)\#\(xs\) => b
wenzelm@6580
  1580
\end{center}
oheimb@7490
  1581
is defined by translation.  For details see~{\S}\ref{sec:HOL:datatype}. There
wenzelm@6580
  1582
is also a case splitting rule \tdx{split_list_case}
wenzelm@6580
  1583
\[
wenzelm@6580
  1584
\begin{array}{l}
wenzelm@6580
  1585
P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~
wenzelm@6580
  1586
               x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\
wenzelm@6580
  1587
((e = \texttt{[]} \to P(a)) \land
wenzelm@6580
  1588
 (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs)))
wenzelm@6580
  1589
\end{array}
wenzelm@6580
  1590
\]
wenzelm@6580
  1591
which can be fed to \ttindex{addsplits} just like
oheimb@7490
  1592
\texttt{split_if} (see~{\S}\ref{subsec:HOL:case:splitting}).
wenzelm@6580
  1593
wenzelm@6580
  1594
\texttt{List} provides a basic library of list processing functions defined by
oheimb@7490
  1595
primitive recursion (see~{\S}\ref{sec:HOL:primrec}).  The recursion equations
paulson@9212
  1596
are shown in Figs.\ts\ref{fig:HOL:list-simps} and~\ref{fig:HOL:list-simps2}.
wenzelm@6580
  1597
wenzelm@6580
  1598
\index{list@{\textit{list}} type|)}
wenzelm@6580
  1599
wenzelm@6580
  1600
wenzelm@6580
  1601
\subsection{Introducing new types} \label{sec:typedef}
wenzelm@6580
  1602
wenzelm@9695
  1603
The HOL-methodology dictates that all extensions to a theory should be
wenzelm@9695
  1604
\textbf{definitional}.  The type definition mechanism that meets this
wenzelm@9695
  1605
criterion is \ttindex{typedef}.  Note that \emph{type synonyms}, which are
wenzelm@9695
  1606
inherited from Pure and described elsewhere, are just syntactic abbreviations
wenzelm@9695
  1607
that have no logical meaning.
wenzelm@6580
  1608
wenzelm@6580
  1609
\begin{warn}
wenzelm@9695
  1610
  Types in HOL must be non-empty; otherwise the quantifier rules would be
oheimb@7490
  1611
  unsound, because $\exists x. x=x$ is a theorem \cite[{\S}7]{paulson-COLOG}.
wenzelm@6580
  1612
\end{warn}
wenzelm@6580
  1613
A \bfindex{type definition} identifies the new type with a subset of
wenzelm@6580
  1614
an existing type.  More precisely, the new type is defined by
wenzelm@6580
  1615
exhibiting an existing type~$\tau$, a set~$A::\tau\,set$, and a
wenzelm@6580
  1616
theorem of the form $x:A$.  Thus~$A$ is a non-empty subset of~$\tau$,
wenzelm@6580
  1617
and the new type denotes this subset.  New functions are defined that
wenzelm@6580
  1618
establish an isomorphism between the new type and the subset.  If
wenzelm@6580
  1619
type~$\tau$ involves type variables $\alpha@1$, \ldots, $\alpha@n$,
wenzelm@6580
  1620
then the type definition creates a type constructor
wenzelm@6580
  1621
$(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type.
wenzelm@6580
  1622
wenzelm@6580
  1623
\begin{figure}[htbp]
wenzelm@6580
  1624
\begin{rail}
wenzelm@6580
  1625
typedef  : 'typedef' ( () | '(' name ')') type '=' set witness;
wenzelm@6580
  1626
wenzelm@6580
  1627
type    : typevarlist name ( () | '(' infix ')' );
wenzelm@6580
  1628
set     : string;
wenzelm@6580
  1629
witness : () | '(' id ')';
wenzelm@6580
  1630
\end{rail}
wenzelm@6580
  1631
\caption{Syntax of type definitions}
wenzelm@6580
  1632
\label{fig:HOL:typedef}
wenzelm@6580
  1633
\end{figure}
wenzelm@6580
  1634
wenzelm@6580
  1635
The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}.  For
wenzelm@6580
  1636
the definition of `typevarlist' and `infix' see
wenzelm@6580
  1637
\iflabelundefined{chap:classical}
wenzelm@6580
  1638
{the appendix of the {\em Reference Manual\/}}%
wenzelm@6580
  1639
{Appendix~\ref{app:TheorySyntax}}.  The remaining nonterminals have the
wenzelm@6580
  1640
following meaning:
wenzelm@6580
  1641
\begin{description}
wenzelm@6580
  1642
\item[\it type:] the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with
wenzelm@6580
  1643
  optional infix annotation.
wenzelm@6580
  1644
\item[\it name:] an alphanumeric name $T$ for the type constructor
wenzelm@6580
  1645
  $ty$, in case $ty$ is a symbolic name.  Defaults to $ty$.
wenzelm@6580
  1646
\item[\it set:] the representing subset $A$.
wenzelm@6580
  1647
\item[\it witness:] name of a theorem of the form $a:A$ proving
wenzelm@6580
  1648
  non-emptiness.  It can be omitted in case Isabelle manages to prove
wenzelm@6580
  1649
  non-emptiness automatically.
wenzelm@6580
  1650
\end{description}
wenzelm@6580
  1651
If all context conditions are met (no duplicate type variables in
wenzelm@6580
  1652
`typevarlist', no extra type variables in `set', and no free term variables
wenzelm@6580
  1653
in `set'), the following components are added to the theory:
wenzelm@6580
  1654
\begin{itemize}
wenzelm@6580
  1655
\item a type $ty :: (term,\dots,term)term$
wenzelm@6580
  1656
\item constants
wenzelm@6580
  1657
\begin{eqnarray*}
wenzelm@6580
  1658
T &::& \tau\;set \\
wenzelm@6580
  1659
Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\
wenzelm@6580
  1660
Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty
wenzelm@6580
  1661
\end{eqnarray*}
wenzelm@6580
  1662
\item a definition and three axioms
wenzelm@6580
  1663
\[
wenzelm@6580
  1664
\begin{array}{ll}
wenzelm@6580
  1665
T{\tt_def} & T \equiv A \\
wenzelm@6580
  1666
{\tt Rep_}T & Rep_T\,x \in T \\
wenzelm@6580
  1667
{\tt Rep_}T{\tt_inverse} & Abs_T\,(Rep_T\,x) = x \\
wenzelm@6580
  1668
{\tt Abs_}T{\tt_inverse} & y \in T \Imp Rep_T\,(Abs_T\,y) = y
wenzelm@6580
  1669
\end{array}
wenzelm@6580
  1670
\]
wenzelm@6580
  1671
stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$
wenzelm@6580
  1672
and its inverse $Abs_T$.
wenzelm@6580
  1673
\end{itemize}
wenzelm@9695
  1674
Below are two simple examples of HOL type definitions.  Non-emptiness is
wenzelm@9695
  1675
proved automatically here.
wenzelm@6580
  1676
\begin{ttbox}
wenzelm@6580
  1677
typedef unit = "{\ttlbrace}True{\ttrbrace}"
wenzelm@6580
  1678
wenzelm@6580
  1679
typedef (prod)
wenzelm@6580
  1680
  ('a, 'b) "*"    (infixr 20)
wenzelm@6580
  1681
      = "{\ttlbrace}f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b){\ttrbrace}"
wenzelm@6580
  1682
\end{ttbox}
wenzelm@6580
  1683
wenzelm@6580
  1684
Type definitions permit the introduction of abstract data types in a safe
wenzelm@6580
  1685
way, namely by providing models based on already existing types.  Given some
wenzelm@6580
  1686
abstract axiomatic description $P$ of a type, this involves two steps:
wenzelm@6580
  1687
\begin{enumerate}
wenzelm@6580
  1688
\item Find an appropriate type $\tau$ and subset $A$ which has the desired
wenzelm@6580
  1689
  properties $P$, and make a type definition based on this representation.
wenzelm@6580
  1690
\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
wenzelm@6580
  1691
\end{enumerate}
wenzelm@6580
  1692
You can now forget about the representation and work solely in terms of the
wenzelm@6580
  1693
abstract properties $P$.
wenzelm@6580
  1694
wenzelm@6580
  1695
\begin{warn}
wenzelm@6580
  1696
If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by
wenzelm@6580
  1697
declaring the type and its operations and by stating the desired axioms, you
wenzelm@6580
  1698
should make sure the type has a non-empty model.  You must also have a clause
wenzelm@6580
  1699
\par
wenzelm@6580
  1700
\begin{ttbox}
wenzelm@6580
  1701
arities \(ty\) :: (term,\thinspace\(\dots\),{\thinspace}term){\thinspace}term
wenzelm@6580
  1702
\end{ttbox}
wenzelm@6580
  1703
in your theory file to tell Isabelle that $ty$ is in class \texttt{term}, the
wenzelm@9695
  1704
class of all HOL types.
wenzelm@6580
  1705
\end{warn}
wenzelm@6580
  1706
wenzelm@6580
  1707
wenzelm@6580
  1708
\section{Datatype definitions}
wenzelm@6580
  1709
\label{sec:HOL:datatype}
wenzelm@6580
  1710
\index{*datatype|(}
wenzelm@6580
  1711
wenzelm@6626
  1712
Inductive datatypes, similar to those of \ML, frequently appear in
wenzelm@6580
  1713
applications of Isabelle/HOL.  In principle, such types could be defined by
oheimb@7490
  1714
hand via \texttt{typedef} (see {\S}\ref{sec:typedef}), but this would be far too
wenzelm@6626
  1715
tedious.  The \ttindex{datatype} definition package of Isabelle/HOL (cf.\ 
wenzelm@6626
  1716
\cite{Berghofer-Wenzel:1999:TPHOL}) automates such chores.  It generates an
wenzelm@6626
  1717
appropriate \texttt{typedef} based on a least fixed-point construction, and
wenzelm@6626
  1718
proves freeness theorems and induction rules, as well as theorems for
wenzelm@6626
  1719
recursion and case combinators.  The user just has to give a simple
wenzelm@6626
  1720
specification of new inductive types using a notation similar to {\ML} or
wenzelm@6626
  1721
Haskell.
wenzelm@6580
  1722
wenzelm@6580
  1723
The current datatype package can handle both mutual and indirect recursion.
wenzelm@6580
  1724
It also offers to represent existing types as datatypes giving the advantage
wenzelm@6580
  1725
of a more uniform view on standard theories.
wenzelm@6580
  1726
wenzelm@6580
  1727
wenzelm@6580
  1728
\subsection{Basics}
wenzelm@6580
  1729
\label{subsec:datatype:basics}
wenzelm@6580
  1730
wenzelm@6580
  1731
A general \texttt{datatype} definition is of the following form:
wenzelm@6580
  1732
\[
wenzelm@6580
  1733
\begin{array}{llcl}
paulson@9212
  1734
\mathtt{datatype} & (\vec{\alpha})t@1 & = &
wenzelm@6580
  1735
  C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~
wenzelm@6580
  1736
    C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\
wenzelm@6580
  1737
 & & \vdots \\
paulson@9212
  1738
\mathtt{and} & (\vec{\alpha})t@n & = &
wenzelm@6580
  1739
  C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~
wenzelm@6580
  1740
    C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}}
wenzelm@6580
  1741
\end{array}
wenzelm@6580
  1742
\]
paulson@9212
  1743
where $\vec{\alpha} = (\alpha@1,\ldots,\alpha@h)$ is a list of type variables,
paulson@9212
  1744
$C^j@i$ are distinct constructor names and $\tau^j@{i,i'}$ are {\em
paulson@9212
  1745
  admissible} types containing at most the type variables $\alpha@1, \ldots,
paulson@9212
  1746
\alpha@h$. A type $\tau$ occurring in a \texttt{datatype} definition is {\em
paulson@9258
  1747
  admissible} if and only if
wenzelm@6580
  1748
\begin{itemize}
wenzelm@6580
  1749
\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the
wenzelm@6580
  1750
newly defined type constructors $t@1,\ldots,t@n$, or
paulson@9212
  1751
\item $\tau = (\vec{\alpha})t@{j'}$ where $1 \leq j' \leq n$, or
wenzelm@6580
  1752
\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is
wenzelm@6580
  1753
the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$
wenzelm@6580
  1754
are admissible types.
oheimb@7490
  1755
\item $\tau = \sigma \to \tau'$, where $\tau'$ is an admissible
berghofe@7044
  1756
type and $\sigma$ is non-recursive (i.e. the occurrences of the newly defined
berghofe@7044
  1757
types are {\em strictly positive})
wenzelm@6580
  1758
\end{itemize}
paulson@9212
  1759
If some $(\vec{\alpha})t@{j'}$ occurs in a type $\tau^j@{i,i'}$
wenzelm@6580
  1760
of the form
wenzelm@6580
  1761
\[
paulson@9212
  1762
(\ldots,\ldots ~ (\vec{\alpha})t@{j'} ~ \ldots,\ldots)t'
wenzelm@6580
  1763
\]
wenzelm@6580
  1764
this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple
wenzelm@6580
  1765
example of a datatype is the type \texttt{list}, which can be defined by
wenzelm@6580
  1766
\begin{ttbox}
wenzelm@6580
  1767
datatype 'a list = Nil
wenzelm@6580
  1768
                 | Cons 'a ('a list)
wenzelm@6580
  1769
\end{ttbox}
wenzelm@6580
  1770
Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled
wenzelm@6580
  1771
by the mutually recursive datatype definition
wenzelm@6580
  1772
\begin{ttbox}
wenzelm@6580
  1773
datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
wenzelm@6580
  1774
                 | Sum ('a aexp) ('a aexp)
wenzelm@6580
  1775
                 | Diff ('a aexp) ('a aexp)
wenzelm@6580
  1776
                 | Var 'a
wenzelm@6580
  1777
                 | Num nat
wenzelm@6580
  1778
and      'a bexp = Less ('a aexp) ('a aexp)
wenzelm@6580
  1779
                 | And ('a bexp) ('a bexp)
wenzelm@6580
  1780
                 | Or ('a bexp) ('a bexp)
wenzelm@6580
  1781
\end{ttbox}
wenzelm@6580
  1782
The datatype \texttt{term}, which is defined by
wenzelm@6580
  1783
\begin{ttbox}
wenzelm@6580
  1784
datatype ('a, 'b) term = Var 'a
wenzelm@6580
  1785
                       | App 'b ((('a, 'b) term) list)
wenzelm@6580
  1786
\end{ttbox}
berghofe@7044
  1787
is an example for a datatype with nested recursion. Using nested recursion
berghofe@7044
  1788
involving function spaces, we may also define infinitely branching datatypes, e.g.
berghofe@7044
  1789
\begin{ttbox}
berghofe@7044
  1790
datatype 'a tree = Atom 'a | Branch "nat => 'a tree"
berghofe@7044
  1791
\end{ttbox}
wenzelm@6580
  1792
wenzelm@6580
  1793
\medskip
wenzelm@6580
  1794
wenzelm@6580
  1795
Types in HOL must be non-empty. Each of the new datatypes
paulson@9258
  1796
$(\vec{\alpha})t@j$ with $1 \leq j \leq n$ is non-empty if and only if it has a
wenzelm@6580
  1797
constructor $C^j@i$ with the following property: for all argument types
paulson@9212
  1798
$\tau^j@{i,i'}$ of the form $(\vec{\alpha})t@{j'}$ the datatype
paulson@9212
  1799
$(\vec{\alpha})t@{j'}$ is non-empty.
wenzelm@6580
  1800
wenzelm@6580
  1801
If there are no nested occurrences of the newly defined datatypes, obviously
paulson@9212
  1802
at least one of the newly defined datatypes $(\vec{\alpha})t@j$
wenzelm@6580
  1803
must have a constructor $C^j@i$ without recursive arguments, a \emph{base
wenzelm@6580
  1804
  case}, to ensure that the new types are non-empty. If there are nested
wenzelm@6580
  1805
occurrences, a datatype can even be non-empty without having a base case
wenzelm@6580
  1806
itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t
wenzelm@6580
  1807
  list)} is non-empty as well.
wenzelm@6580
  1808
wenzelm@6580
  1809
wenzelm@6580
  1810
\subsubsection{Freeness of the constructors}
wenzelm@6580
  1811
wenzelm@6580
  1812
The datatype constructors are automatically defined as functions of their
wenzelm@6580
  1813
respective type:
wenzelm@6580
  1814
\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \]
wenzelm@6580
  1815
These functions have certain {\em freeness} properties.  They construct
wenzelm@6580
  1816
distinct values:
wenzelm@6580
  1817
\[
wenzelm@6580
  1818
C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad
wenzelm@6580
  1819
\mbox{for all}~ i \neq i'.
wenzelm@6580
  1820
\]
wenzelm@6580
  1821
The constructor functions are injective:
wenzelm@6580
  1822
\[
wenzelm@6580
  1823
(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) =
wenzelm@6580
  1824
(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i})
wenzelm@6580
  1825
\]
berghofe@7044
  1826
Since the number of distinctness inequalities is quadratic in the number of
berghofe@7044
  1827
constructors, the datatype package avoids proving them separately if there are
berghofe@7044
  1828
too many constructors. Instead, specific inequalities are proved by a suitable
berghofe@7044
  1829
simplification procedure on demand.\footnote{This procedure, which is already part
berghofe@7044
  1830
of the default simpset, may be referred to by the ML identifier
berghofe@7044
  1831
\texttt{DatatypePackage.distinct_simproc}.}
wenzelm@6580
  1832
wenzelm@6580
  1833
\subsubsection{Structural induction}
wenzelm@6580
  1834
wenzelm@6580
  1835
The datatype package also provides structural induction rules.  For
wenzelm@6580
  1836
datatypes without nested recursion, this is of the following form:
wenzelm@6580
  1837
\[
oheimb@7490
  1838
\infer{P@1~x@1 \land \dots \land P@n~x@n}
wenzelm@6580
  1839
  {\begin{array}{lcl}
wenzelm@6580
  1840
     \Forall x@1 \dots x@{m^1@1}.
wenzelm@6580
  1841
       \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots;
wenzelm@6580
  1842
         P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp &
wenzelm@6580
  1843
           P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\
wenzelm@6580
  1844
     & \vdots \\
wenzelm@6580
  1845
     \Forall x@1 \dots x@{m^1@{k@1}}.
wenzelm@6580
  1846
       \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots;
wenzelm@6580
  1847
         P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp &
wenzelm@6580
  1848
           P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\
wenzelm@6580
  1849
     & \vdots \\
wenzelm@6580
  1850
     \Forall x@1 \dots x@{m^n@1}.
wenzelm@6580
  1851
       \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots;
wenzelm@6580
  1852
         P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp &
wenzelm@6580
  1853
           P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\
wenzelm@6580
  1854
     & \vdots \\
wenzelm@6580
  1855
     \Forall x@1 \dots x@{m^n@{k@n}}.
wenzelm@6580
  1856
       \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots
wenzelm@6580
  1857
         P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp &
wenzelm@6580
  1858
           P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right)
wenzelm@6580
  1859
   \end{array}}
wenzelm@6580
  1860
\]
wenzelm@6580
  1861
where
wenzelm@6580
  1862
\[
wenzelm@6580
  1863
\begin{array}{rcl}
wenzelm@6580
  1864
Rec^j@i & := &
wenzelm@6580
  1865
   \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
wenzelm@6580
  1866
     \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex]
wenzelm@6580
  1867
&& \left\{(i',i'')~\left|~
oheimb@7490
  1868
     1\leq i' \leq m^j@i \land 1 \leq i'' \leq n \land
wenzelm@6580
  1869
       \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\}
wenzelm@6580
  1870
\end{array}
wenzelm@6580
  1871
\]
wenzelm@6580
  1872
i.e.\ the properties $P@j$ can be assumed for all recursive arguments.
wenzelm@6580
  1873
wenzelm@6580
  1874
For datatypes with nested recursion, such as the \texttt{term} example from
wenzelm@6580
  1875
above, things are a bit more complicated.  Conceptually, Isabelle/HOL unfolds
wenzelm@6580
  1876
a definition like
wenzelm@6580
  1877
\begin{ttbox}
paulson@9212
  1878
datatype ('a,'b) term = Var 'a
paulson@9212
  1879
                      | App 'b ((('a, 'b) term) list)
wenzelm@6580
  1880
\end{ttbox}
wenzelm@6580
  1881
to an equivalent definition without nesting:
wenzelm@6580
  1882
\begin{ttbox}
paulson@9212
  1883
datatype ('a,'b) term      = Var
paulson@9212
  1884
                           | App 'b (('a, 'b) term_list)
paulson@9212
  1885
and      ('a,'b) term_list = Nil'
paulson@9212
  1886
                           | Cons' (('a,'b) term) (('a,'b) term_list)
wenzelm@6580
  1887
\end{ttbox}
wenzelm@6580
  1888
Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt
wenzelm@6580
  1889
  Nil'} and \texttt{Cons'} are not really introduced.  One can directly work with
wenzelm@6580
  1890
the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing
wenzelm@6580
  1891
constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for
wenzelm@6580
  1892
\texttt{term} gets the form
wenzelm@6580
  1893
\[
oheimb@7490
  1894
\infer{P@1~x@1 \land P@2~x@2}
wenzelm@6580
  1895
  {\begin{array}{l}
wenzelm@6580
  1896
     \Forall x.~P@1~(\mathtt{Var}~x) \\
wenzelm@6580
  1897
     \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\
wenzelm@6580
  1898
     P@2~\mathtt{Nil} \\
wenzelm@6580
  1899
     \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2)
wenzelm@6580
  1900
   \end{array}}
wenzelm@6580
  1901
\]
wenzelm@6580
  1902
Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term}
wenzelm@6580
  1903
and one for the type \texttt{(('a, 'b) term) list}.
wenzelm@6580
  1904
berghofe@7044
  1905
For a datatype with function types such as \texttt{'a tree}, the induction rule
berghofe@7044
  1906
is of the form
berghofe@7044
  1907
\[
berghofe@7044
  1908
\infer{P~t}
berghofe@7044
  1909
  {\Forall a.~P~(\mathtt{Atom}~a) &
berghofe@7044
  1910
   \Forall ts.~(\forall x.~P~(ts~x)) \Imp P~(\mathtt{Branch}~ts)}
berghofe@7044
  1911
\]
berghofe@7044
  1912
wenzelm@6580
  1913
\medskip In principle, inductive types are already fully determined by
wenzelm@6580
  1914
freeness and structural induction.  For convenience in applications,
wenzelm@6580
  1915
the following derived constructions are automatically provided for any
wenzelm@6580
  1916
datatype.
wenzelm@6580
  1917
wenzelm@6580
  1918
\subsubsection{The \sdx{case} construct}
wenzelm@6580
  1919
wenzelm@6580
  1920
The type comes with an \ML-like \texttt{case}-construct:
wenzelm@6580
  1921
\[
wenzelm@6580
  1922
\begin{array}{rrcl}
wenzelm@6580
  1923
\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\
wenzelm@6580
  1924
                           \vdots \\
wenzelm@6580
  1925
                           \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j}
wenzelm@6580
  1926
\end{array}
wenzelm@6580
  1927
\]
wenzelm@6580
  1928
where the $x@{i,j}$ are either identifiers or nested tuple patterns as in
oheimb@7490
  1929
{\S}\ref{subsec:prod-sum}.
wenzelm@6580
  1930
\begin{warn}
wenzelm@6580
  1931
  All constructors must be present, their order is fixed, and nested patterns
wenzelm@6580
  1932
  are not supported (with the exception of tuples).  Violating this
wenzelm@6580
  1933
  restriction results in strange error messages.
wenzelm@6580
  1934
\end{warn}
wenzelm@6580
  1935
wenzelm@6580
  1936
To perform case distinction on a goal containing a \texttt{case}-construct,
wenzelm@6580
  1937
the theorem $t@j.$\texttt{split} is provided:
wenzelm@6580
  1938
\[
wenzelm@6580
  1939
\begin{array}{@{}rcl@{}}
wenzelm@6580
  1940
P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=&
wenzelm@6580
  1941
\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to
wenzelm@6580
  1942
                             P(f@1~x@1\dots x@{m^j@1})) \\
wenzelm@6580
  1943
&&\!\!\! ~\land~ \dots ~\land \\
wenzelm@6580
  1944
&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to
wenzelm@6580
  1945
                             P(f@{k@j}~x@1\dots x@{m^j@{k@j}})))
wenzelm@6580
  1946
\end{array}
wenzelm@6580
  1947
\]
wenzelm@6580
  1948
where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct.
wenzelm@6580
  1949
This theorem can be added to a simpset via \ttindex{addsplits}
oheimb@7490
  1950
(see~{\S}\ref{subsec:HOL:case:splitting}).
wenzelm@6580
  1951
wenzelm@10109
  1952
Case splitting on assumption works as well, by using the rule
wenzelm@10109
  1953
$t@j.$\texttt{split_asm} in the same manner.  Both rules are available under
wenzelm@10109
  1954
$t@j.$\texttt{splits} (this name is \emph{not} bound in ML, though).
wenzelm@10109
  1955
nipkow@8604
  1956
\begin{warn}\index{simplification!of \texttt{case}}%
nipkow@8604
  1957
  By default only the selector expression ($e$ above) in a
nipkow@8604
  1958
  \texttt{case}-construct is simplified, in analogy with \texttt{if} (see
nipkow@8604
  1959
  page~\pageref{if-simp}). Only if that reduces to a constructor is one of
nipkow@8604
  1960
  the arms of the \texttt{case}-construct exposed and simplified. To ensure
nipkow@8604
  1961
  full simplification of all parts of a \texttt{case}-construct for datatype
nipkow@8604
  1962
  $t$, remove $t$\texttt{.}\ttindexbold{case_weak_cong} from the simpset, for
nipkow@8604
  1963
  example by \texttt{delcongs [thm "$t$.weak_case_cong"]}.
nipkow@8604
  1964
\end{warn}
nipkow@8604
  1965
wenzelm@6580
  1966
\subsubsection{The function \cdx{size}}\label{sec:HOL:size}
wenzelm@6580
  1967
paulson@15455
  1968
Theory \texttt{NatArith} declares a generic function \texttt{size} of type
wenzelm@6580
  1969
$\alpha\To nat$.  Each datatype defines a particular instance of \texttt{size}
wenzelm@6580
  1970
by overloading according to the following scheme:
wenzelm@6580
  1971
%%% FIXME: This formula is too big and is completely unreadable
wenzelm@6580
  1972
\[
wenzelm@6580
  1973
size(C^j@i~x@1~\dots~x@{m^j@i}) = \!
wenzelm@6580
  1974
\left\{
wenzelm@6580
  1975
\begin{array}{ll}
wenzelm@6580
  1976
0 & \!\mbox{if $Rec^j@i = \emptyset$} \\
berghofe@7044
  1977
1+\sum\limits@{h=1}^{l^j@i}size~x@{r^j@{i,h}} &
wenzelm@6580
  1978
 \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
wenzelm@6580
  1979
  \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$}
wenzelm@6580
  1980
\end{array}
wenzelm@6580
  1981
\right.
wenzelm@6580
  1982
\]
wenzelm@6580
  1983
where $Rec^j@i$ is defined above.  Viewing datatypes as generalised trees, the
wenzelm@6580
  1984
size of a leaf is 0 and the size of a node is the sum of the sizes of its
wenzelm@6580
  1985
subtrees ${}+1$.
wenzelm@6580
  1986
wenzelm@6580
  1987
\subsection{Defining datatypes}
wenzelm@6580
  1988
wenzelm@6580
  1989
The theory syntax for datatype definitions is shown in
wenzelm@6580
  1990
Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
wenzelm@6580
  1991
definition has to obey the rules stated in the previous section.  As a result
wenzelm@6580
  1992
the theory is extended with the new types, the constructors, and the theorems
wenzelm@6580
  1993
listed in the previous section.
wenzelm@6580
  1994
wenzelm@6580
  1995
\begin{figure}
wenzelm@6580
  1996
\begin{rail}
wenzelm@6580
  1997
datatype : 'datatype' typedecls;
wenzelm@6580
  1998
wenzelm@6580
  1999
typedecls: ( newtype '=' (cons + '|') ) + 'and'
wenzelm@6580
  2000
         ;
wenzelm@6580
  2001
newtype  : typevarlist id ( () | '(' infix ')' )
wenzelm@6580
  2002
         ;
wenzelm@6580
  2003
cons     : name (argtype *) ( () | ( '(' mixfix ')' ) )
wenzelm@6580
  2004
         ;
wenzelm@6580
  2005
argtype  : id | tid | ('(' typevarlist id ')')
wenzelm@6580
  2006
         ;
wenzelm@6580
  2007
\end{rail}
wenzelm@6580
  2008
\caption{Syntax of datatype declarations}
wenzelm@6580
  2009
\label{datatype-grammar}
wenzelm@6580
  2010
\end{figure}
wenzelm@6580
  2011
wenzelm@6580
  2012
Most of the theorems about datatypes become part of the default simpset and
wenzelm@6580
  2013
you never need to see them again because the simplifier applies them
nipkow@8424
  2014
automatically.  Only induction or case distinction are usually invoked by hand.
wenzelm@6580
  2015
\begin{ttdescription}
wenzelm@6580
  2016
\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$]
wenzelm@6580
  2017
 applies structural induction on variable $x$ to subgoal $i$, provided the
wenzelm@6580
  2018
 type of $x$ is a datatype.
berghofe@7846
  2019
\item[\texttt{induct_tac}
berghofe@7846
  2020
  {\tt"}$x@1$ $\ldots$ $x@n${\tt"} $i$] applies simultaneous
wenzelm@6580
  2021
  structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$.  This
wenzelm@6580
  2022
  is the canonical way to prove properties of mutually recursive datatypes
wenzelm@6580
  2023
  such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as
wenzelm@6580
  2024
  \texttt{term}.
wenzelm@6580
  2025
\end{ttdescription}
wenzelm@6580
  2026
In some cases, induction is overkill and a case distinction over all
wenzelm@6580
  2027
constructors of the datatype suffices.
wenzelm@6580
  2028
\begin{ttdescription}
wenzelm@8443
  2029
\item[\ttindexbold{case_tac} {\tt"}$u${\tt"} $i$]
nipkow@8424
  2030
 performs a case analysis for the term $u$ whose type  must be a datatype.
nipkow@8424
  2031
 If the datatype has $k@j$ constructors  $C^j@1$, \dots $C^j@{k@j}$, subgoal
nipkow@8424
  2032
 $i$ is replaced by $k@j$ new subgoals which  contain the additional
nipkow@8424
  2033
 assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for  $i'=1$, $\dots$,~$k@j$.
wenzelm@6580
  2034
\end{ttdescription}
wenzelm@6580
  2035
wenzelm@6580
  2036
Note that induction is only allowed on free variables that should not occur
nipkow@8424
  2037
among the premises of the subgoal. Case distinction applies to arbitrary terms.
wenzelm@6580
  2038
wenzelm@6580
  2039
\bigskip
wenzelm@6580
  2040
wenzelm@6580
  2041
wenzelm@6580
  2042
For the technically minded, we exhibit some more details.  Processing the
wenzelm@6580
  2043
theory file produces an \ML\ structure which, in addition to the usual
wenzelm@6580
  2044
components, contains a structure named $t$ for each datatype $t$ defined in
wenzelm@6580
  2045
the file.  Each structure $t$ contains the following elements:
wenzelm@6580
  2046
\begin{ttbox}
wenzelm@6580
  2047
val distinct : thm list
wenzelm@6580
  2048
val inject : thm list
wenzelm@6580
  2049
val induct : thm
wenzelm@6580
  2050
val exhaust : thm
wenzelm@6580
  2051
val cases : thm list
wenzelm@6580
  2052
val split : thm
wenzelm@6580
  2053
val split_asm : thm
wenzelm@6580
  2054
val recs : thm list
wenzelm@6580
  2055
val size : thm list
wenzelm@6580
  2056
val simps : thm list
wenzelm@6580
  2057
\end{ttbox}
wenzelm@6580
  2058
\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size}
wenzelm@6580
  2059
and \texttt{split} contain the theorems
wenzelm@6580
  2060
described above.  For user convenience, \texttt{distinct} contains
wenzelm@6580
  2061
inequalities in both directions.  The reduction rules of the {\tt
wenzelm@6580
  2062
  case}-construct are in \texttt{cases}.  All theorems from {\tt
wenzelm@6580
  2063
  distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}.
wenzelm@6580
  2064
In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct}
wenzelm@6580
  2065
and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$.
wenzelm@6580
  2066
wenzelm@6580
  2067
berghofe@7325
  2068
\subsection{Representing existing types as datatypes}\label{subsec:datatype:rep_datatype}
wenzelm@6580
  2069
wenzelm@6580
  2070
For foundational reasons, some basic types such as \texttt{nat}, \texttt{*}, {\tt
wenzelm@6580
  2071
  +}, \texttt{bool} and \texttt{unit} are not defined in a \texttt{datatype} section,
wenzelm@6580
  2072
but by more primitive means using \texttt{typedef}. To be able to use the
wenzelm@8443
  2073
tactics \texttt{induct_tac} and \texttt{case_tac} and to define functions by
wenzelm@6580
  2074
primitive recursion on these types, such types may be represented as actual
haftmann@27452
  2075
datatypes.  This is done by specifying the constructors of the desired type,
haftmann@27452
  2076
plus a proof of the  induction rule, as well as theorems
wenzelm@6580
  2077
stating the distinctness and injectivity of constructors in a {\tt
haftmann@27452
  2078
rep_datatype} section.  For the sum type this works as follows:
wenzelm@6580
  2079
\begin{ttbox}
haftmann@27452
  2080
rep_datatype (sum) Inl Inr
haftmann@27452
  2081
proof -
haftmann@27452
  2082
  fix P
haftmann@27452
  2083
  fix s :: "'a + 'b"
haftmann@27452
  2084
  assume x: "!!x::'a. P (Inl x)" and y: "!!y::'b. P (Inr y)"
haftmann@27452
  2085
  then show "P s" by (auto intro: sumE [of s])
haftmann@27452
  2086
qed simp_all
wenzelm@6580
  2087
\end{ttbox}
wenzelm@6580
  2088
The datatype package automatically derives additional theorems for recursion
wenzelm@6580
  2089
and case combinators from these rules.  Any of the basic HOL types mentioned
wenzelm@6580
  2090
above are represented as datatypes.  Try an induction on \texttt{bool}
wenzelm@6580
  2091
today.
wenzelm@6580
  2092
wenzelm@6580
  2093
wenzelm@6580
  2094
\subsection{Examples}
wenzelm@6580
  2095
wenzelm@6580
  2096
\subsubsection{The datatype $\alpha~mylist$}
wenzelm@6580
  2097
wenzelm@6580
  2098
We want to define a type $\alpha~mylist$. To do this we have to build a new
wenzelm@6580
  2099
theory that contains the type definition.  We start from the theory
wenzelm@6580
  2100
\texttt{Datatype} instead of \texttt{Main} in order to avoid clashes with the
wenzelm@6580
  2101
\texttt{List} theory of Isabelle/HOL.
wenzelm@6580
  2102
\begin{ttbox}
wenzelm@6580
  2103
MyList = Datatype +
wenzelm@6580
  2104
  datatype 'a mylist = Nil | Cons 'a ('a mylist)
wenzelm@6580
  2105
end
wenzelm@6580
  2106
\end{ttbox}
wenzelm@6580
  2107
After loading the theory, we can prove $Cons~x~xs\neq xs$, for example.  To
wenzelm@6580
  2108
ease the induction applied below, we state the goal with $x$ quantified at the
wenzelm@6580
  2109
object-level.  This will be stripped later using \ttindex{qed_spec_mp}.
wenzelm@6580
  2110
\begin{ttbox}
wenzelm@6580
  2111
Goal "!x. Cons x xs ~= xs";
wenzelm@6580
  2112
{\out Level 0}
wenzelm@6580
  2113
{\out ! x. Cons x xs ~= xs}
wenzelm@6580
  2114
{\out  1. ! x. Cons x xs ~= xs}
wenzelm@6580
  2115
\end{ttbox}
wenzelm@6580
  2116
This can be proved by the structural induction tactic:
wenzelm@6580
  2117
\begin{ttbox}
wenzelm@6580
  2118
by (induct_tac "xs" 1);
wenzelm@6580
  2119
{\out Level 1}
wenzelm@6580
  2120
{\out ! x. Cons x xs ~= xs}
wenzelm@6580
  2121
{\out  1. ! x. Cons x Nil ~= Nil}
wenzelm@6580
  2122
{\out  2. !!a mylist.}
wenzelm@6580
  2123
{\out        ! x. Cons x mylist ~= mylist ==>}
wenzelm@6580
  2124
{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
wenzelm@6580
  2125
\end{ttbox}
wenzelm@6580
  2126
The first subgoal can be proved using the simplifier.  Isabelle/HOL has
wenzelm@6580
  2127
already added the freeness properties of lists to the default simplification
wenzelm@6580
  2128
set.
wenzelm@6580
  2129
\begin{ttbox}
wenzelm@6580
  2130
by (Simp_tac 1);
wenzelm@6580
  2131
{\out Level 2}
wenzelm@6580
  2132
{\out ! x. Cons x xs ~= xs}
wenzelm@6580
  2133
{\out  1. !!a mylist.}
wenzelm@6580
  2134
{\out        ! x. Cons x mylist ~= mylist ==>}
wenzelm@6580
  2135
{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
wenzelm@6580
  2136
\end{ttbox}
wenzelm@6580
  2137
Similarly, we prove the remaining goal.
wenzelm@6580
  2138
\begin{ttbox}
wenzelm@6580
  2139
by (Asm_simp_tac 1);
wenzelm@6580
  2140
{\out Level 3}
wenzelm@6580
  2141
{\out ! x. Cons x xs ~= xs}
wenzelm@6580
  2142
{\out No subgoals!}
wenzelm@6580
  2143
\ttbreak
wenzelm@6580
  2144
qed_spec_mp "not_Cons_self";
wenzelm@6580
  2145
{\out val not_Cons_self = "Cons x xs ~= xs" : thm}
wenzelm@6580
  2146
\end{ttbox}
wenzelm@6580
  2147
Because both subgoals could have been proved by \texttt{Asm_simp_tac}
wenzelm@6580
  2148
we could have done that in one step:
wenzelm@6580
  2149
\begin{ttbox}
wenzelm@6580
  2150
by (ALLGOALS Asm_simp_tac);
wenzelm@6580
  2151
\end{ttbox}
wenzelm@6580
  2152
wenzelm@6580
  2153
wenzelm@6580
  2154
\subsubsection{The datatype $\alpha~mylist$ with mixfix syntax}
wenzelm@6580
  2155
wenzelm@6580
  2156
In this example we define the type $\alpha~mylist$ again but this time
wenzelm@6580
  2157
we want to write \texttt{[]} for \texttt{Nil} and we want to use infix
wenzelm@6580
  2158
notation \verb|#| for \texttt{Cons}.  To do this we simply add mixfix
wenzelm@6580
  2159
annotations after the constructor declarations as follows:
wenzelm@6580
  2160
\begin{ttbox}
wenzelm@6580
  2161
MyList = Datatype +
wenzelm@6580
  2162
  datatype 'a mylist =
wenzelm@6580
  2163
    Nil ("[]")  |
wenzelm@6580
  2164
    Cons 'a ('a mylist)  (infixr "#" 70)
wenzelm@6580
  2165
end
wenzelm@6580
  2166
\end{ttbox}
wenzelm@6580
  2167
Now the theorem in the previous example can be written \verb|x#xs ~= xs|.
wenzelm@6580
  2168
wenzelm@6580
  2169
wenzelm@6580
  2170
\subsubsection{A datatype for weekdays}
wenzelm@6580
  2171
wenzelm@6580
  2172
This example shows a datatype that consists of 7 constructors:
wenzelm@6580
  2173
\begin{ttbox}
wenzelm@6580
  2174
Days = Main +
wenzelm@6580
  2175
  datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun
wenzelm@6580
  2176
end
wenzelm@6580
  2177
\end{ttbox}
wenzelm@6580
  2178
Because there are more than 6 constructors, inequality is expressed via a function
wenzelm@6580
  2179
\verb|days_ord|.  The theorem \verb|Mon ~= Tue| is not directly
wenzelm@6580
  2180
contained among the distinctness theorems, but the simplifier can
paulson@15455
  2181
prove it thanks to rewrite rules inherited from theory \texttt{NatArith}:
wenzelm@6580
  2182
\begin{ttbox}
wenzelm@6580
  2183
Goal "Mon ~= Tue";
wenzelm@6580
  2184
by (Simp_tac 1);
wenzelm@6580
  2185
\end{ttbox}
wenzelm@6580
  2186
You need not derive such inequalities explicitly: the simplifier will dispose
wenzelm@6580
  2187
of them automatically.
wenzelm@6580
  2188
\index{*datatype|)}
wenzelm@6580
  2189
wenzelm@6580
  2190
wenzelm@6580
  2191
\section{Recursive function definitions}\label{sec:HOL:recursive}
wenzelm@6580
  2192
\index{recursive functions|see{recursion}}
wenzelm@6580
  2193
wenzelm@6580
  2194
Isabelle/HOL provides two main mechanisms of defining recursive functions.
wenzelm@6580
  2195
\begin{enumerate}
wenzelm@6580
  2196
\item \textbf{Primitive recursion} is available only for datatypes, and it is
wenzelm@6580
  2197
  somewhat restrictive.  Recursive calls are only allowed on the argument's
wenzelm@6580
  2198
  immediate constituents.  On the other hand, it is the form of recursion most
wenzelm@6580
  2199
  often wanted, and it is easy to use.
wenzelm@6580
  2200
  
wenzelm@6580
  2201
\item \textbf{Well-founded recursion} requires that you supply a well-founded
wenzelm@6580
  2202
  relation that governs the recursion.  Recursive calls are only allowed if
wenzelm@6580
  2203
  they make the argument decrease under the relation.  Complicated recursion
wenzelm@6580
  2204
  forms, such as nested recursion, can be dealt with.  Termination can even be
wenzelm@6580
  2205
  proved at a later time, though having unsolved termination conditions around
wenzelm@6580
  2206
  can make work difficult.%
wenzelm@6580
  2207
  \footnote{This facility is based on Konrad Slind's TFL
wenzelm@6580
  2208
    package~\cite{slind-tfl}.  Thanks are due to Konrad for implementing TFL
wenzelm@6580
  2209
    and assisting with its installation.}
wenzelm@6580
  2210
\end{enumerate}
wenzelm@6580
  2211
wenzelm@6580
  2212
Following good HOL tradition, these declarations do not assert arbitrary
wenzelm@6580
  2213
axioms.  Instead, they define the function using a recursion operator.  Both
wenzelm@6580
  2214
HOL and ZF derive the theory of well-founded recursion from first
wenzelm@6580
  2215
principles~\cite{paulson-set-II}.  Primitive recursion over some datatype
wenzelm@6580
  2216
relies on the recursion operator provided by the datatype package.  With
wenzelm@6580
  2217
either form of function definition, Isabelle proves the desired recursion
wenzelm@6580
  2218
equations as theorems.
wenzelm@6580
  2219
wenzelm@6580
  2220
wenzelm@6580
  2221
\subsection{Primitive recursive functions}
wenzelm@6580
  2222
\label{sec:HOL:primrec}
wenzelm@6580
  2223
\index{recursion!primitive|(}
wenzelm@6580
  2224
\index{*primrec|(}
wenzelm@6580
  2225
wenzelm@6580
  2226
Datatypes come with a uniform way of defining functions, {\bf primitive
wenzelm@6580
  2227
  recursion}.  In principle, one could introduce primitive recursive functions
wenzelm@6580
  2228
by asserting their reduction rules as new axioms, but this is not recommended:
wenzelm@6580
  2229
\begin{ttbox}\slshape
wenzelm@6580
  2230
Append = Main +
wenzelm@6580
  2231
consts app :: ['a list, 'a list] => 'a list
wenzelm@6580
  2232
rules 
wenzelm@6580
  2233
   app_Nil   "app [] ys = ys"
wenzelm@6580
  2234
   app_Cons  "app (x#xs) ys = x#app xs ys"
wenzelm@6580
  2235
end
wenzelm@6580
  2236
\end{ttbox}
wenzelm@6580
  2237
Asserting axioms brings the danger of accidentally asserting nonsense, as
wenzelm@6580
  2238
in \verb$app [] ys = us$.
wenzelm@6580
  2239
wenzelm@6580
  2240
The \ttindex{primrec} declaration is a safe means of defining primitive
wenzelm@6580
  2241
recursive functions on datatypes:
wenzelm@6580
  2242
\begin{ttbox}
wenzelm@6580
  2243
Append = Main +
wenzelm@6580
  2244
consts app :: ['a list, 'a list] => 'a list
wenzelm@6580
  2245
primrec
wenzelm@6580
  2246
   "app [] ys = ys"
wenzelm@6580
  2247
   "app (x#xs) ys = x#app xs ys"
wenzelm@6580
  2248
end
wenzelm@6580
  2249
\end{ttbox}
wenzelm@6580
  2250
Isabelle will now check that the two rules do indeed form a primitive
wenzelm@6580
  2251
recursive definition.  For example
wenzelm@6580
  2252
\begin{ttbox}
wenzelm@6580
  2253
primrec
wenzelm@6580
  2254
    "app [] ys = us"
wenzelm@6580
  2255
\end{ttbox}
wenzelm@6580
  2256
is rejected with an error message ``\texttt{Extra variables on rhs}''.
wenzelm@6580
  2257
wenzelm@6580
  2258
\bigskip
wenzelm@6580
  2259
wenzelm@6580
  2260
The general form of a primitive recursive definition is
wenzelm@6580
  2261
\begin{ttbox}
wenzelm@6580
  2262
primrec
wenzelm@6580
  2263
    {\it reduction rules}
wenzelm@6580
  2264
\end{ttbox}
wenzelm@6580
  2265
where \textit{reduction rules} specify one or more equations of the form
wenzelm@6580
  2266
\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
wenzelm@6580
  2267
\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
wenzelm@6580
  2268
contains only the free variables on the left-hand side, and all recursive
wenzelm@6580
  2269
calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  There
wenzelm@6580
  2270
must be at most one reduction rule for each constructor.  The order is
wenzelm@6580
  2271
immaterial.  For missing constructors, the function is defined to return a
wenzelm@6580
  2272
default value.  
wenzelm@6580
  2273
wenzelm@6580
  2274
If you would like to refer to some rule by name, then you must prefix
wenzelm@6580
  2275
the rule with an identifier.  These identifiers, like those in the
wenzelm@6580
  2276
\texttt{rules} section of a theory, will be visible at the \ML\ level.
wenzelm@6580
  2277
wenzelm@6580
  2278
The primitive recursive function can have infix or mixfix syntax:
wenzelm@6580
  2279
\begin{ttbox}\underscoreon
wenzelm@6580
  2280
consts "@"  :: ['a list, 'a list] => 'a list  (infixr 60)
wenzelm@6580
  2281
primrec
wenzelm@6580
  2282
   "[] @ ys = ys"
wenzelm@6580
  2283
   "(x#xs) @ ys = x#(xs @ ys)"
wenzelm@6580
  2284
\end{ttbox}
wenzelm@6580
  2285
wenzelm@6580
  2286
The reduction rules become part of the default simpset, which
wenzelm@6580
  2287
leads to short proof scripts:
wenzelm@6580
  2288
\begin{ttbox}\underscoreon
wenzelm@6580
  2289
Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
wenzelm@6580
  2290
by (induct\_tac "xs" 1);
wenzelm@6580
  2291
by (ALLGOALS Asm\_simp\_tac);
wenzelm@6580
  2292
\end{ttbox}
wenzelm@6580
  2293
wenzelm@6580
  2294
\subsubsection{Example: Evaluation of expressions}
berghofe@7044
  2295
Using mutual primitive recursion, we can define evaluation functions \texttt{evala}
wenzelm@6580
  2296
and \texttt{eval_bexp} for the datatypes of arithmetic and boolean expressions mentioned in
oheimb@7490
  2297
{\S}\ref{subsec:datatype:basics}:
wenzelm@6580
  2298
\begin{ttbox}
wenzelm@6580
  2299
consts
berghofe@7044
  2300
  evala :: "['a => nat, 'a aexp] => nat"
berghofe@7044
  2301
  evalb :: "['a => nat, 'a bexp] => bool"
wenzelm@6580
  2302
wenzelm@6580
  2303
primrec
berghofe@7044
  2304
  "evala env (If_then_else b a1 a2) =
berghofe@7044
  2305
     (if evalb env b then evala env a1 else evala env a2)"
berghofe@7044
  2306
  "evala env (Sum a1 a2) = evala env a1 + evala env a2"
berghofe@7044
  2307
  "evala env (Diff a1 a2) = evala env a1 - evala env a2"
berghofe@7044
  2308
  "evala env (Var v) = env v"
berghofe@7044
  2309
  "evala env (Num n) = n"
berghofe@7044
  2310
berghofe@7044
  2311
  "evalb env (Less a1 a2) = (evala env a1 < evala env a2)"
berghofe@7044
  2312
  "evalb env (And b1 b2) = (evalb env b1 & evalb env b2)"
berghofe@7044
  2313
  "evalb env (Or b1 b2) = (evalb env b1 & evalb env b2)"
wenzelm@6580
  2314
\end{ttbox}
wenzelm@6580
  2315
Since the value of an expression depends on the value of its variables,
berghofe@7044
  2316
the functions \texttt{evala} and \texttt{evalb} take an additional
wenzelm@6580
  2317
parameter, an {\em environment} of type \texttt{'a => nat}, which maps
wenzelm@6580
  2318
variables to their values.
wenzelm@6580
  2319
berghofe@7044
  2320
Similarly, we may define substitution functions \texttt{substa}
berghofe@7044
  2321
and \texttt{substb} for expressions: The mapping \texttt{f} of type
wenzelm@6580
  2322
\texttt{'a => 'a aexp} given as a parameter is lifted canonically
berghofe@7044
  2323
on the types \texttt{'a aexp} and \texttt{'a bexp}:
wenzelm@6580
  2324
\begin{ttbox}
wenzelm@6580
  2325
consts
berghofe@7044
  2326
  substa :: "['a => 'b aexp, 'a aexp] => 'b aexp"
berghofe@7044
  2327
  substb :: "['a => 'b aexp, 'a bexp] => 'b bexp"
wenzelm@6580
  2328
wenzelm@6580
  2329
primrec
berghofe@7044
  2330
  "substa f (If_then_else b a1 a2) =
berghofe@7044
  2331
     If_then_else (substb f b) (substa f a1) (substa f a2)"
berghofe@7044
  2332
  "substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)"
berghofe@7044
  2333
  "substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)"
berghofe@7044
  2334
  "substa f (Var v) = f v"
berghofe@7044
  2335
  "substa f (Num n) = Num n"
berghofe@7044
  2336
berghofe@7044
  2337
  "substb f (Less a1 a2) = Less (substa f a1) (substa f a2)"
berghofe@7044
  2338
  "substb f (And b1 b2) = And (substb f b1) (substb f b2)"
berghofe@7044
  2339
  "substb f (Or b1 b2) = Or (substb f b1) (substb f b2)"
wenzelm@6580
  2340
\end{ttbox}
wenzelm@6580
  2341
In textbooks about semantics one often finds {\em substitution theorems},
wenzelm@6580
  2342
which express the relationship between substitution and evaluation. For
wenzelm@6580
  2343
\texttt{'a aexp} and \texttt{'a bexp}, we can prove such a theorem by mutual
wenzelm@6580
  2344
induction, followed by simplification:
wenzelm@6580
  2345
\begin{ttbox}
wenzelm@6580
  2346
Goal
berghofe@7044
  2347
  "evala env (substa (Var(v := a')) a) =
berghofe@7044
  2348
     evala (env(v := evala env a')) a &
berghofe@7044
  2349
   evalb env (substb (Var(v := a')) b) =
berghofe@7044
  2350
     evalb (env(v := evala env a')) b";
berghofe@7846
  2351
by (induct_tac "a b" 1);
wenzelm@6580
  2352
by (ALLGOALS Asm_full_simp_tac);
wenzelm@6580
  2353
\end{ttbox}
wenzelm@6580
  2354
wenzelm@6580
  2355
\subsubsection{Example: A substitution function for terms}
wenzelm@6580
  2356
Functions on datatypes with nested recursion, such as the type
oheimb@7490
  2357
\texttt{term} mentioned in {\S}\ref{subsec:datatype:basics}, are
wenzelm@6580
  2358
also defined by mutual primitive recursion. A substitution
wenzelm@6580
  2359
function \texttt{subst_term} on type \texttt{term}, similar to the functions
berghofe@7044
  2360
\texttt{substa} and \texttt{substb} described above, can
wenzelm@6580
  2361
be defined as follows:
wenzelm@6580
  2362
\begin{ttbox}
wenzelm@6580
  2363
consts
paulson@9212
  2364
  subst_term :: "['a => ('a,'b) term, ('a,'b) term] => ('a,'b) term"
wenzelm@6580
  2365
  subst_term_list ::
paulson@9212
  2366
    "['a => ('a,'b) term, ('a,'b) term list] => ('a,'b) term list"
wenzelm@6580
  2367
wenzelm@6580
  2368
primrec
wenzelm@6580
  2369
  "subst_term f (Var a) = f a"
wenzelm@6580
  2370
  "subst_term f (App b ts) = App b (subst_term_list f ts)"
wenzelm@6580
  2371
wenzelm@6580
  2372
  "subst_term_list f [] = []"
wenzelm@6580
  2373
  "subst_term_list f (t # ts) =
wenzelm@6580
  2374
     subst_term f t # subst_term_list f ts"
wenzelm@6580
  2375
\end{ttbox}
wenzelm@6580
  2376
The recursion scheme follows the structure of the unfolded definition of type
oheimb@7490
  2377
\texttt{term} shown in {\S}\ref{subsec:datatype:basics}. To prove properties of
wenzelm@6580
  2378
this substitution function, mutual induction is needed:
wenzelm@6580
  2379
\begin{ttbox}
wenzelm@6580
  2380
Goal
wenzelm@6580
  2381
  "(subst_term ((subst_term f1) o f2) t) =
wenzelm@6580
  2382
     (subst_term f1 (subst_term f2 t)) &
wenzelm@6580
  2383
   (subst_term_list ((subst_term f1) o f2) ts) =
wenzelm@6580
  2384
     (subst_term_list f1 (subst_term_list f2 ts))";
berghofe@7846
  2385
by (induct_tac "t ts" 1);
wenzelm@6580
  2386
by (ALLGOALS Asm_full_simp_tac);
wenzelm@6580
  2387
\end{ttbox}
wenzelm@6580
  2388
berghofe@7044
  2389
\subsubsection{Example: A map function for infinitely branching trees}
berghofe@7044
  2390
Defining functions on infinitely branching datatypes by primitive
berghofe@7044
  2391
recursion is just as easy. For example, we can define a function
berghofe@7044
  2392
\texttt{map_tree} on \texttt{'a tree} as follows:
berghofe@7044
  2393
\begin{ttbox}
berghofe@7044
  2394
consts
berghofe@7044
  2395
  map_tree :: "('a => 'b) => 'a tree => 'b tree"
berghofe@7044
  2396
berghofe@7044
  2397
primrec
berghofe@7044
  2398
  "map_tree f (Atom a) = Atom (f a)"
berghofe@7044
  2399
  "map_tree f (Branch ts) = Branch (\%x. map_tree f (ts x))"
berghofe@7044
  2400
\end{ttbox}
berghofe@7044
  2401
Note that all occurrences of functions such as \texttt{ts} in the
berghofe@7044
  2402
\texttt{primrec} clauses must be applied to an argument. In particular,
berghofe@7044
  2403
\texttt{map_tree f o ts} is not allowed.
berghofe@7044
  2404
wenzelm@6580
  2405
\index{recursion!primitive|)}
wenzelm@6580
  2406
\index{*primrec|)}
wenzelm@6580
  2407
wenzelm@6580
  2408
wenzelm@6580
  2409
\subsection{General recursive functions}
wenzelm@6580
  2410
\label{sec:HOL:recdef}
wenzelm@6580
  2411
\index{recursion!general|(}
wenzelm@6580
  2412
\index{*recdef|(}
wenzelm@6580
  2413
wenzelm@6580
  2414
Using \texttt{recdef}, you can declare functions involving nested recursion
wenzelm@6580
  2415
and pattern-matching.  Recursion need not involve datatypes and there are few
wenzelm@6580
  2416
syntactic restrictions.  Termination is proved by showing that each recursive
wenzelm@6580
  2417
call makes the argument smaller in a suitable sense, which you specify by
wenzelm@6580
  2418
supplying a well-founded relation.
wenzelm@6580
  2419
wenzelm@6580
  2420
Here is a simple example, the Fibonacci function.  The first line declares
wenzelm@6580
  2421
\texttt{fib} to be a constant.  The well-founded relation is simply~$<$ (on
wenzelm@6580
  2422
the natural numbers).  Pattern-matching is used here: \texttt{1} is a
wenzelm@6580
  2423
macro for \texttt{Suc~0}.
wenzelm@6580
  2424
\begin{ttbox}
wenzelm@6580
  2425
consts fib  :: "nat => nat"
wenzelm@6580
  2426
recdef fib "less_than"
wenzelm@6580
  2427
    "fib 0 = 0"
wenzelm@6580
  2428
    "fib 1 = 1"
wenzelm@6580
  2429
    "fib (Suc(Suc x)) = (fib x + fib (Suc x))"
wenzelm@6580
  2430
\end{ttbox}
wenzelm@6580
  2431
wenzelm@6580
  2432
With \texttt{recdef}, function definitions may be incomplete, and patterns may
wenzelm@6580
  2433
overlap, as in functional programming.  The \texttt{recdef} package
wenzelm@6580
  2434
disambiguates overlapping patterns by taking the order of rules into account.
wenzelm@6580
  2435
For missing patterns, the function is defined to return a default value.
wenzelm@6580
  2436
wenzelm@6580
  2437
%For example, here is a declaration of the list function \cdx{hd}:
wenzelm@6580
  2438
%\begin{ttbox}
wenzelm@6580
  2439
%consts hd :: 'a list => 'a
wenzelm@6580
  2440
%recdef hd "\{\}"
wenzelm@6580
  2441
%    "hd (x#l) = x"
wenzelm@6580
  2442
%\end{ttbox}
wenzelm@6580
  2443
%Because this function is not recursive, we may supply the empty well-founded
wenzelm@6580
  2444
%relation, $\{\}$.
wenzelm@6580
  2445
wenzelm@6580
  2446
The well-founded relation defines a notion of ``smaller'' for the function's
wenzelm@6580
  2447
argument type.  The relation $\prec$ is \textbf{well-founded} provided it
wenzelm@6580
  2448
admits no infinitely decreasing chains
wenzelm@6580
  2449
\[ \cdots\prec x@n\prec\cdots\prec x@1. \]
wenzelm@6580
  2450
If the function's argument has type~$\tau$, then $\prec$ has to be a relation
wenzelm@6580
  2451
over~$\tau$: it must have type $(\tau\times\tau)set$.
wenzelm@6580
  2452
wenzelm@6580
  2453
Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection
wenzelm@6580
  2454
of operators for building well-founded relations.  The package recognises
wenzelm@6580
  2455
these operators and automatically proves that the constructed relation is
wenzelm@6580
  2456
well-founded.  Here are those operators, in order of importance:
wenzelm@6580
  2457
\begin{itemize}
wenzelm@6580
  2458
\item \texttt{less_than} is ``less than'' on the natural numbers.
wenzelm@6580
  2459
  (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$.
wenzelm@6580
  2460
  
wenzelm@6580
  2461
\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the
paulson@9258
  2462
  relation~$\prec$ on type~$\tau$ such that $x\prec y$ if and only if
paulson@9258
  2463
  $f(x)<f(y)$.  
wenzelm@6580
  2464
  Typically, $f$ takes the recursive function's arguments (as a tuple) and
wenzelm@6580
  2465
  returns a result expressed in terms of the function \texttt{size}.  It is
wenzelm@6580
  2466
  called a \textbf{measure function}.  Recall that \texttt{size} is overloaded
oheimb@7490
  2467
  and is defined on all datatypes (see {\S}\ref{sec:HOL:size}).
wenzelm@6580
  2468
                                                    
paulson@9258
  2469
\item $\mathop{\mathtt{inv_image}} R\;f$ is a generalisation of
paulson@9258
  2470
  \texttt{measure}.  It specifies a relation such that $x\prec y$ if and only
paulson@9258
  2471
  if $f(x)$ 
wenzelm@6580
  2472
  is less than $f(y)$ according to~$R$, which must itself be a well-founded
wenzelm@6580
  2473
  relation.
wenzelm@6580
  2474
paulson@11242
  2475
\item $R@1\texttt{<*lex*>}R@2$ is the lexicographic product of two relations.
paulson@11242
  2476
  It 
paulson@9258
  2477
  is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ if and only
paulson@9258
  2478
  if $x@1$ 
wenzelm@6580
  2479
  is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$
wenzelm@6580
  2480
  is less than $y@2$ according to~$R@2$.
wenzelm@6580
  2481
wenzelm@6580
  2482
\item \texttt{finite_psubset} is the proper subset relation on finite sets.
wenzelm@6580
  2483
\end{itemize}
wenzelm@6580
  2484
wenzelm@6580
  2485
We can use \texttt{measure} to declare Euclid's algorithm for the greatest
wenzelm@6580
  2486
common divisor.  The measure function, $\lambda(m,n). n$, specifies that the
wenzelm@6580
  2487
recursion terminates because argument~$n$ decreases.
wenzelm@6580
  2488
\begin{ttbox}
wenzelm@6580
  2489
recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
wenzelm@6580
  2490
    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
wenzelm@6580
  2491
\end{ttbox}
wenzelm@6580
  2492
wenzelm@6580
  2493
The general form of a well-founded recursive definition is
wenzelm@6580
  2494
\begin{ttbox}
wenzelm@6580
  2495
recdef {\it function} {\it rel}
wenzelm@6580
  2496
    congs   {\it congruence rules}      {\bf(optional)}
wenzelm@6580
  2497
    simpset {\it simplification set}      {\bf(optional)}
wenzelm@6580
  2498
   {\it reduction rules}
wenzelm@6580
  2499
\end{ttbox}
wenzelm@6580
  2500
where
wenzelm@6580
  2501
\begin{itemize}
wenzelm@6580
  2502
\item \textit{function} is the name of the function, either as an \textit{id}
wenzelm@6580
  2503
  or a \textit{string}.  
wenzelm@6580
  2504
  
wenzelm@9695
  2505
\item \textit{rel} is a HOL expression for the well-founded termination
wenzelm@6580
  2506
  relation.
wenzelm@6580
  2507
  
wenzelm@6580
  2508
\item \textit{congruence rules} are required only in highly exceptional
wenzelm@6580
  2509
  circumstances.
wenzelm@6580
  2510
  
wenzelm@6580
  2511
\item The \textit{simplification set} is used to prove that the supplied
wenzelm@6580
  2512
  relation is well-founded.  It is also used to prove the \textbf{termination
wenzelm@6580
  2513
    conditions}: assertions that arguments of recursive calls decrease under
wenzelm@6580
  2514
  \textit{rel}.  By default, simplification uses \texttt{simpset()}, which
wenzelm@6580
  2515
  is sufficient to prove well-foundedness for the built-in relations listed
wenzelm@6580
  2516
  above. 
wenzelm@6580
  2517
  
wenzelm@6580
  2518
\item \textit{reduction rules} specify one or more recursion equations.  Each
wenzelm@6580
  2519
  left-hand side must have the form $f\,t$, where $f$ is the function and $t$
wenzelm@6580
  2520
  is a tuple of distinct variables.  If more than one equation is present then
wenzelm@6580
  2521
  $f$ is defined by pattern-matching on components of its argument whose type
wenzelm@6580
  2522
  is a \texttt{datatype}.  
wenzelm@6580
  2523
nipkow@8628
  2524
  The \ML\ identifier $f$\texttt{.simps} contains the reduction rules as
nipkow@8628
  2525
  a list of theorems.
wenzelm@6580
  2526
\end{itemize}
wenzelm@6580
  2527
wenzelm@6580
  2528
With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to
wenzelm@6580
  2529
prove one termination condition.  It remains as a precondition of the
nipkow@8628
  2530
recursion theorems:
wenzelm@6580
  2531
\begin{ttbox}
nipkow@8628
  2532
gcd.simps;
wenzelm@6580
  2533
{\out ["! m n. n ~= 0 --> m mod n < n}
paulson@9212
  2534
{\out   ==> gcd (?m,?n) = (if ?n=0 then ?m else gcd (?n, ?m mod ?n))"] }
wenzelm@6580
  2535
{\out : thm list}
wenzelm@6580
  2536
\end{ttbox}
wenzelm@6580
  2537
The theory \texttt{HOL/ex/Primes} illustrates how to prove termination
wenzelm@6580
  2538
conditions afterwards.  The function \texttt{Tfl.tgoalw} is like the standard
wenzelm@6580
  2539
function \texttt{goalw}, which sets up a goal to prove, but its argument
nipkow@8628
  2540
should be the identifier $f$\texttt{.simps} and its effect is to set up a
wenzelm@6580
  2541
proof of the termination conditions:
wenzelm@6580
  2542
\begin{ttbox}
nipkow@8628
  2543
Tfl.tgoalw thy [] gcd.simps;
wenzelm@6580
  2544
{\out Level 0}
wenzelm@6580
  2545
{\out ! m n. n ~= 0 --> m mod n < n}
wenzelm@6580
  2546
{\out  1. ! m n. n ~= 0 --> m mod n < n}
wenzelm@6580
  2547
\end{ttbox}
wenzelm@6580
  2548
This subgoal has a one-step proof using \texttt{simp_tac}.  Once the theorem
wenzelm@6580
  2549
is proved, it can be used to eliminate the termination conditions from
nipkow@8628
  2550
elements of \texttt{gcd.simps}.  Theory \texttt{HOL/Subst/Unify} is a much
wenzelm@6580
  2551
more complicated example of this process, where the termination conditions can
wenzelm@6580
  2552
only be proved by complicated reasoning involving the recursive function
wenzelm@6580
  2553
itself.
wenzelm@6580
  2554
wenzelm@6580
  2555
Isabelle/HOL can prove the \texttt{gcd} function's termination condition
wenzelm@6580
  2556
automatically if supplied with the right simpset.
wenzelm@6580
  2557
\begin{ttbox}
wenzelm@6580
  2558
recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
wenzelm@6580
  2559
  simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
wenzelm@6580
  2560
    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
wenzelm@6580
  2561
\end{ttbox}
wenzelm@6580
  2562
nipkow@8628
  2563
If all termination conditions were proved automatically, $f$\texttt{.simps}
nipkow@8628
  2564
is added to the simpset automatically, just as in \texttt{primrec}. 
nipkow@8628
  2565
The simplification rules corresponding to clause $i$ (where counting starts
nipkow@8628
  2566
at 0) are called $f$\texttt{.}$i$ and can be accessed as \texttt{thms
nipkow@8628
  2567
  "$f$.$i$"},
nipkow@8628
  2568
which returns a list of theorems. Thus you can, for example, remove specific
nipkow@8628
  2569
clauses from the simpset. Note that a single clause may give rise to a set of
nipkow@8628
  2570
simplification rules in order to capture the fact that if clauses overlap,
nipkow@8628
  2571
their order disambiguates them.
nipkow@8628
  2572
wenzelm@6580
  2573
A \texttt{recdef} definition also returns an induction rule specialised for
wenzelm@6580
  2574
the recursive function.  For the \texttt{gcd} function above, the induction
wenzelm@6580
  2575
rule is
wenzelm@6580
  2576
\begin{ttbox}
wenzelm@6580
  2577
gcd.induct;
wenzelm@6580
  2578
{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm}
wenzelm@6580
  2579
\end{ttbox}
wenzelm@6580
  2580
This rule should be used to reason inductively about the \texttt{gcd}
wenzelm@6580
  2581
function.  It usually makes the induction hypothesis available at all
wenzelm@6580
  2582
recursive calls, leading to very direct proofs.  If any termination conditions
wenzelm@6580
  2583
remain unproved, they will become additional premises of this rule.
wenzelm@6580
  2584
wenzelm@6580
  2585
\index{recursion!general|)}
wenzelm@6580
  2586
\index{*recdef|)}
wenzelm@6580
  2587
wenzelm@6580
  2588
wenzelm@6580
  2589
\section{Inductive and coinductive definitions}
wenzelm@6580
  2590
\index{*inductive|(}
wenzelm@6580
  2591
\index{*coinductive|(}
wenzelm@6580
  2592
wenzelm@6580
  2593
An {\bf inductive definition} specifies the least set~$R$ closed under given
wenzelm@6580
  2594
rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
wenzelm@6580
  2595
example, a structural operational semantics is an inductive definition of an
wenzelm@6580
  2596
evaluation relation.  Dually, a {\bf coinductive definition} specifies the
wenzelm@6580
  2597
greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
wenzelm@6580
  2598
seen as arising by applying a rule to elements of~$R$.)  An important example
wenzelm@6580
  2599
is using bisimulation relations to formalise equivalence of processes and
wenzelm@6580
  2600
infinite data structures.
wenzelm@6580
  2601
wenzelm@6580
  2602
A theory file may contain any number of inductive and coinductive
wenzelm@6580
  2603
definitions.  They may be intermixed with other declarations; in
wenzelm@6580
  2604
particular, the (co)inductive sets {\bf must} be declared separately as
wenzelm@6580
  2605
constants, and may have mixfix syntax or be subject to syntax translations.
wenzelm@6580
  2606
wenzelm@6580
  2607
Each (co)inductive definition adds definitions to the theory and also
wenzelm@6580
  2608
proves some theorems.  Each definition creates an \ML\ structure, which is a
wenzelm@6580
  2609
substructure of the main theory structure.
wenzelm@6580
  2610
wenzelm@9695
  2611
This package is related to the ZF one, described in a separate
wenzelm@6580
  2612
paper,%
wenzelm@6580
  2613
\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
wenzelm@6580
  2614
  distributed with Isabelle.}  %
wenzelm@6580
  2615
which you should refer to in case of difficulties.  The package is simpler
wenzelm@9695
  2616
than ZF's thanks to HOL's extra-logical automatic type-checking.  The types of
wenzelm@9695
  2617
the (co)inductive sets determine the domain of the fixedpoint definition, and
wenzelm@9695
  2618
the package does not have to use inference rules for type-checking.
wenzelm@6580
  2619
wenzelm@6580
  2620
wenzelm@6580
  2621
\subsection{The result structure}
wenzelm@6580
  2622
Many of the result structure's components have been discussed in the paper;
wenzelm@6580
  2623
others are self-explanatory.
wenzelm@6580
  2624
\begin{description}
wenzelm@6580
  2625
\item[\tt defs] is the list of definitions of the recursive sets.
wenzelm@6580
  2626
wenzelm@6580
  2627
\item[\tt mono] is a monotonicity theorem for the fixedpoint operator.
wenzelm@6580
  2628
wenzelm@6580
  2629
\item[\tt unfold] is a fixedpoint equation for the recursive set (the union of
wenzelm@6580
  2630
the recursive sets, in the case of mutual recursion).
wenzelm@6580
  2631
wenzelm@6580
  2632
\item[\tt intrs] is the list of introduction rules, now proved as theorems, for
wenzelm@6580
  2633
the recursive sets.  The rules are also available individually, using the
wenzelm@6580
  2634
names given them in the theory file. 
wenzelm@6580
  2635
wenzelm@10109
  2636
\item[\tt elims] is the list of elimination rule.  This is for compatibility
wenzelm@10109
  2637
  with ML scripts; within the theory the name is \texttt{cases}.
wenzelm@10109
  2638
  
wenzelm@10109
  2639
\item[\tt elim] is the head of the list \texttt{elims}.  This is for
wenzelm@10109
  2640
  compatibility only.
wenzelm@6580
  2641
  
wenzelm@6580
  2642
\item[\tt mk_cases] is a function to create simplified instances of {\tt
wenzelm@6580
  2643
elim} using freeness reasoning on underlying datatypes.
wenzelm@6580
  2644
\end{description}
wenzelm@6580
  2645
wenzelm@6580
  2646
For an inductive definition, the result structure contains the
wenzelm@6580
  2647
rule \texttt{induct}.  For a
wenzelm@6580
  2648
coinductive definition, it contains the rule \verb|coinduct|.
wenzelm@6580
  2649
wenzelm@6580
  2650
Figure~\ref{def-result-fig} summarises the two result signatures,
wenzelm@6580
  2651
specifying the types of all these components.
wenzelm@6580
  2652
wenzelm@6580
  2653
\begin{figure}
wenzelm@6580
  2654
\begin{ttbox}
wenzelm@6580
  2655
sig
wenzelm@6580
  2656
val defs         : thm list
wenzelm@6580
  2657
val mono         : thm
wenzelm@6580
  2658
val unfold       : thm
wenzelm@6580
  2659
val intrs        : thm list
wenzelm@6580
  2660
val elims        : thm list
wenzelm@6580
  2661
val elim         : thm
wenzelm@6580
  2662
val mk_cases     : string -> thm
wenzelm@6580
  2663
{\it(Inductive definitions only)} 
wenzelm@6580
  2664
val induct       : thm
wenzelm@6580
  2665
{\it(coinductive definitions only)}
wenzelm@6580
  2666
val coinduct     : thm
wenzelm@6580
  2667
end
wenzelm@6580
  2668
\end{ttbox}
wenzelm@6580
  2669
\hrule
wenzelm@6580
  2670
\caption{The {\ML} result of a (co)inductive definition} \label{def-result-fig}
wenzelm@6580
  2671
\end{figure}
wenzelm@6580
  2672
wenzelm@6580
  2673
\subsection{The syntax of a (co)inductive definition}
wenzelm@6580
  2674
An inductive definition has the form
wenzelm@6580
  2675
\begin{ttbox}
wenzelm@6580
  2676
inductive    {\it inductive sets}
wenzelm@6580
  2677
  intrs      {\it introduction rules}
wenzelm@6580
  2678
  monos      {\it monotonicity theorems}
wenzelm@6580
  2679
\end{ttbox}
wenzelm@6580
  2680
A coinductive definition is identical, except that it starts with the keyword
wenzelm@6580
  2681
\texttt{coinductive}.  
wenzelm@6580
  2682
wenzelm@12180
  2683
The \texttt{monos} section is optional; if present it is specified by a list
wenzelm@12180
  2684
of identifiers.
wenzelm@6580
  2685
wenzelm@6580
  2686
\begin{itemize}
wenzelm@6580
  2687
\item The \textit{inductive sets} are specified by one or more strings.
wenzelm@6580
  2688
wenzelm@6580
  2689
\item The \textit{introduction rules} specify one or more introduction rules in
wenzelm@6580
  2690
  the form \textit{ident\/}~\textit{string}, where the identifier gives the name of
wenzelm@6580
  2691
  the rule in the result structure.
wenzelm@6580
  2692
wenzelm@6580
  2693
\item The \textit{monotonicity theorems} are required for each operator
wenzelm@6580
  2694
  applied to a recursive set in the introduction rules.  There {\bf must}
wenzelm@6580
  2695
  be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each
wenzelm@6580
  2696
  premise $t\in M(R@i)$ in an introduction rule!
wenzelm@6580
  2697
wenzelm@6580
  2698
\item The \textit{constructor definitions} contain definitions of constants
wenzelm@6580
  2699
  appearing in the introduction rules.  In most cases it can be omitted.
wenzelm@6580
  2700
\end{itemize}
wenzelm@6580
  2701
wenzelm@6580
  2702
berghofe@7830
  2703
\subsection{*Monotonicity theorems}
berghofe@7830
  2704
berghofe@7830
  2705
Each theory contains a default set of theorems that are used in monotonicity
berghofe@7830
  2706
proofs. New rules can be added to this set via the \texttt{mono} attribute.
berghofe@7830
  2707
Theory \texttt{Inductive} shows how this is done. In general, the following
berghofe@7830
  2708
monotonicity theorems may be added:
berghofe@7830
  2709
\begin{itemize}
berghofe@7830
  2710
\item Theorems of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for proving
berghofe@7830
  2711
  monotonicity of inductive definitions whose introduction rules have premises
berghofe@7830
  2712
  involving terms such as $t\in M(R@i)$.
berghofe@7830
  2713
\item Monotonicity theorems for logical operators, which are of the general form
paulson@11242
  2714
  $\List{\cdots \to \cdots;~\ldots;~\cdots \to \cdots} \Imp
paulson@11242
  2715
    \cdots \to \cdots$.
paulson@11242
  2716
  For example, in the case of the operator $\lor$, the corresponding theorem is
berghofe@7830
  2717
  \[
paulson@11242
  2718
  \infer{P@1 \lor P@2 \to Q@1 \lor Q@2}
paulson@11242
  2719
    {P@1 \to Q@1 & P@2 \to Q@2}
berghofe@7830
  2720
  \]
berghofe@7830
  2721
\item De Morgan style equations for reasoning about the ``polarity'' of expressions, e.g.
berghofe@7830
  2722
  \[
paulson@11242
  2723
  (\lnot \lnot P) ~=~ P \qquad\qquad
paulson@11242
  2724
  (\lnot (P \land Q)) ~=~ (\lnot P \lor \lnot Q)
berghofe@7830
  2725
  \]
berghofe@7830
  2726
\item Equations for reducing complex operators to more primitive ones whose
berghofe@7830
  2727
  monotonicity can easily be proved, e.g.
berghofe@7830
  2728
  \[
paulson@11242
  2729
  (P \to Q) ~=~ (\lnot P \lor Q) \qquad\qquad
paulson@11242
  2730
  \mathtt{Ball}~A~P ~\equiv~ \forall x.~x \in A \to P~x
berghofe@7830
  2731
  \]
berghofe@7830
  2732
\end{itemize}
berghofe@7830
  2733
wenzelm@6580
  2734
\subsection{Example of an inductive definition}
wenzelm@6580
  2735
Two declarations, included in a theory file, define the finite powerset
wenzelm@6580
  2736
operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
wenzelm@6580
  2737
inductively, with two introduction rules:
wenzelm@6580
  2738
\begin{ttbox}
wenzelm@6580
  2739
consts Fin :: 'a set => 'a set set
wenzelm@6580
  2740
inductive "Fin A"
wenzelm@6580
  2741
  intrs
wenzelm@6580
  2742
    emptyI  "{\ttlbrace}{\ttrbrace} : Fin A"
wenzelm@6580
  2743
    insertI "[| a: A;  b: Fin A |] ==> insert a b : Fin A"
wenzelm@6580
  2744
\end{ttbox}
wenzelm@6580
  2745
The resulting theory structure contains a substructure, called~\texttt{Fin}.
wenzelm@6580
  2746
It contains the \texttt{Fin}$~A$ introduction rules as the list \texttt{Fin.intrs},
wenzelm@6580
  2747
and also individually as \texttt{Fin.emptyI} and \texttt{Fin.consI}.  The induction
wenzelm@6580
  2748
rule is \texttt{Fin.induct}.
wenzelm@6580
  2749
wenzelm@9695
  2750
For another example, here is a theory file defining the accessible part of a
wenzelm@9695
  2751
relation.  The paper \cite{paulson-CADE} discusses a ZF version of this
wenzelm@9695
  2752
example in more detail.
wenzelm@6580
  2753
\begin{ttbox}
berghofe@7830
  2754
Acc = WF + Inductive +
berghofe@7830
  2755
berghofe@7830
  2756
consts acc :: "('a * 'a)set => 'a set"   (* accessible part *)
berghofe@7830
  2757
wenzelm@6580
  2758
inductive "acc r"
wenzelm@6580
  2759
  intrs
berghofe@7830
  2760
    accI "ALL y. (y, x) : r --> y : acc r ==> x : acc r"
berghofe@7830
  2761
wenzelm@6580
  2762
end
wenzelm@6580
  2763
\end{ttbox}
wenzelm@6580
  2764
The Isabelle distribution contains many other inductive definitions.  Simple
wenzelm@6580
  2765
examples are collected on subdirectory \texttt{HOL/Induct}.  The theory
wenzelm@6580
  2766
\texttt{HOL/Induct/LList} contains coinductive definitions.  Larger examples
wenzelm@6580
  2767
may be found on other subdirectories of \texttt{HOL}, such as \texttt{IMP},
wenzelm@6580
  2768
\texttt{Lambda} and \texttt{Auth}.
wenzelm@6580
  2769
wenzelm@6580
  2770
\index{*coinductive|)} \index{*inductive|)}
wenzelm@6580
  2771
wenzelm@6580
  2772
berghofe@12611
  2773
\section{Executable specifications}
berghofe@12611
  2774
\index{code generator}
berghofe@12611
  2775
berghofe@12611
  2776
For validation purposes, it is often useful to {\em execute} specifications.
berghofe@12611
  2777
In principle, specifications could be ``executed'' using Isabelle's
berghofe@12611
  2778
inference kernel, i.e. by a combination of resolution and simplification.
berghofe@12611
  2779
Unfortunately, this approach is rather inefficient. A more efficient way
berghofe@12611
  2780
of executing specifications is to translate them into a functional
berghofe@12611
  2781
programming language such as ML. Isabelle's built-in code generator
berghofe@12611
  2782
supports this.
berghofe@12611
  2783
berghofe@17659
  2784
\railalias{verblbrace}{\texttt{\ttlbrace*}}
berghofe@17659
  2785
\railalias{verbrbrace}{\texttt{*\ttrbrace}}
berghofe@17659
  2786
\railterm{verblbrace}
berghofe@17659
  2787
\railterm{verbrbrace}
berghofe@17659
  2788
berghofe@12611
  2789
\begin{figure}
berghofe@12611
  2790
\begin{rail}
berghofe@17659
  2791
codegen : ( 'code_module' | 'code_library' ) modespec ? name ? \\
berghofe@17659
  2792
  ( 'file' name ) ? ( 'imports' ( name + ) ) ? \\
berghofe@17659
  2793
  'contains' ( ( name '=' term ) + | term + );
berghofe@17659
  2794
berghofe@17659
  2795
modespec : '(' ( name * ) ')';
berghofe@17659
  2796
\end{rail}
berghofe@17659
  2797
\caption{Code generator invocation syntax}
berghofe@17659
  2798
\label{fig:HOL:codegen-invocation}
berghofe@17659
  2799
\end{figure}
berghofe@17659
  2800
berghofe@17659
  2801
\begin{figure}
berghofe@17659
  2802
\begin{rail}
berghofe@12611
  2803
constscode : 'consts_code' (codespec +);
berghofe@12611
  2804
haftmann@22921
  2805
codespec : const template attachment ?;
berghofe@12611
  2806
berghofe@12611
  2807
typescode : 'types_code' (tycodespec +);
berghofe@12611
  2808
berghofe@17659
  2809
tycodespec : name template attachment ?;
wenzelm@13028
  2810
haftmann@22921
  2811
const : term;
haftmann@22921
  2812
wenzelm@13028
  2813
template: '(' string ')';
berghofe@17659
  2814
berghofe@17659
  2815
attachment: 'attach' modespec ? verblbrace text verbrbrace;
berghofe@12611
  2816
\end{rail}
berghofe@17659
  2817
\caption{Code generator configuration syntax}
berghofe@17659
  2818
\label{fig:HOL:codegen-configuration}
berghofe@12611
  2819
\end{figure}
berghofe@12611
  2820
berghofe@12611
  2821
\subsection{Invoking the code generator}
berghofe@12611
  2822
berghofe@17659
  2823
The code generator is invoked via the \ttindex{code_module} and
berghofe@17659
  2824
\ttindex{code_library} commands (see Fig.~\ref{fig:HOL:codegen-invocation}),
berghofe@17662
  2825
which correspond to {\em incremental} and {\em modular} code generation,
berghofe@17659
  2826
respectively.
berghofe@17659
  2827
\begin{description}
berghofe@17659
  2828
\item[Modular] For each theory, an ML structure is generated, containing the
berghofe@17659
  2829
  code generated from the constants defined in this theory.
berghofe@17659
  2830
\item[Incremental] All the generated code is emitted into the same structure.
berghofe@17659
  2831
  This structure may import code from previously generated structures, which
berghofe@17659
  2832
  can be specified via \texttt{imports}.
berghofe@17659
  2833
  Moreover, the generated structure may also be referred to in later invocations
berghofe@17659
  2834
  of the code generator.
berghofe@17659
  2835
\end{description}
berghofe@17659
  2836
After the \texttt{code_module} and \texttt{code_library} keywords, the user
berghofe@17659
  2837
may specify an optional list of ``modes'' in parentheses. These can be used
berghofe@17659
  2838
to instruct the code generator to emit additional code for special purposes,
berghofe@17659
  2839
e.g.\ functions for converting elements of generated datatypes to Isabelle terms,
berghofe@17659
  2840
or test data generators. The list of modes is followed by a module name.
berghofe@17659
  2841
The module name is optional for modular code generation, but must be specified
berghofe@17659
  2842
for incremental code generation.
berghofe@17659
  2843
The code can either be written to a file,
berghofe@17659
  2844
in which case a file name has to be specified after the \texttt{file} keyword, or be
berghofe@12611
  2845
loaded directly into Isabelle's ML environment. In the latter case,
berghofe@12611
  2846
the \texttt{ML} theory command can be used to inspect the results
berghofe@12611
  2847
interactively.
berghofe@17659
  2848
The terms from which to generate code can be specified after the
berghofe@17659
  2849
\texttt{contains} keyword, either as a list of bindings, or just as
berghofe@17659
  2850
a list of terms. In the latter case, the code generator just produces
berghofe@17659
  2851
code for all constants and types occuring in the term, but does not
berghofe@17659
  2852
bind the compiled terms to ML identifiers.
berghofe@12611
  2853
For example,
berghofe@12611
  2854
\begin{ttbox}
berghofe@17659
  2855
code_module Test
berghofe@17659
  2856
contains
berghofe@12611
  2857
  test = "foldl op + (0::int) [1,2,3,4,5]"
berghofe@12611
  2858
\end{ttbox}
berghofe@12611
  2859
binds the result of compiling the term
berghofe@12611
  2860
\texttt{foldl op + (0::int) [1,2,3,4,5]}
berghofe@17659
  2861
(i.e.~\texttt{15}) to the ML identifier \texttt{Test.test}.
berghofe@12611
  2862
berghofe@12611
  2863
\subsection{Configuring the code generator}
berghofe@12611
  2864
berghofe@12611
  2865
When generating code for a complex term, the code generator recursively
berghofe@12611
  2866
calls itself for all subterms.
berghofe@12611
  2867
When it arrives at a constant, the default strategy of the code
berghofe@12611
  2868
generator is to look up its definition and try to generate code for it.
berghofe@13008
  2869
Constants which have no definitions that
berghofe@12611
  2870
are immediately executable, may be associated with a piece of ML
berghofe@12611
  2871
code manually using the \ttindex{consts_code} command
berghofe@17659
  2872
(see Fig.~\ref{fig:HOL:codegen-configuration}).
haftmann@22921
  2873
It takes a list whose elements consist of a constant (given in usual term syntax
haftmann@22921
  2874
-- an explicit type constraint accounts for overloading), and a
berghofe@12611
  2875
mixfix template describing the ML code. The latter is very much the
berghofe@12611
  2876
same as the mixfix templates used when declaring new constants.
berghofe@12611
  2877
The most notable difference is that terms may be included in the ML
berghofe@12611
  2878
template using antiquotation brackets \verb|{*|~$\ldots$~\verb|*}|.
berghofe@12611
  2879
A similar mechanism is available for
berghofe@12611
  2880
types: \ttindex{types_code} associates type constructors with
berghofe@13008
  2881
specific ML code. For example, the declaration
berghofe@13008
  2882
\begin{ttbox}
berghofe@13008
  2883
types_code
berghofe@13008
  2884
  "*"     ("(_ */ _)")
berghofe@13008
  2885
berghofe@13008
  2886
consts_code
berghofe@13008
  2887
  "Pair"    ("(_,/ _)")
berghofe@13008
  2888
\end{ttbox}
berghofe@17659
  2889
in theory \texttt{Product_Type} describes how the product type of Isabelle/HOL
berghofe@17659
  2890
should be compiled to ML. Sometimes, the code associated with a
berghofe@17659
  2891
constant or type may need to refer to auxiliary functions, which
berghofe@17659
  2892
have to be emitted when the constant is used. Code for such auxiliary
berghofe@17659
  2893
functions can be declared using \texttt{attach}. For example, the
berghofe@17659
  2894
\texttt{wfrec} function from theory \texttt{Wellfounded_Recursion}
berghofe@17659
  2895
is implemented as follows:
berghofe@17659
  2896
\begin{ttbox}
berghofe@17659
  2897
consts_code
berghofe@17659
  2898
  "wfrec"   ("\bs<module>wfrec?")
berghofe@17659
  2899
attach \{*
berghofe@17659
  2900
fun wfrec f x = f (wfrec f) x;
berghofe@17659
  2901
*\}
berghofe@17659
  2902
\end{ttbox}
berghofe@17659
  2903
If the code containing a call to \texttt{wfrec} resides in an ML structure
berghofe@17659
  2904
different from the one containing the function definition attached to
berghofe@17659
  2905
\texttt{wfrec}, the name of the ML structure (followed by a ``\texttt{.}'')
berghofe@17659
  2906
is inserted in place of ``\texttt{\bs<module>}'' in the above template.
berghofe@17659
  2907
The ``\texttt{?}'' means that the code generator should ignore the first
berghofe@17659
  2908
argument of \texttt{wfrec}, i.e.\ the termination relation, which is
berghofe@17659
  2909
usually not executable.
berghofe@12611
  2910
berghofe@12611
  2911
Another possibility of configuring the code generator is to register
berghofe@12611
  2912
theorems to be used for code generation. Theorems can be registered
berghofe@12611
  2913
via the \ttindex{code} attribute. It takes an optional name as
berghofe@12611
  2914
an argument, which indicates the format of the theorem. Currently
berghofe@12611
  2915
supported formats are equations (this is the default when no name
berghofe@12611
  2916
is specified) and horn clauses (this is indicated by the name
berghofe@12611
  2917
\texttt{ind}). The left-hand sides of equations may only contain
berghofe@12611
  2918
constructors and distinct variables, whereas horn clauses must have
berghofe@12611
  2919
the same format as introduction rules of inductive definitions.
berghofe@13008
  2920
For example, the declaration
berghofe@13008
  2921
\begin{ttbox}
berghofe@17659
  2922
lemma Suc_less_eq [iff, code]: "(Suc m < Suc n) = (m < n)" \(\langle\ldots\rangle\)
berghofe@13008
  2923
lemma [code]: "((n::nat) < 0) = False" by simp
berghofe@17659
  2924
lemma [code]: "(0 < Suc n) = True" by simp
berghofe@13008
  2925
\end{ttbox}
berghofe@17659
  2926
in theory \texttt{Nat} specifies three equations from which to generate
berghofe@13008
  2927
code for \texttt{<} on natural numbers.
berghofe@12611
  2928
berghofe@12611
  2929
\subsection{Specific HOL code generators}
berghofe@12611
  2930
berghofe@12611
  2931
The basic code generator framework offered by Isabelle/Pure has
berghofe@12611
  2932
already been extended with additional code generators for specific
berghofe@12611
  2933
HOL constructs. These include datatypes, recursive functions and
berghofe@12611
  2934
inductive relations. The code generator for inductive relations
berghofe@12611
  2935
can handle expressions of the form $(t@1,\ldots,t@n) \in r$, where
berghofe@13008
  2936
$r$ is an inductively defined relation. If at least one of the
berghofe@13008
  2937
$t@i$ is a dummy pattern ``$_$'', the above expression evaluates to a
berghofe@12611
  2938
sequence of possible answers. If all of the $t@i$ are proper
berghofe@13008
  2939
terms, the expression evaluates to a boolean value.
berghofe@13008
  2940
\begin{small}
berghofe@13008
  2941
\begin{alltt}
berghofe@13008
  2942
  theory Test = Lambda:
berghofe@13008
  2943
berghofe@17659
  2944
  code_module Test
berghofe@17659
  2945
  contains
berghofe@13008
  2946
    test1 = "Abs (Var 0) \(\circ\) Var 0 -> Var 0"
berghofe@13008
  2947
    test2 = "Abs (Abs (Var 0 \(\circ\) Var 0) \(\circ\) (Abs (Var 0) \(\circ\) Var 0)) -> _"
berghofe@13008
  2948
\end{alltt}
berghofe@13008
  2949
\end{small}
berghofe@17659
  2950
In the above example, \texttt{Test.test1} evaluates to the boolean
berghofe@17659
  2951
value \texttt{true}, whereas \texttt{Test.test2} is a sequence whose
berghofe@13008
  2952
elements can be inspected using \texttt{Seq.pull} or similar functions.
berghofe@13008
  2953
\begin{ttbox}
berghofe@17659
  2954
ML \{* Seq.pull Test.test2 *\}  -- \{* This is the first answer *\}
berghofe@13008
  2955
ML \{* Seq.pull (snd (the it)) *\}  -- \{* This is the second answer *\}
berghofe@13008
  2956
\end{ttbox}
berghofe@13008
  2957
The theory
berghofe@12611
  2958
underlying the HOL code generator is described more detailed in
berghofe@13008
  2959
\cite{Berghofer-Nipkow:2002}. More examples that illustrate the usage
berghofe@13008
  2960
of the code generator can be found e.g.~in theories
berghofe@13008
  2961
\texttt{MicroJava/J/JListExample} and \texttt{MicroJava/JVM/JVMListExample}.
berghofe@12611
  2962
wenzelm@6580
  2963
\section{The examples directories}
wenzelm@6580
  2964
paulson@6592
  2965
Directory \texttt{HOL/Auth} contains theories for proving the correctness of
paulson@6592
  2966
cryptographic protocols~\cite{paulson-jcs}.  The approach is based upon
paulson@6592
  2967
operational semantics rather than the more usual belief logics.  On the same
paulson@6592
  2968
directory are proofs for some standard examples, such as the Needham-Schroeder
paulson@6592
  2969
public-key authentication protocol and the Otway-Rees
paulson@6592
  2970
protocol.
wenzelm@6580
  2971
wenzelm@6580
  2972
Directory \texttt{HOL/IMP} contains a formalization of various denotational,
wenzelm@6580
  2973
operational and axiomatic semantics of a simple while-language, the necessary
nipkow@6588
  2974
equivalence proofs, soundness and completeness of the Hoare rules with
nipkow@6588
  2975
respect to the denotational semantics, and soundness and completeness of a
nipkow@6588
  2976
verification condition generator.  Much of development is taken from
wenzelm@6580
  2977
Winskel~\cite{winskel93}.  For details see~\cite{nipkow-IMP}.
wenzelm@6580
  2978
wenzelm@6580
  2979
Directory \texttt{HOL/Hoare} contains a user friendly surface syntax for Hoare
wenzelm@6580
  2980
logic, including a tactic for generating verification-conditions.
wenzelm@6580
  2981
nipkow@6588
  2982
Directory \texttt{HOL/MiniML} contains a formalization of the type system of
nipkow@6588
  2983
the core functional language Mini-ML and a correctness proof for its type
nipkow@6588
  2984
inference algorithm $\cal W$~\cite{milner78,nipkow-W}.
wenzelm@6580
  2985
wenzelm@6580
  2986
Directory \texttt{HOL/Lambda} contains a formalization of untyped
wenzelm@6580
  2987
$\lambda$-calculus in de~Bruijn notation and Church-Rosser proofs for $\beta$
wenzelm@6580
  2988
and $\eta$ reduction~\cite{Nipkow-CR}.
wenzelm@6580
  2989
wenzelm@9695
  2990
Directory \texttt{HOL/Subst} contains Martin Coen's mechanization of a theory
wenzelm@9695
  2991
of substitutions and unifiers.  It is based on Paulson's previous
wenzelm@9695
  2992
mechanisation in LCF~\cite{paulson85} of Manna and Waldinger's
wenzelm@6580
  2993
theory~\cite{mw81}.  It demonstrates a complicated use of \texttt{recdef},
wenzelm@6580
  2994
with nested recursion.
wenzelm@6580
  2995
wenzelm@6580
  2996
Directory \texttt{HOL/Induct} presents simple examples of (co)inductive
wenzelm@6580
  2997
definitions and datatypes.
wenzelm@6580
  2998
\begin{itemize}
wenzelm@6580
  2999
\item Theory \texttt{PropLog} proves the soundness and completeness of
wenzelm@6580
  3000
  classical propositional logic, given a truth table semantics.  The only
wenzelm@6580
  3001
  connective is $\imp$.  A Hilbert-style axiom system is specified, and its
wenzelm@9695
  3002
  set of theorems defined inductively.  A similar proof in ZF is described
wenzelm@9695
  3003
  elsewhere~\cite{paulson-set-II}.
wenzelm@6580
  3004
wenzelm@6580
  3005
\item Theory \texttt{Term} defines the datatype \texttt{term}.
wenzelm@6580
  3006
wenzelm@6580
  3007
\item Theory \texttt{ABexp} defines arithmetic and boolean expressions
wenzelm@6580
  3008
 as mutually recursive datatypes.
wenzelm@6580
  3009
wenzelm@6580
  3010
\item The definition of lazy lists demonstrates methods for handling
wenzelm@6580
  3011
  infinite data structures and coinduction in higher-order
wenzelm@6580
  3012
  logic~\cite{paulson-coind}.%
wenzelm@6580
  3013
\footnote{To be precise, these lists are \emph{potentially infinite} rather
wenzelm@6580
  3014
  than lazy.  Lazy implies a particular operational semantics.}
wenzelm@6580
  3015
  Theory \thydx{LList} defines an operator for
wenzelm@6580
  3016
  corecursion on lazy lists, which is used to define a few simple functions
wenzelm@6580
  3017
  such as map and append.   A coinduction principle is defined
wenzelm@6580
  3018
  for proving equations on lazy lists.
wenzelm@6580
  3019
  
wenzelm@6580
  3020
\item Theory \thydx{LFilter} defines the filter functional for lazy lists.
wenzelm@6580
  3021
  This functional is notoriously difficult to define because finding the next
wenzelm@6580
  3022
  element meeting the predicate requires possibly unlimited search.  It is not
wenzelm@6580
  3023
  computable, but can be expressed using a combination of induction and
wenzelm@6580
  3024
  corecursion.  
wenzelm@6580
  3025
wenzelm@6580
  3026
\item Theory \thydx{Exp} illustrates the use of iterated inductive definitions
wenzelm@6580
  3027
  to express a programming language semantics that appears to require mutual
wenzelm@6580
  3028
  induction.  Iterated induction allows greater modularity.
wenzelm@6580
  3029
\end{itemize}
wenzelm@6580
  3030
wenzelm@6580
  3031
Directory \texttt{HOL/ex} contains other examples and experimental proofs in
wenzelm@9695
  3032
HOL.
wenzelm@6580
  3033
\begin{itemize}
wenzelm@6580
  3034
\item Theory \texttt{Recdef} presents many examples of using \texttt{recdef}
wenzelm@6580
  3035
  to define recursive functions.  Another example is \texttt{Fib}, which
wenzelm@6580
  3036
  defines the Fibonacci function.
wenzelm@6580
  3037
wenzelm@6580
  3038
\item Theory \texttt{Primes} defines the Greatest Common Divisor of two
wenzelm@6580
  3039
  natural numbers and proves a key lemma of the Fundamental Theorem of
wenzelm@6580
  3040
  Arithmetic: if $p$ is prime and $p$ divides $m\times n$ then $p$ divides~$m$
wenzelm@6580
  3041
  or $p$ divides~$n$.
wenzelm@6580
  3042
wenzelm@6580
  3043
\item Theory \texttt{Primrec} develops some computation theory.  It
wenzelm@6580
  3044
  inductively defines the set of primitive recursive functions and presents a
wenzelm@6580
  3045
  proof that Ackermann's function is not primitive recursive.
wenzelm@6580
  3046
wenzelm@6580
  3047
\item File \texttt{cla.ML} demonstrates the classical reasoner on over sixty
wenzelm@6580
  3048
  predicate calculus theorems, ranging from simple tautologies to
wenzelm@6580
  3049
  moderately difficult problems involving equality and quantifiers.
wenzelm@6580
  3050
wenzelm@6580
  3051
\item File \texttt{meson.ML} contains an experimental implementation of the {\sc
wenzelm@6580
  3052
    meson} proof procedure, inspired by Plaisted~\cite{plaisted90}.  It is
wenzelm@6580
  3053
  much more powerful than Isabelle's classical reasoner.  But it is less
wenzelm@6580
  3054
  useful in practice because it works only for pure logic; it does not
wenzelm@6580
  3055
  accept derived rules for the set theory primitives, for example.
wenzelm@6580
  3056
wenzelm@6580
  3057
\item File \texttt{mesontest.ML} contains test data for the {\sc meson} proof
wenzelm@6580
  3058
  procedure.  These are mostly taken from Pelletier \cite{pelletier86}.
wenzelm@6580
  3059
wenzelm@6580
  3060
\item File \texttt{set.ML} proves Cantor's Theorem, which is presented in
oheimb@7490
  3061
  {\S}\ref{sec:hol-cantor} below, and the Schr{\"o}der-Bernstein Theorem.
wenzelm@6580
  3062
wenzelm@6580
  3063
\item Theory \texttt{MT} contains Jacob Frost's formalization~\cite{frost93} of
wenzelm@6580
  3064
  Milner and Tofte's coinduction example~\cite{milner-coind}.  This
wenzelm@6580
  3065
  substantial proof concerns the soundness of a type system for a simple
wenzelm@6580
  3066
  functional language.  The semantics of recursion is given by a cyclic
wenzelm@6580
  3067
  environment, which makes a coinductive argument appropriate.
wenzelm@6580
  3068
\end{itemize}
wenzelm@6580
  3069
wenzelm@6580
  3070
wenzelm@6580
  3071
\goodbreak
wenzelm@6580
  3072
\section{Example: Cantor's Theorem}\label{sec:hol-cantor}
wenzelm@6580
  3073
Cantor's Theorem states that every set has more subsets than it has
wenzelm@6580
  3074
elements.  It has become a favourite example in higher-order logic since
wenzelm@6580
  3075
it is so easily expressed:
wenzelm@6580
  3076
\[  \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool.
wenzelm@6580
  3077
    \forall x::\alpha. f~x \not= S 
wenzelm@6580
  3078
\] 
wenzelm@6580
  3079
%
wenzelm@6580
  3080
Viewing types as sets, $\alpha\To bool$ represents the powerset
wenzelm@6580
  3081
of~$\alpha$.  This version states that for every function from $\alpha$ to
wenzelm@6580
  3082
its powerset, some subset is outside its range.  
wenzelm@6580
  3083
wenzelm@9695
  3084
The Isabelle proof uses HOL's set theory, with the type $\alpha\,set$ and
wenzelm@6580
  3085
the operator \cdx{range}.
wenzelm@6580
  3086
\begin{ttbox}
wenzelm@6580
  3087
context Set.thy;
wenzelm@6580
  3088
\end{ttbox}
wenzelm@6580
  3089
The set~$S$ is given as an unknown instead of a
wenzelm@6580
  3090
quantified variable so that we may inspect the subset found by the proof.
wenzelm@6580
  3091
\begin{ttbox}
wenzelm@6580
  3092
Goal "?S ~: range\thinspace(f :: 'a=>'a set)";
wenzelm@6580
  3093
{\out Level 0}
wenzelm@6580
  3094
{\out ?S ~: range f}
wenzelm@6580
  3095
{\out  1. ?S ~: range f}
wenzelm@6580
  3096
\end{ttbox}
wenzelm@6580
  3097
The first two steps are routine.  The rule \tdx{rangeE} replaces
wenzelm@6580
  3098
$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$.
wenzelm@6580
  3099
\begin{ttbox}
wenzelm@6580
  3100
by (resolve_tac [notI] 1);
wenzelm@6580
  3101
{\out Level 1}
wenzelm@6580
  3102
{\out ?S ~: range f}
wenzelm@6580
  3103
{\out  1. ?S : range f ==> False}
wenzelm@6580
  3104
\ttbreak
wenzelm@6580
  3105
by (eresolve_tac [rangeE] 1);
wenzelm@6580
  3106
{\out Level 2}
wenzelm@6580
  3107
{\out ?S ~: range f}
wenzelm@6580
  3108
{\out  1. !!x. ?S = f x ==> False}
wenzelm@6580
  3109
\end{ttbox}
wenzelm@6580
  3110
Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$,
wenzelm@6580
  3111
we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for
wenzelm@6580
  3112
any~$\Var{c}$.
wenzelm@6580
  3113
\begin{ttbox}
wenzelm@6580
  3114
by (eresolve_tac [equalityCE] 1);
wenzelm@6580
  3115
{\out Level 3}
wenzelm@6580
  3116
{\out ?S ~: range f}
wenzelm@6580
  3117
{\out  1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False}
wenzelm@6580
  3118
{\out  2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False}
wenzelm@6580
  3119
\end{ttbox}
wenzelm@6580
  3120
Now we use a bit of creativity.  Suppose that~$\Var{S}$ has the form of a
wenzelm@6580
  3121
comprehension.  Then $\Var{c}\in\{x.\Var{P}~x\}$ implies
wenzelm@6580
  3122
$\Var{P}~\Var{c}$.   Destruct-resolution using \tdx{CollectD}
wenzelm@6580
  3123
instantiates~$\Var{S}$ and creates the new assumption.
wenzelm@6580
  3124
\begin{ttbox}
wenzelm@6580
  3125
by (dresolve_tac [CollectD] 1);
wenzelm@6580
  3126
{\out Level 4}
wenzelm@6580
  3127
{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f}
wenzelm@6580
  3128
{\out  1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False}
wenzelm@6580
  3129
{\out  2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False}
wenzelm@6580
  3130
\end{ttbox}
wenzelm@6580
  3131
Forcing a contradiction between the two assumptions of subgoal~1
wenzelm@6580
  3132
completes the instantiation of~$S$.  It is now the set $\{x. x\not\in
wenzelm@6580
  3133
f~x\}$, which is the standard diagonal construction.
wenzelm@6580
  3134
\begin{ttbox}
wenzelm@6580
  3135
by (contr_tac 1);
wenzelm@6580
  3136
{\out Level 5}
wenzelm@6580
  3137
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
wenzelm@6580
  3138
{\out  1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False}
wenzelm@6580
  3139
\end{ttbox}
wenzelm@6580
  3140
The rest should be easy.  To apply \tdx{CollectI} to the negated
wenzelm@6580
  3141
assumption, we employ \ttindex{swap_res_tac}:
wenzelm@6580
  3142
\begin{ttbox}
wenzelm@6580
  3143
by (swap_res_tac [CollectI] 1);
wenzelm@6580
  3144
{\out Level 6}
wenzelm@6580
  3145
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
wenzelm@6580
  3146
{\out  1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x}
wenzelm@6580
  3147
\ttbreak
wenzelm@6580
  3148
by (assume_tac 1);
wenzelm@6580
  3149
{\out Level 7}
wenzelm@6580
  3150
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
wenzelm@6580
  3151
{\out No subgoals!}
wenzelm@6580
  3152
\end{ttbox}
wenzelm@6580
  3153
How much creativity is required?  As it happens, Isabelle can prove this
wenzelm@9695
  3154
theorem automatically.  The default classical set \texttt{claset()} contains
wenzelm@9695
  3155
rules for most of the constructs of HOL's set theory.  We must augment it with
wenzelm@9695
  3156
\tdx{equalityCE} to break up set equalities, and then apply best-first search.
wenzelm@9695
  3157
Depth-first search would diverge, but best-first search successfully navigates
wenzelm@9695
  3158
through the large search space.  \index{search!best-first}
wenzelm@6580
  3159
\begin{ttbox}
wenzelm@6580
  3160
choplev 0;
wenzelm@6580
  3161
{\out Level 0}
wenzelm@6580
  3162
{\out ?S ~: range f}
wenzelm@6580
  3163
{\out  1. ?S ~: range f}
wenzelm@6580
  3164
\ttbreak
wenzelm@6580
  3165
by (best_tac (claset() addSEs [equalityCE]) 1);
wenzelm@6580
  3166
{\out Level 1}
wenzelm@6580
  3167
{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
wenzelm@6580
  3168
{\out No subgoals!}
wenzelm@6580
  3169
\end{ttbox}
wenzelm@6580
  3170
If you run this example interactively, make sure your current theory contains
wenzelm@6580
  3171
theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}.
wenzelm@6580
  3172
Otherwise the default claset may not contain the rules for set theory.
wenzelm@6580
  3173
\index{higher-order logic|)}
wenzelm@6580
  3174
wenzelm@6580
  3175
%%% Local Variables: 
wenzelm@6580
  3176
%%% mode: latex
wenzelm@10109
  3177
%%% TeX-master: "logics-HOL"
wenzelm@6580
  3178
%%% End: