doc-src/ind-defs.bbl
author nipkow
Sun, 11 Sep 1994 12:52:00 +0200
changeset 601 208834a9ba70
parent 293 63a0077dd9f2
child 606 d5b322b33afb
permissions -rw-r--r--
Added primrec section
lcp@104
     1
\begin{thebibliography}{10}
lcp@104
     2
lcp@104
     3
\bibitem{abramsky90}
lcp@293
     4
Abramsky, S.,
lcp@293
     5
\newblock The lazy lambda calculus,
lcp@293
     6
\newblock In {\em Resesarch Topics in Functional Programming}, D.~A. Turner,
lcp@293
     7
  Ed. Addison-Wesley, 1977, pp.~65--116
lcp@104
     8
lcp@104
     9
\bibitem{aczel77}
lcp@293
    10
Aczel, P.,
lcp@293
    11
\newblock An introduction to inductive definitions,
lcp@293
    12
\newblock In {\em Handbook of Mathematical Logic}, J.~Barwise, Ed.
lcp@293
    13
  North-Holland, 1977, pp.~739--782
lcp@104
    14
lcp@104
    15
\bibitem{aczel88}
lcp@293
    16
Aczel, P.,
lcp@293
    17
\newblock {\em Non-Well-Founded Sets},
lcp@293
    18
\newblock CSLI, 1988
lcp@104
    19
lcp@104
    20
\bibitem{bm79}
lcp@293
    21
Boyer, R.~S., Moore, J.~S.,
lcp@293
    22
\newblock {\em A Computational Logic},
lcp@293
    23
\newblock Academic Press, 1979
lcp@104
    24
lcp@104
    25
\bibitem{camilleri92}
lcp@293
    26
Camilleri, J., Melham, T.~F.,
lcp@104
    27
\newblock Reasoning with inductively defined relations in the {HOL} theorem
lcp@293
    28
  prover,
lcp@293
    29
\newblock Tech. Rep. 265, Comp. Lab., Univ. Cambridge, August 1992
lcp@104
    30
lcp@104
    31
\bibitem{davey&priestley}
lcp@293
    32
Davey, B.~A., Priestley, H.~A.,
lcp@293
    33
\newblock {\em Introduction to Lattices and Order},
lcp@293
    34
\newblock Cambridge Univ. Press, 1990
lcp@293
    35
lcp@293
    36
\bibitem{dybjer91}
lcp@293
    37
Dybjer, P.,
lcp@293
    38
\newblock Inductive sets and families in {Martin-L\"of's} type theory and their
lcp@293
    39
  set-theoretic semantics,
lcp@293
    40
\newblock In {\em Logical Frameworks}, G.~Huet, G.~Plotkin, Eds. Cambridge
lcp@293
    41
  Univ. Press, 1991, pp.~280--306
lcp@293
    42
lcp@293
    43
\bibitem{IMPS}
lcp@293
    44
Farmer, W.~M., Guttman, J.~D., Thayer, F.~J.,
lcp@293
    45
\newblock {IMPS}: An interactive mathematical proof system,
lcp@293
    46
\newblock {\em J. Auto. Reas. {\bf 11}}, 2 (1993), 213--248
lcp@104
    47
lcp@104
    48
\bibitem{hennessy90}
lcp@293
    49
Hennessy, M.,
lcp@104
    50
\newblock {\em The Semantics of Programming Languages: An Elementary
lcp@293
    51
  Introduction Using Structural Operational Semantics},
lcp@293
    52
\newblock Wiley, 1990
lcp@293
    53
lcp@293
    54
\bibitem{huet88}
lcp@293
    55
Huet, G.,
lcp@293
    56
\newblock Induction principles formalized in the {Calculus of Constructions},
lcp@293
    57
\newblock In {\em Programming of Future Generation Computers\/} (1988),
lcp@293
    58
  Elsevier, pp.~205--216
lcp@104
    59
lcp@104
    60
\bibitem{melham89}
lcp@293
    61
Melham, T.~F.,
lcp@293
    62
\newblock Automating recursive type definitions in higher order logic,
lcp@293
    63
\newblock In {\em Current Trends in Hardware Verification and Automated Theorem
lcp@293
    64
  Proving}, G.~Birtwistle, P.~A. Subrahmanyam, Eds. Springer, 1989,
lcp@293
    65
  pp.~341--386
lcp@293
    66
lcp@293
    67
\bibitem{milner-ind}
lcp@293
    68
Milner, R.,
lcp@293
    69
\newblock How to derive inductions in {LCF},
lcp@293
    70
\newblock note, Dept. Comp. Sci., Univ. Edinburgh, 1980
lcp@104
    71
lcp@104
    72
\bibitem{milner89}
lcp@293
    73
Milner, R.,
lcp@293
    74
\newblock {\em Communication and Concurrency},
lcp@293
    75
\newblock Prentice-Hall, 1989
lcp@293
    76
lcp@293
    77
\bibitem{monahan84}
lcp@293
    78
Monahan, B.~Q.,
lcp@293
    79
\newblock {\em Data Type Proofs using Edinburgh {LCF}},
lcp@293
    80
\newblock PhD thesis, University of Edinburgh, 1984
lcp@104
    81
lcp@104
    82
\bibitem{paulin92}
lcp@293
    83
Paulin-Mohring, C.,
lcp@293
    84
\newblock Inductive definitions in the system {Coq}: Rules and properties,
lcp@293
    85
\newblock Research Report 92-49, LIP, Ecole Normale Sup\'erieure de Lyon, Dec.
lcp@293
    86
  1992
lcp@293
    87
lcp@293
    88
\bibitem{paulson87}
lcp@293
    89
Paulson, L.~C.,
lcp@293
    90
\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF},
lcp@293
    91
\newblock Cambridge Univ. Press, 1987
lcp@293
    92
lcp@293
    93
\bibitem{paulson91}
lcp@293
    94
Paulson, L.~C.,
lcp@293
    95
\newblock {\em {ML} for the Working Programmer},
lcp@293
    96
\newblock Cambridge Univ. Press, 1991
lcp@293
    97
lcp@293
    98
\bibitem{paulson-coind}
lcp@293
    99
Paulson, L.~C.,
lcp@293
   100
\newblock Co-induction and co-recursion in higher-order logic,
lcp@293
   101
\newblock Tech. Rep. 304, Comp. Lab., Univ. Cambridge, July 1993
lcp@293
   102
lcp@293
   103
\bibitem{isabelle-intro}
lcp@293
   104
Paulson, L.~C.,
lcp@293
   105
\newblock Introduction to {Isabelle},
lcp@293
   106
\newblock Tech. Rep. 280, Comp. Lab., Univ. Cambridge, 1993
lcp@104
   107
lcp@104
   108
\bibitem{paulson-set-I}
lcp@293
   109
Paulson, L.~C.,
lcp@293
   110
\newblock Set theory for verification: {I}. {From} foundations to functions,
lcp@293
   111
\newblock {\em J. Auto. Reas. {\bf 11}}, 3 (1993), 353--389
lcp@104
   112
lcp@104
   113
\bibitem{paulson-set-II}
lcp@293
   114
Paulson, L.~C.,
lcp@293
   115
\newblock Set theory for verification: {II}. {Induction} and recursion,
lcp@293
   116
\newblock Tech. Rep. 312, Comp. Lab., Univ. Cambridge, 1993
lcp@293
   117
lcp@293
   118
\bibitem{paulson-final}
lcp@293
   119
Paulson, L.~C.,
lcp@293
   120
\newblock A concrete final coalgebra theorem for {ZF} set theory,
lcp@293
   121
\newblock Tech. rep., Comp. Lab., Univ. Cambridge, 1994
lcp@104
   122
lcp@104
   123
\bibitem{pitts94}
lcp@293
   124
Pitts, A.~M.,
lcp@293
   125
\newblock A co-induction principle for recursively defined domains,
lcp@293
   126
\newblock {\em Theoretical Comput. Sci.\/} (1994),
lcp@293
   127
\newblock In press; available as Report 252, Comp. Lab., Univ. Cambridge
lcp@293
   128
lcp@293
   129
\bibitem{saaltink-fme}
lcp@293
   130
Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I.,
lcp@293
   131
\newblock An {EVES} data abstraction example,
lcp@293
   132
\newblock In {\em FME '93: Industrial-Strength Formal Methods\/} (1993),
lcp@293
   133
  J.~C.~P. Woodcock, P.~G. Larsen, Eds., Springer, pp.~578--596,
lcp@293
   134
\newblock LNCS 670
lcp@104
   135
lcp@104
   136
\bibitem{szasz93}
lcp@293
   137
Szasz, N.,
lcp@104
   138
\newblock A machine checked proof that {Ackermann's} function is not primitive
lcp@293
   139
  recursive,
lcp@293
   140
\newblock In {\em Logical Environments}, G.~Huet, G.~Plotkin, Eds. Cambridge
lcp@293
   141
  Univ. Press, 1993, pp.~317--338
lcp@104
   142
lcp@104
   143
\end{thebibliography}